
An Energy Efficient Parallel Architecture Using Near Threshold Operation

Ronald G. Dreslinski, Bo Zhai, Trevor Mudge, David Blaauw, and Dennis Sylvester
University of Michigan - Ann Arbor, MI

{rdreslin, bzhai, tnm, blaauw, dennis}@eecs.umich.edu

 Abstract
Subthreshold circuit design, while energy efficient,

has the drawback of performance degradation. To
retain the excellent energy efficiency while reducing
performance loss, we propose to investigate near sub-
threshold techniques on chip multiprocessors (CMP).
We show that logic and memory cells have different
optimal supply and threshold voltages, therefore we
propose to allow the cores and memory to operate in
different voltage regions. With the memory operating at
a different voltage, we then explore the design space in
which several slower cores clustered together share a
faster L1 cache. We show that an architecture such as
this is optimal for energy efficiency. In particular,
SPLASH2 benchmarks show a 53% energy reduction
over the conventional CMP approach (70% energy
reduction over a single core machine). In addition we
explore the design trade-offs that occur if we have a
separate instruction and data cache. We show that
some applications prefer the data cache to be clustered
while the instruction cache is kept private to the core
allowing further energy savings of a 77% reduction
over a single core machine.
1. Introduction

Due to its high energy efficiency subthreshold
design has been recently proposed for use in low per-
formance applications. For example, Zhai et al. [1] pro-
posed a low-end sensor network processor and Wang
and Chandrakasan [3] proposed subthreshold use for an
FFT engine. However, the drawback of subthreshold
design is that the increased energy efficiency comes at
the cost of performance loss. Thus previous papers
have only targeted low end applications. Our intention
is to use the energy efficiency of subthreshold or near
threshold designs to target parallelizable embedded
applications requiring higher performance, but where
battery life is important.

Previous work by Zhai et al. [4] and Calhoun [5]
has shown that for a CMOS digital circuit there exists
an energy optimal supply voltage (Vmin) below which
energy consumption increases because of exponentially
increased propagation delay and leakage energy. Vmin
usually occurs in the subthreshold region. However,
these papers did not address how to choose the thresh-
old voltage (Vth) to further improve energy savings.

Zhai et al. [2] showed that by properly controlling Vth
to reach the energy optimal voltage a greater savings
can be achieved. We extend that work and investigate,
in detail, architectural choices that can be used to
exploit this property.

Zhai et al. [1] shows that, due to the different activ-
ity factors and leakage rates for memory cells and logic,
the Vmin of the processor and memory are usually dif-
ferent. As a result, operating the entire system under a
single Vdd leads to sub-optimal energy efficiency.
Therefore we propose using a chip design that has two
separate Vdd/Vth domains for the core and memory.

However only changing the Vth does not solve the
issue of performance loss from aggressive voltage scal-
ing. So we propose to employ multiple cores in the near
threshold regime, where we get the best performance
for energy trade-off. We explore separate control of Vdd
and Vth for the core and the memory, where memory is
allowed to operate at speeds both slower and faster than
the core it is attached to. In particular, we create a clus-
ter that has several slower cores connected to the same
faster cache.

Clusters have advantages compared to the conven-
tional CMP approach. Applications that have high com-
munication to computation ratios can share data with
other cores in the cluster without the coherence over-
head of communicating over the bus that connects the
different L1’s. However, the cores are now contending
for the same cache space, which may result in effec-
tively smaller cache sizes due to conflict and capacity
misses generated by the other cores within the cluster.
L1 sharing also requires a bus between the cores and
the L1. Having more cores within a cluster increases
the size and capacitance of this bus. We investigated all
the major factors that could affect the system energy
efficiency, such as L1 cache size, the cluster size, total
number of clusters and the selection of Vdd and Vth
within a cluster. Architectural simulation together with
circuit-level modeling shows that for most of the
SPLASH2 [6] benchmarks the energy optimal point is 2
cores in a cluster. This configuration provides about a
53% increase in energy efficiency over the conven-
tional CMP design.

In addition we explore the possibility of separately
clustering the instruction and data caches and explore
the impact this has on different applications. We find

that due to the low miss rate and high access rate of the
instruction cache, further energy savings can be found
by keeping small private instruction caches for each
core and a clustered data cache. Using this technique
we can increase energy efficiency further to about a
59% reduction over the conventional CMP design.

This work is a detailed extension of the architec-
tural analysis of earlier work which focused on proper
Vth and Vdd selection for clustered MP architectures[2].
This work furthers that work by providing a deeper
analysis of the architectural trade-offs and furthers the
research by exploring split I/D caches.

The paper is organized as follows: Section 2
explains the advantage of the near threshold design and
the impact of threshold voltage selection on energy effi-
ciency. We then introduce the proposed architecture in
Section 3. Section 4 lays out our benchmark selection.
Then Section 5 details the energy modeling of a com-
plete system and Section 6 details the architectural sim-
ulation results of the SPLASH2 benchmarks. In Section
7 we present the impact of splitting the L1 cache into
instruction and data caches and hit under miss policies.
Finally, Section 8 and Section 9 present related work
and concluding remarks. All technology numbers are
from an industrial 0.13um CMOS technology.
2. Near Threshold Operation

Zhai et al. [4] identified the supply voltage at
which the minimum energy is achieved, Vmin. They
also showed that minimum energy consumption at that
voltage, Emin, is independent of the threshold voltage,
Vth, if Vmin is below Vth. In other words, we can
increase the speed of a subthreshold circuit by reducing
Vth while maintaining the same energy consumption.
However, Vmin varies with the activity rate of the cir-
cuit. Less active components such as an SRAM/cache
usually have a higher Vmin than a core.

Zhai et al. [2] looked in detail at how Vth and Vdd
impact Vmin. There are three key points from that work
that motivate the architectural study here. These points
can be identified from figure Figure 1 where we present
the Vmin for different choices of Vdd and Vth. First it is
important to note that the core and memory prefer to
operate at different supply voltages for their optimal
operating point. This motivates the choice of a system
in which we separately control the voltage for the mem-
ory system and the core. The second key result follows
from this observation; since the operating voltage of the
memory is higher and the activity factor lower, the
memory prefers to operate at speeds faster than the
core. This allows us to investigate more interesting
architectures where several slower cores are connected
to a single faster cache forming what we call a cluster.
The third result to be drawn from Figure 1 is that by
changing Vth we can achieve additional energy gains
when operating in the near threshold region. For further
in depth analysis on this please refer to the work done
in [2].

3. Proposed Near Threshold Architecture
3.1. New Memory Architecture

Traditional computer design is usually limited by
the SRAM/cache speed leading to conventional designs
in which the caches run at the same speed or slower
speeds than the core. However, the picture changes in
the near threshold domain because we can now take
advantage of the Vdd and Vth knobs, as discussed in
Section 2, and have the memory module operate at a
speed faster than the core. In the subthreshold regime, a
100mV boost in Vdd from 300mV to 400mV can bring
almost 10X performance speedup according to silicon
measurements in [1]. We can also tune the Vth similarly
to adjust speed. However, this is not feasible in the
superthreshold regime because driving current depends
on Vdd/Vth following the α-power law [7].

We further investigated the use of multiprocessing
techniques in conjunction with voltage scaling tech-
niques to reduce energy consumption. The conventional
way that multiprocessing is implemented is illustrated
in Figure 2 (a) where there is one cache per core. In this
paper we propose a new micro-architecture shown in
Figure 2 (b) where there are several cores sharing one
local cache forming a “cluster”. The local cache serves
k cores by running k times faster than each individual
core. We achieve this by assigning proper Vdd and Vth
to the cores and the SRAM/caches. To simplify the

0 .2 0 .3 0 .4 0 .5
1 0

1 5

2 0

2 5

3 0

V m in

En
er

yg
/C

yc
le

(p
J)

V d d (V)

V th = 0 .25

V th = 0 .30

V th = 0 .3 5

V th = 0 .4~ 0 .5

S R A M

V m in 0

0 .2 0.3 0 .4 0.5
20

25

30

35

40

45

50

V m in0

C O R E

V th=0 .30

V m in

V th=0.35~0 .5

V th=0 .25

En
er

gy
/C

yc
le

(p
J)

Vdd (V)

V th=0.20

Figure 1. Energy-Vdd for the core and the
SRAM with different Vths

problem, we assume that all the cores are running at the
same speed and same Vdd and Vth. But the Vdd/Vth
between the cores and the SRAM/cache could be differ-
ent. The clusters are connected to the same next level
memory, which could be an on-chip cache or an off-
chip DRAM.

Because the cores and the memories could poten-
tially operate at different supply voltages, level convert-
ers will be needed in between the cores and memories.
Subthreshold level converters have been shown feasible
in [1]. Considering the Vdd space we are exploring, the
delay of the level converter is minimal compared to the
critical delay of the core and the memory. In addition,
since we are now connecting multiple cores to a single
L1, the tightly coupled nature of the L1 will be
removed and a bus will be needed to connect the cores
and the cache. This bus will become larger and expend
more energy as the number of cores within the cluster is
increased.
3.2. Architectural Trade-offs

This proposed architecture takes advantage of sev-
eral different trade-offs within the design. The next few
sub sections break down each of the architectural
parameters that we are able to vary and describes the
trade-offs being made. Each of the different trade-offs
yield an optimal energy point for a given benchmark. In
Section 6 we will do a complete analysis of the parame-
ters and their interactions for several different bench-
marks to find the energy optimal point for each.
3.2.1. L1 Cache Size

The size of the L1 is an important factor in control-
ling the overall system energy. Traditionally we prefer a
larger L1 cache because it results in more hits and
therefore a shorter average memory access time. When
considering energy consumption, this shorter average
access time means that the CPU itself can complete the
work in fewer total cycles. Since it takes fewer total
cycles we can slow down the system and still meet the
timing deadline with less energy expended. In addition
the higher hit rate also means fewer accesses to the L2.
Since the L2 is running at nominal voltage it has a high
energy cost per access. Having fewer accesses results in
less energy and greater opportunity for the L2 to take
advantage of techniques like drowsy caches [16].

On the other hand increasing the size of the L1 also
increases the energy per access. This happens because
the tag lookup requires a larger structure, and the busses
that run through the cache become larger with more
capacitance. We use a muxed based memory to reduce
the increase in access energy by banking memory to
reduce the size of the internal buses. This adds com-
plexity to the cache because muxes are inserted, but it
reduces the energy increase compared to a single large
cache bank. Even though we use techniques to limit the
increase in energy, there is still additional energy con-
sumed per access. This additional energy per access
will result in more energy being consumed for larger
caches.

The trade-off here is really to balance the L1 access
energy with both the decrease in L2 energy and the
faster completion time. This parameter is highly depen-
dent on the access pattern and data set size of the appli-
cation. Applications with small working sets tend to
prefer smaller caches because there tends to be fewer
L1 misses with smaller working sets.
3.2.2. Cluster Size

The size of the cluster is also an important factor,
and highly depends on the benchmark. The biggest ben-
efit of increasing the cluster size can occur in applica-
tions with high communication to computation ratios.
Clustering the CPUs together allows cores within a
cluster to communicate through shared memory with-
out having to traverse the bus connecting the L1's. As
the number of cores in a cluster is increased a given
core can reach more cores in a single cycle. The other
benefit is similar if the cores are sharing data. The shar-
ing pattern doesn't matter as much as the amount of
shared data. Similar to the communication latency
being shorter, data can be shared between cores within
a cluster without the overhead of the coherence proto-
col. This way if a block was being ping-ponged
between two cores, by putting them in the same cluster
we lower the average access latency. This decrease in
both the average communication latency and shared
memory latency results in lower power in two main
ways. First the average number of cycles required to
complete the program is lower, and thus the cpu and
system can be clocked at a slower rate and lower volt-
age and still meet the required execution time. This will
result in lower overall energy consumption. Second the
number of Snooping access that occur to other L1's is
decreased. This means fewer tag lookups in all the L1
caches as well as the snoop request on the bus between
the L1's.

On the other hand, as the number of cores in a clus-
ter is increased the cores begin to contend for the same
cache resources. This will result in more conflict and
capacity misses unless the size and/or associativity of
the cache size is increased. The trade-offs of an
increased cache can be found in Section 3.2.1. Given a
fixed cache size, the increased number cores will gener-
ate more L2 accesses, which are costly in terms of
energy because the L2 is operating at a higher voltage.
In addition the cache must be clocked at a higher rate to
satisfy the requests. This higher frequency will result in
the cache needing a higher voltage, thus increasing the

cache/SRAM
(k*fcore,Vddmem,Vthmem)

……
core1

(fcore,Vddcore,Vthcore)
corek

(fcore,Vddcore,Vthcore)

level
converter

cluster

cluster1 clustern…

2nd level
memory

Figure 2. Conventional (a) and proposed (b)
MP architectures

(a)

cache/SRAM
(f0,Vdd0,Vth0)

…

2nd level
memory

Core
(f0,Vdd0,Vth0)

cache/SRAM
(f0,Vdd0,Vth0)

Core
(f0,Vdd0,Vth0)

(b)

energy required per access. Also, as we increase the
number of cores within the cluster we must also con-
nect the cores physically with a bus. Traditionally the
L1 cache can be tightly coupled with the core creating a
fast interface with low capacitance. With a clustered
architecture a bus will need to be added to connect the
cores. This bus will slow memory accesses, and the
capacitance will increase with the number of cores.
Driving that larger capacitance will result in increased
energy consumption.

The trade-off here is the speeding up that occurs
due to the sharing between cores at the cost of increas-
ing cache contention, access energy, and bus size. This
is highly dependent on the application. For example an
application that has a high communication to computa-
tion ratio and a large amount of shared data that is fre-
quently accessed by many cores will prefer a large
cluster size. While independent workloads (several
independent threads) that have little to no communica-
tion or shared data will prefer smaller cluster sizes.
3.2.3. Number of Clusters

The number of clusters in a system can also be
classified as the number of cores in the system when we
hold the cluster size constant. The benefit of having
more clusters is that we can expose more parallelism.
This increased parallelism means that we can divide the
task among more cores and clock each of the cores at a
slower frequency and lower voltage. The lower voltage
and frequency will lead to energy savings.

On the other hand with increased parallelism we
introduce more communication overhead between the
cores and additional code to parallelize the application.
This overhead results in slightly larger instruction
counts and more communication across the snooping
bus. In addition Amdahl’s law applies to the amount of
parallelism we will be able to extract in comparison to
the inherently serial portion of the code. This of course
means that the number of clusters is also dependent on
the application that is being run in terms of the amount
of parallelism that can be extracted and the amount of
code overhead and communication that occurs when we
parallelize the application.
4. Benchmarks

For our analysis we have chosen to use the
SPLASH2 benchmark suite[6]. These benchmarks rep-
resent several different forms of parallel applications.
Although we are targeting less computationally inten-
sive workloads, i.e. MPEG decoding, we feel that the
SPLASH2 benchmarks offer a wide variety of parallel
execution models. The important factors to consider for
any application are the amount of parallelism that is
present in the application, the data set sizes, the com-
munication to computation ratios, and the amount of
data sharing that occurs. These factors play the most
important role in the performance of the machine. We
used the smaller SPLASH2 input sets for faster simula-
tion time and to represent the smaller nature of the
problems that we are targeting. The applications we
chose to run were Cholesky (cho), FFT, FMM, LU non-
contiguous blocks (lun), LU-contiguous blocks (luc),
Radix (rad), and Raytrace (ray).

Although these applications are not exactly what
we are targeting, we can use them to determine if clus-
tering is beneficial and determine the performance
range at which we get the best energy efficiency.
5. Simulation

Our simulation was done with the M5 simula-
tor[15]. It was modified to allow clustering support of
the L1 caches. To provide the ability for multiple cores
to access the cache in the same cycle, the cache is oper-
ated at a higher frequency and the cores within the clus-
ter are run in different phases of the cache clock. For
example if there were 4 cores per cluster the cache
would be clocked 4x the speed of the cores. The first
core would have a rising edge of it’s clock on the 1st,
5th, 9th,... clock edge of the cache. The second core
would have a rising edge on the 2nd, 6th, 10th,... clock
edge of the cache and so forth. This means that each
core will see a single cpu cycle latency to the L1 with-
out the need for an arbiter on the bus, or multiple ports
to the cache.
5.1. Power Models

In order to properly attain energy numbers from
our architectural simulation, we needed to determine a
power model for all the components in the system. The
following subsections will describe how we arrived at
the model for each component in the system.
5.1.1. Core and L1

The core energy estimations are based upon the
processor core frequency and power consumption num-
bers from ARM946 in [8]. Then we used the same fit-
ted model as in Section 2 to capture the Vdd and Vth
dependency of delay and leakage. The processor with-
out caches consumes 86mW while running at 233MHz
with a nominal Vdd of 1.2V. The cache power/energy
numbers of different sizes were extrapolated from a
memory compiler in 0.13um technology. The baseline
machine is assumed to have the parameters in Table 1.
64kB of unified data and instruction L1 cache is chosen
as a reasonable number considering the problem size of
the SPLASH2 benchmark applications [6].

Previous work [9] has shown that current sensitiv-
ity to subthreshold variation increases dramatically
with reduced Vdd. Previous work [3][10][11][12][13]
has illustrated successful SRAM designs that operate in
subthreshold regime. However, all these works result in
an area overhead. Part of the reason for the area over-
head is that larger channel area helps suppress random
dopant fluctuations (RDF), the dominating factor in the
subthreshold regime [14].

In order to factor in the design area overhead of
voltage scalability for the SRAM, we carried out Monte
Carlo simulations and determined the amount of up-siz-
ing needed for the memory cells under a certain yield
constraint. A exponential function is then fitted to the
results and used in the rest of the paper. This up-sizing
increases the physical size of the cache, which, in turn,
increases both the access energy and the bus length to
connect the cache. These additional increases were
modeled in our evaluations.

5.1.2. DRAM and L2 Design
Off-chip access to DRAM is power-hungry

because of the high capacitance in the chip package and
off-chip wires. Therefore, a energy-oriented design
needs to have a big enough L2 cache so that it can
shield off the majority of the conflicting L1 misses
from accessing the off-chip memory. For our analysis
we have chosen a 2MB on-chip L2 cache. Considering
the size of this L2, we decide to fix its operating voltage
at nominal (1.2V) instead of voltage scaling to avoid
over design. As aforementioned, designing a large L2
for voltage scalability with high yield implies signifi-
cant area overhead and therefore results in high switch-
ing and leakage energy.

From simulation we found that the L2 is not
heavily accessed and has a much lower activity rate
compared to the L1. Therefore we will design the L2
cache by using low standby leakage techniques such as
drowsy cache [16]. The standby leakage is assumed to
be 1/20 of that during active mode. The same argument
does not hold for the L1 because the L1 is accessed
considerably more frequently than the L2. The L1 is
also smaller in size than the L2 cache and we are able to
trade off some area for energy efficiency and voltage
scalability.
5.1.3. Bus Modeling

The physical parameters are drawn from a 0.13um
technology doing detailed analysis of the repeaters and
sizes necessary for proper operation. Using this model
we can include bus energy for both the CPU-L1 bus and
the L1-L2 bus, which consists of data, address, and
command fields. The length of the CPU-L1 buses
scales linearly with cluster size and the length of the
L1-L2 buses linearly with cluster number. Basic foot-
print size is taken from a commercial processor core
[8]. No breakdown of bus energy is presented in the
graphs, but all graphs and data referring to total energy
include the bus energy numbers.
5.2. Baseline Machine

Our baseline machine is summarized in Table 1. It
is a simple in-order CPU running at 233 MHz with a
64kB unified cache. For all configurations we hold the
runtime to be the same as that of the baseline machine.
In Section 6.6 we will look at the optimal choices at dif-
ferent baseline performance numbers (CPU Frequen-
cies).
5.3. Simulation Configurations

We simulate the system by varying the cache size
from 4-128kB, the number of clusters from 1-16, and
the number of cores per cluster from 1-8 for each
SPLASH2 benchmark. We then do a power analysis
with different voltage scaling techniques. One in which
we do the same Vdd scaling on both the L1 and core,

another where we scale Vdd separately for the L1 and
core, and the third where we scale Vth separately as
well.
6. Results

In order to analyze the impact of the proposed
architectures in energy efficient processor design, we
must quantify the system performance energy trade-off
using architectural simulations. We performed the sim-
ulation using the M5 Simulator [15] to determine the
energy consumption for different configurations. Dur-
ing the cluster mode, we assume that the L1’s are k
times faster than the core, where k is the number of
cores per cluster.

The relative latency of the components need to be
scaled so as to capture the voltage scaling effect. For
instance, when we have a multicore system, each core
and L1 inside the system can be accordingly slowed
down compared to the single-core baseline machine,
since our constraint is to keep the runtime constant. In
architectural simulation, this is equivalent to having a
faster L2 and DRAM.
6.1. Optimal L1 Size

It is known that the size of the L1 affects the sys-
tem performance in terms of average access latency, but
more importantly we found that it also affects the
energy efficiency of the system. In order to understand
how the choice of L1 size impacted the energy perfor-
mance of a system, we first performed an analysis on a
supply voltage scaled uniprocessor system. With the
number of parameters we intended to vary for the com-
plete study, this was a simple way to do a first pass
analysis and present some interesting results while only
varying one parameter. We present the results while
allowing the die size to increase as we increase the L1.
A similar study was done where the die size was held
constant and the L2 was made smaller to compensate
the increase in the L1 and the results were similar.

With a single processor and single L1 system, we
varied L1 sizes and optimized the energy consumption
for each size by tuning the Vdd and Vth of each compo-
nent. Figure 3 shows the energy consumption for
Cholesky. We found similar trends for all the SPLASH2
benchmarks, although the optimal cache size varied
across the applications. The energy consumption for the
processor core, L1, and L2 are also shown. As L1 size

TABLE 1. Baseline Architecture

Parameter Value
CPU 233MHz, in-order functional model

Unified D/I L1 cache 64kB, 2-way, block size=64B
L2 2MB 8-way, latency=10

4 8 16 32 64 128
0.0

0.1

0.2

0.3

0.4

optimal

 Total
 Core
 L1
 L2

En
er

gy
(J

)

L1 Size (kB)
Figure 3. Optimal energy consumption for Cholesky

when using one core and one L1

increases from 4kB to 128kB, the number of accesses
to the L1 remains constant because the same instruction
stream and data pattern come from the processor core.
However, L1 energy consumption increases with larger
L1 sizes due to larger array size and larger capacitance.
The other implication of various L1 sizes is the L1 per-
formance. The L1 miss rate reduces significantly with
larger L1s, which also results in a lower number of
access to the L2 due to fewer L1 misses and writebacks.
Therefore the L2 energy reduces with larger L1 sizes.
The core’s energy consumption also reduces with larger
L1 sizes because of the reduced number of clock cycles
that results from a higher L1 hit rate (lower average
access latency).
6.2. Optimal Cluster Size

After having an understanding of how the L1 size
impacted energy performance we move on to studying
the impact of multiprocessing and clustering on the
energy consumption. The setup for this study is
described in Section 5.3. The analysis was done on the
240 configurations for each benchmark.

In order to fully understand the benefit of running
in cluster mode Figure 2(b) vs. conventional connection
Figure 2(a) we specifically compare three cases in
which the overall die size is held constant and present
the results in Figure 4. Figure 4(a) shows the energy
consumption of the three candidates for Cholesky in the
SPLASH2 benchmark suite. The best configuration for
energy efficiency is 2 cores per cluster, with 2 clusters.

To help illustrate the reason 2 cores per cluster was
optimal we break down the results in more detail in Fig-
ure 4(b-d). At 4 clusters with 1 core per cluster, a con-
ventional CMP, the number of CPU cycles is larger than
both of the clustering cases. This occurs because the
average memory access latency is longer because the
L1 miss rate is high due to the fact that shared memory
accesses are forced to miss in the local L1 cache and
snoop neighboring L1’s to get the data. Now as the
number of cores in a cluster is increased to 2 some of
the shared memory of other cores is visible within the
cluster’s L1 to both cores without having to access

another L1. This significantly reduces the average
memory access time and results in a reduced number of
CPU cycles. Meanwhile the larger shared cache within
the cluster results in a higher hit rate and reduced
accesses to the L2. Reducing the number of access to
the L2 reduces the energy consumed by the L2 as was
shown in Section 6.1.

As we scale to 4 cores per cluster we now have
reduced the L1 miss rate even further, but the energy
per access of the L1 and the energy to operate the large
bus to connect the cores within the cluster begin to out-
weigh the gains we see in reduced L2 traffic. Also, you
can see that there is not a large reduction in CPU cycles.
This happens because the first set of clustering encap-
sulated most of the memory sharing and synchroniza-
tion that took place in this application.

For this study it is important to note that we chose
three points at which the die size was nearly the same.
Remember that there are some interconnect and mem-
ory scaling issues, but the sizes are still close. In the
later studies we will present the global optimal configu-
ration without regard to total cache or die size. We
wanted to show in this study that given a fixed die size,
clustering is the optimal choice for this benchmark
6.3. Various Energy Saving Modes

Now that we have shown for a fixed die size that
clustering can outperform conventional CMP designs,
we explore the entire design space and analyze the
impact of using the Vth to further improve performance.
We again use the same 240 configurations per bench-
mark as in Section 6.2. The results presented in this sec-
tion are for the Cholesky benchmark, results for other
benchmarks are summarized in Section 6.5. In this
study we evaluate the impact of different scaling
approaches. Specifically, we assume the baseline sin-
gle-core single-cache machine does not do voltage scal-
ing and runs constantly at 1.2V. The three different
scaling approaches are: 1) traditional Vdd scaling using
MP while maintaining one core per L1 cache (Figure 2
(a)), 2) Vdd scaling using MP but with cluster mode
configuration and 3) Vdd and Vth scaling with cluster
mode configuration. The runtime of all three systems is
set to match that of the baseline machine.

0.0

4.0x104

8.0x104

1.2x105
 L2accesses

ac
ce

ss
 #

1.4.64 2.2.32 4.1.16

0
1x107
2x107
3x107
4x107
5x107
6x107

2.2.32 4.1.16

#

 cpuCycles
 L1accesses

1.4.64
0.000

0.002

0.004

0.006 total energy
gy

(
)

4.1.162.2.321.4.64

0.000

0.002

0.004

0.006

0.008

(d)(c)

(b)

 L1MissRate

1.4.64 2.2.32 4.1.16

(a)

Figure 4. Three configurations comparison
Notation: (cluster #).(cores per cluster).(L1 size per cluster in KB)

0.0

0.1

0.2

0.3

0.4
 L2
 L1
 Core

Vdd & Vth scaling
w/ cluster

Vdd scaling
w/ cluster

traditional
Vdd scaling

En
er

gy
 (J

)

baseline

cholesky

2 cores/cluster
3 clusters

2 cores/cluster
3 clusters

4 cores
4 L1's

1 core
1 L1

Figure 5. Energy savings comparison
using various scaling methods

The results are presented in Figure 5. Conventional
CMP Vdd scaling brings us 38.1% savings over the
baseline machine, but clustering cores with Vdd scaling
results in a 18.9% improvement over traditional scaling
techniques and 49.9% improvement over the baseline.
Finally we show that clustered cores with both scaled
Vth as well as Vdd yields a global optimal energy, and
about a 53% percent improvement over using tradi-
tional scaling techniques on a conventional CMP.

The Vdd scaling technique with conventional CMP
finds an optimum with 4 cores and 4 L1 caches at a Vdd
of 0.8V. With clustering, the system finds an optimal
with 2 cores per cluster at 3 clusters. The optimal L1
size for all 3 scaling approaches is 64kB for this bench-
mark. The energy optimal point was chosen without
regard to die size. If given a die size constraint the
energy optimal point can be found within the configura-
tions that meet that die constraint. Section 6.2 provides
an example of fixed die size analysis where three con-
figurations with the same die size are compared.
6.4. Multi-Dimensional Analysis

To understand the entire design space further we
present Figures 8, 9, 10, and 11. These figures break-
down the entire design space for a fixed total L1 size,

128kB, for the Cholesky benchmark using both Vdd and
Vth scaling. In Figure 6 we present the total energy of
the system, you can see that there is a well along the 2
cluster axis. This minimum represents the fact that the
optimal number of clusters is 2. Additionally there is a
dip along the 2 cores/cluster line, resulting in a optimal
location of 2 clusters with 2 cores per cluster. To under-
stand this better we break down the core energy in Fig-
ure 7, the L1 energy in Figure 8, and the L2 energy in
Figure 9. Note the cluster number axis is in the opposite
direction for Figure 8.

The core energy looks like a surface that decreases
from left to right and from back to front. As you go
from front to back or from left to right there is an
increasing total number of cores. As we increase the
number of cores, we can run each of them at a lower
voltage and still maintain the same performance con-
straint. Since there is a quadratic relationship in voltage
and a near-linear relationship in computational power
as we increase the number of cores, the overall energy
consumed reduces until the core reaches the near
threshold regime. If we lower the voltage further we see
less energy gain for a similar decrease in voltage. In this
graph the point at which the cores begin running in the
near threshold regime is around 4-6 cores. Beyond that
point the improvement form lowering the voltage is less

1
2

3
4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
To

ta
l E

ne
rg

y

clu
ste

r n
um

be
r

cores/cluster

4

2

8

1

Figure 6. Total Energy for Cholesky

1
2

3
4

0.06

0.08

0.10

0.12

0.14

4

2

8

C
or

e
En

er
gy

clu
ste

r n
um

be
r

cores/cluster
1

Figure 7. Core Energy for Cholesky

1
2

3
4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L1
 e

ne
rg

y

clu
ste

r n
um

be
r

cores/cluster

4

2

8

1

Figure 8. L1 Energy for Cholesky

1.0 1.5 2.0 2.5
3.0

3.5
4.0

0.04

0.06

0.08

0.10

0.12

0.14

L2
 e

ne
rg

y

clu
ste

r n
um

be
r

cores/cluster

4

2

8

1

Figure 9. L2 Energy for Cholesky

than the overhead of making the application more par-
allel and the total increase in number of cores at a lower
voltage.

The L1 energy increases from front to back,
decreasing number of clusters. This is because the
fewer clusters that are present in the system the larger
the L1 caches will become. This occurs because we are
holding the total cache size on the chip constant. As we
increase the cache size, the energy per access is
increased, and therefore the overall L1 energy
increases. As we go from left to right, increasing the
number of cores per cluster, the energy increases. As
we increase the cluster size, we require that the L1
operate at a higher frequency to satisfy the requests.
This increase in frequency requires us to increase the
voltage of the L1 and the energy savings from the faster
communication amongst the cores is outweighed by the
increase in the energy per access at the higher voltage.

In Figure 9 we present the L2 cache energy. It is
increasing from left to right and from front to back.
This increase is related to the larger number of cores. In
particular there are more cores sharing the same total
L1 space, because we held it constant. This results in
more contention and a higher miss rate among the L1’s.
With more L1 misses there will be more L2 accesses
and the energy consumed by the L2 will increase. This
increase is highly dependent on how much contention
and sharing there is among the different applications.

When the components are summed for the different
figures you result in wanting few clusters to reduce the
L2 traffic, but more clusters to keep the L1 sizes
smaller and less energy hungry. This summation leads
to an optimal point of around 2 clusters. The core
energy dictates that the optimal total number of cores is
somewhere around 4-6 cores. Divided into 2 clusters
that means either 2 or 3 cores per cluster. Thus resulting
in the energy optimal point of 2 cores per cluster and 2
clusters for this benchmark with 64kB of L1 cache per
cluster. This same analysis was done holding either the
cluster size or number of clusters constant to under-
stand the effects of the L1 size on the optimal solution.
The graph is consistent with the points presented in
Section 3.2 and was not presented here for brevity.
6.5. Global Optimal Solutions

Now that we showed the energy optimal point for
the Cholesky benchmark we ran the same analysis for
additional SPLASH2 benchmarks and the results are
presented in Table 2. The table shows the global energy
optima for different applications in the SPLASH2
benchmark suite, Clustering is optimal for 6 applica-
tions with the optimal cluster size of 2 cores.
6.6. Optimality under Different Performances

So far we have compared the energy savings under
constant baseline performance, 233MHz. The optimal
Vdd/Vth configuration changes with target performance,
therefore we present the optimal energy consumption
for Cholesky under different performance requirements
Figure 10(b). The MP scaling uses clustering and opti-
mal Vdd/Vth selection. Performance on the x-axis refers
to the frequency of the baseline single-core single-L1

machine. With reduced target performance, from right
to left in Figure 10(b), the energy savings increases first
because of relaxed frequency constraints on each core
and L1 cache, both of which operate in the near thresh-
old regime. Then energy consumption increases
because the cores begin to scale out of the near thresh-
old and into the subthreshold regime causing consider-
able performance loss in comparison to the power gain.
Also the lengthened execution time prolongs L2 leak-
age energy.

The Vdd and Vth settings with different perfor-
mance targets are shown in Figure 10(a). The Vdd for
the L1 slightly reduces from 233MHz to 100MHz due
to relaxed frequency. However it holds around 600mV
because lower Vdd implies significant up sizing as
described in Section 3. And this area increase from
SRAM redesigning nullifies the savings from reduced
Vdd. The Vth increases with lowered performance
requirements to balance switching energy and leakage
energy. The cores operate at a significantly lower Vdd
and Vth than the L1s for all of the swept performance
range because it is running at half the speed of the L1.
In addition logic gates are more robust than SRAM and
voltage scale without area overhead.

In Figure 10(a) the optimal number of clusters
increases from 2 to 3 for targets above 150MHz. This
can be attributed to the fact that in order to meet the

TABLE 2. Each Benchmarks Optimal Config.
nc k L1 size (kB)* energy savings

cho 3 2 64 70.8%
fft 2 2 32 72.6%

fmm 8 2 128 79.7%
luc 3 2 32 77.8%
lun 2 2 64 68.4%
rad 16 1 128 84.2%
ray 3 2 128 65.1%

k: # of cores per cluster nc: # of cluster *L1 size is per cluster
energy savings is relative to baseline uniprocessor machine

10M 100M

0.2

0.3

0.4

0.5

0.6

64kB L1
128kB L1

3 clusters
2 cores/cluster

Target Performance (Hz)

 core Vdd
 core Vth
 L1 Vdd
 L1 Vth

2 clusters
2 cores/cluster

near Vth region

Figure 10. Optimal settings under different
target performances

(a)
(b)

10M 100M
0.08

0.10

0.12

Target Performance (Hz)

En
er

gy
(J

)

near Vth

higher performance constraint we need more computa-
tional power. The increase in the number of clusters,
and thus total cores, requires less energy than voltage
scaling the smaller number of cores to meet the same
constraint. Figure 10(a) also shows that the optimal L1
size changes from 64kB to 128kB for targets below
76MHz because the relative contribution of L2 energy
consumption starts to increase. A larger L1 helps to
suppress L2 accesses. Although the larger L1 incurs
more energy per access, the amount of energy saved
from reducing the L2 accesses outweighs any increase
in the L1.

Finally, we have highlighted the near Vth region on
both plots in Figure 10. Optimal energy consumption is
achieved at this voltage regime and at a target fre-
quency of tens of megahertz (~15MHz-50MHz). These
operating frequencies are much higher than those
shown in other subthreshold work[1] and are well
suited for parallelizable embedded applications requir-
ing higher performance, but where battery life is impor-
tant. Such applications might include MPEG and MP3
decoding.
7. Split L1 Cache

We further investigated the impact of split instruc-
tion (IL1) and data (DL1) caches. By splitting the uni-
fied L1 cache we present a few more architectural
choices. First we could cluster both the IL1 and DL1
for each cluster as in Figure 11(a). Second we could
explore other architectures where we only cluster the
IL1 and leave each core a private DL1 as in Figure

11(b), or vice versa as in Figure 11(c). In this section
we will explore those three different design choices and
discuss their impact on different programing models.
7.1. Architectural Trade-offs

There are several architectural trade-offs that occur
when we consider splitting the unified cache. By split-
ting the L1 cache we remove any contention that was
occurring between the instruction and data streams. In
some benchmarks the data stream constantly evicted
instructions from the cache do to conflicts and the over-
all number of cycles to complete the program was
increased. By removing these conflicts we can decrease
the number of cycles improving energy efficiency. In
the next two subsections we break down the benefits of
clustered versus private versions of both the IL1 and
DL1.
7.1.1. Clustered IL1 vs. Private IL1

At first glance clustering the instruction cache
seems to make sense for applications where each thread
is executing the same instructions, i.e. SIMD. The rea-
soning is that by sharing the cache you can reduce the
die size and improve performance because only one
thread will incur a miss, and others will hit the line in
the shared cache reducing execution time and thus
energy. But if the instruction stream is small, the
instruction cache can end up with a low miss rate and a
high access rate. Since we are limited by Amdahl’s law
in only improving performance for misses, the gains we
see in this case are marginal. Further, by clustering the
instruction cache we require the cache to operate at a
higher frequency, and therefore a higher energy per
access. However, if the instruction miss rate is large
enough, then it begins to make sense to share the
instruction cache to improve the access latencies. In
applications that run different sets of instructions on
each thread, i.e. MIMD or mutliprogrammed work-
loads, it does not makes sense to cluster the instruction
cache.
7.1.2. Clustered DL1 vs. Private DL1

Unlike the instruction cache, the data cache is only
accessed by around 30% of the instructions in the
SPLASH2 benchmark suite[6]. With the lower access
rate, higher miss rate, and larger data sharing, the data
cache is suited well for clustering. If the application
does large amounts of communication through shared
memory or shares large amounts of data, clustering the
data cache will result in shorter synchronization delays
and access times. This results in the program complet-
ing in fewer cycles leading to energy savings. On the
other hand, clustering the data cache does not make
sense if the applications do not share data or synchroni-
zation variables because it will lead to contention in the
cache and no improvement for the core in terms of
cycles to completion.
7.2. Benchmarks

We chose three different SPLASH2 benchmarks to
analyze on the three different architectures. We wanted
to get a variety of different synchronization schemes.
We picked Cholesky because of the high use of locks
and pauses but low use of barriers. We chose LU

Figure 11. (a) Clustered I and D
(b) Clustered D and (c) Clustered I

architectures

……core1 corek

level
converter

cluster

cluster1 clustern
…

2nd level
memory

DL1IL1

……core1 corek

level
converter

cluster

cluster1 clustern
…

2nd level
memory

DL1

IL1IL1

……core1 corek

level
converter

cluster

cluster1 clustern
…

2nd level
memory

IL1

DL1DL1

(a) (b)

(c)

1

1

k

k

because it uses many barriers and no locks or pauses.
And finally we chose FFT which uses very few barri-
ers, locks, or pauses.
7.3. Simulation

We simulated the benchmarks with the same con-
figuration choices as before, but now we allowed the
L1 cache to be split. We varied the IL1 and DL1 sizes
from 4-128kB independently while exploring all 3 con-
figurations in Figure 11.
7.4. Results

The results of the optimal configuration for each of
the three architectures on the three benchmarks is pre-
sented in Table 3. The energy savings is presented in
percentage reduction over the baseline single core
machine with 64kB split IL1 and DL1s. You can see
that the benchmarks prefer to run with a clustered data
cache and a private instruction cache for the best over-
all energy savings.

The SPLASH2 benchmarks all exhibited low miss
rates for small instruction caches (4-16kB) so it did not
make sense to cluster the instruction cache as described
in Section 7.1.1. This is easily seen in both the FFT
and LU benchmarks where each instance of clustering
the IL1 results in worse performance than the unified
version. In the case of Cholesky, the increase seen over
the unified version when the IL1 is clustered is a result
of less contention on cache lines between the instruc-
tion and data caches. With less contention we reduce
the number of cycles and gain more energy savings.
Even though for Cholesky a clustered IL1 outperforms
the unified cache case, a clustered DL1 and private IL1
is still the overall optimal choice. This happens for the
same reasons as the FFT and LU benchmarks.
8. Related Work

There has been a myriad of different work done in
both the fields of subthreshold design and parallel
architectures for low power. The most recent work done
for power aware parallel architectures was by Li et al.
[21]. Li proposes a dynamic runtime method to use
dynamic voltage and frequency scaling available on
cores to optimize power given a performance constraint

on parallel applications. Our work differs in that we
focus on near threshold operation and the additional
architectural choices for clustering that it allows. Li’s
work could be extended to work in combination with
our design to dynamically put nodes to sleep to find the
most optimal power configuration available. It could
also be used to allow only one core per cluster to oper-
ate when applications require more cache space, or to
dynamically reassign threads to cores within clusters
that communicate more often.

Other power aware parallel CMP and simultaneous
multithreading (SMT) designs have been proposed by
[22,23,24,25,26,27]. This work differs from both Li’s
[21] and our work in that it focuses on mutlipro-
grammed workloads, whereas our work focuses on par-
allel applications.

Huh et al. [29] does an in depth study of the design
space of CMP’s. However they do not evaluate either
power considerations or the possibility of clustering
multiple cores to the same L1 cache. Other work
exploring the design space of CMP’s that considers
power budgets was done by Ekman and Stenstrom [30]
although their work focuses on the types of cores that
should be used in a CMP given the amount of parallel-
ism applications present. Our work differs in that we
assume a fixed core design and chose the optimal num-
ber of cores and the amount of clustering that occurs.

There is also an extensive body of work on reduc-
ing energy overheads in bus based CMP’s
[17,18,19,20,28]. Moshovos [17] and others provide
different techniques to reduce the number of snoops
into L1 caches by filtering out requests that will not
find the block in that cache. This technique could be
used to lower the energy consumption of the snoops in
our system removing one of the performance benefits
of clustering. However, clustering not only eliminates
snoop energy but also helps reduce the latency to
shared data structures in the cache within a cluster. This
reduction in latency means the system can be run at a
slower frequency and still complete in time. Snoop fil-
tering techniques help to reduce the overall system
energy further but when removing the energy consumed
by snoops in our simulations we still find clustering to
be the optimal choice.
9. Conclusions

In this paper we have investigated the optimal
threshold voltage selection for energy efficient near
threshold design. By separately controlling the supply
voltage and the threshold voltage of the core and the
memory, we can achieve better energy efficiency. We
have combined these techniques with a novel multipro-
cessor architecture where multiple cores share one
faster L1 cache in a cluster to further improve energy
savings. We found that for a typical SPLASH2 applica-
tion the proposed architecture can provide about 70%
energy savings over a uniprocessor system and about
53% over conventional multiprocessor scaling. The
optimal cluster size is 2 cores for most of the SPLASH2
benchmarks that we investigated, and the system
achieves best energy efficiency when operating in the
near threshold voltage regime. The optimal target fre-

TABLE 3. Optimal Configurations Split L1

IL1 DL1 nc k IL1
Size

Dl1
Size

Energy
Savings

ch
o

Unified 3 2 64kB Unified 70.8%
Clustered Private 3 2 8kB 128kB 73.0%

Private Clustered 2 2 16kB 64kB 76.5%
Clustered Clustered 3 2 16kB 64kB 71.1%

lu
n

Unified 2 2 64kB Unified 68.4%
Clustered Private 2 2 8kB 32kB 64.2%

Private Clustered 1 2 16kB 32kB 72.9%
Clustered Clustered 2 2 8kB 64kB 66.4%

ftt

Unified 2 2 32kB Unified 72.6%
Clustered Private 1 2 4kB 64kB 72.1%

Private Clustered 1 2 8kB 64kB 75.0%
Clustered Clustered 2 2 4kB 32kB 69.7%

quency was that of a single 10-50MHz core, showing
that this technique is well suited for parallelizable
embedded applications requiring higher performance,
but where battery life is important such as MPEG
decoding. We further studied the impact of splitting the
instruction and data cache. We found that clustering the
data cache while keeping a separate private instruction
cache per core performed the best for the SPLASH2
applications providing an energy savings of up to a
77% reduction over that of a single core machine.

Acknowledgements
The authors acknowledge the support of NSF,

SRC, Intel, and the Gigascale Systems Research Focus
Center, one of five research centers funded under the
Focus Center Research Program, a Semiconductor
Research Corporation program.

References
[1] B. Zhai, L. Nazhandali, et al., “A 2.60pJ/Inst Subthresh-

old Sensor Processor for Optimal Energy Efficiency”,
IEEE VLSI Technology and Circuits, 2006

[2] B. Zhai, R. Dreslinski, et al., “Energy Efficient Near-
threshold Chip Multi-processing”, ISLPED, 2007

[3] A. Wang, A. Chandrakasan, “A 180mV FFT processor
using subthreshold circuits techniques”, IEEE ISSCC
2004

[4] B. Zhai, D. Blaauw, et al., “Theoretical and practical
limits of dynamic voltage scaling”, DAC 2004

[5] B. Calhoun, A. Chandrakasan, “Characterizing and mod-
eling minimum energy operation for subthreshold cir-
cuits,” ISLPED 2004

[6] S. C. Woo, M. Ohara, et. al. “The SPLASH-2 Programs:
Characterization and Methodological Considerations”,
ISCA, 1995.

[7] T. Sakurai and A. Newton, “Alpha-power law MOSFET
model and its applications to CMOS inverter delay and
other formulas,” IEEE JSSC, vol. 25, no. 2, pp. 584-594,
Apr. 1990.

[8] http://www.arm.com/products/CPUs
[9] B. Zhai, S. Hanson, et al., “Analysis and Mitigation of

Variability in Subthreshold Design”, IEEE ISLPED,
2005

[10] B. Calhoun and A. Chandrakasan, “A 256kb Sub-thresh-
old SRAM in 65nm CMOS”, IEEE ISSCC, 2006

[11] N. Verma, A. Chandrakasan, “A 65nm 8T Sub-Vt
SRAM Employing Sense-Amplifier Redundancy”, IEEE
ISSCC, 2007

[12] T-H. Kim, J. Liu, et al., “A High-Density Subthreshold
SRAM with Data-Independent Bitline Leakage and Vir-
tual-Ground Replica Scheme”, IEEE ISSCC, 2007

[13] B. Zhai, D. Blaauw, et al., “A Sub-200mV 6T SRAM in
0.13um CMOS”, IEEE ISSCC, 2007

[14] M. J. M. Pelgrom, et al., “Matching properties of MOS
transistors,” IEEE JSSC, vol. 24, no. 5, pp. 1433-1440,
1989.

[15] N. L. Binkert, R. G. Dreslinski, et al., “The M5 Simula-
tor: Modeling Networked Systems.”, IEEE Micro, pp.
52-60, 2006

[16] N. S. Kim, K. Flautner, et al. “Single-Vdd and Single-Vt
Super-Drowsy Techniques for Low-Leakage High-Per-
formance Instruction Caches”, IEEE/ACM ISLPED,
2004.

[17] A. Moshovos. “RegionScout: Exploiting coarse grain
sharing in snoop-based coherence”, ISCA, 2005.

[18] A. Mosohovos, G. Memik, et al. “Jetty: Filtering snoops
for reduced energy consumption in SMP servers”.
HPCA, 2001.

[19] C. Chung, J. Kim, et al. “Reducing snoop-energy in
shared bus-based MPSoCs by filtering useless broad-
casts”. GLSVLSI ‘07.

[20] M. Ekman, F. Dahlgren, et al. “Evaluation of snoop-
energy reduction techniques for chip-multiprocessors”,
WDDD, 2002.

[21] J. Li, F. Martinez. “Dynamic power-performance adapta-
tion of parallel computation on chip multiprocessors”.
HPCA, 2006

[22] J. Donald, M. Martonosi. “Temperature-aware design
issues for SMT and CMP architectures”. WCED, 2004.

[23] S. Ghiasi, D. Grunwald. “Design choices for thermal
control in dual-core processors”. WCED, 2004.

[24] R. Kumar, K. Farkas, et al. “Single-ISA heterogenous
multi-core architectures: The potential for processor
power reduction”. MICRO, 2003.

[25] Y. Li, D. Brooks, et al. “Performance, energy, and tem-
perature considerations for SMT and CMP architec-
tures”. HPCA, 2005.

[26] R. Sasanka, S. Adve, et al. “Comparing the energy effi-
ciency of CMP and SMT architectures for multimedia
workloads. ICS 04.

[27] J. Send, D. Tullsen, et al. “Power-sensitive multithreaded
architecture”. ICCD, 2000.

[28] C. Saldanha, M. Lipasti. “Power efficient cache coher-
ence”. WMPI, 2001.

[29] J. Huh, D. Burger, et al. “Exploring the design space of
future CMP’s”. PACT, 2001.

[30] M. Ekman, P. Stenstrom. “Performance and power
impact of issue-width in chip-multiprocessor cores”.
ICPP, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

