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ABSTRACT
Recent trends in process technology suggest the need to moni-
tor transistor wear-out in future processes. Because of within-
die variation and the different computations being run on
each core in a multi-core chip, this wear-out causes further
imbalance to initial core frequencies as time progresses. Fur-
thermore, manufacturing defects mean that cache sizes can
vary between cores, adding further imbalance to a system.
If we allow different cores to independently control their op-
erating frequency we can achieve the best possible perfor-
mance for their part of the die. Other parts of the system
with slowly degrading performance can include interconnects
and Flash-based file caches. In this paper we first explain
how conventionally homogeneous multi-core processors can
become heterogeneous over time. We discuss possible oper-
ating system based solutions to maximize the performance of
a system as it wears out and present illustrative theoretical
results based on linear programming. We demonstrate that
for a class of streaming applications, an intelligent schedul-
ing scheme recovers a significant amount of performance lost
through wear-out. We advocate the need for multiple accu-
rate performance measurements for effective scheduling in a
wearout-aware multicore chip.

1. INTRODUCTION
The objective of this paper is to consider which techniques

to apply for system management when performance levels of
processors on a homogeneous multi-core chip become imbal-
anced. This situation arises due to variation and wear-out in
the cores themselves, their caches or interconnect circuitry.
The conventional design approach is to assume that all cores
run at a global maximum frequency dictated by the slowest
core [1]. This removes the need for complex synchroniza-
tion for inter-core communication. However, allowing cores
to operate at different frequencies allows the most perfor-
mance to be extracted.

Multi-core chips are being built with smaller and less re-
liable process technologies. Intra-die variation means that
different areas of a single chip can sustain different maxi-
mum frequencies, at a given supply voltage [1]. Alterna-
tively, voltages could be adapted to maintain a consistent
frequency for each core or group of cores [2]. Coupled with
local caches that have different sizes at different voltages
due to repaired defects [3], each thread of execution can run

at a different performance level. This scenario is put for-
ward by Sylvester et al. with their ElastIC architecture [4].
They propose an array of computation units with a central
management unit to monitor and respond to the gradual
wear-out of a future silicon chip. These wear-out effects in-
clude electromigration, gate oxide breakdown, negative-bias
temperature instability (NBTI) and hot carrier injection,
and will be discussed in a later section. There have also
been publications on how to gracefully retire failed cores for
continued operation on a conventional multi-core chip [5].
The overall effect of wear-out is for initially homogeneous
multicore chips to become heterogeneous over time.

For multicores on unreliable process technologies, a network-
on-chip (NoC) interconnect is beneficial, providing multiple
routing paths in case of faults as well as support for different
frequency domains [6]. To operate similarly to conventional
multi-core architectures, the NoC needs to support cache co-
herence. Cache coherence in NoC systems is discussed in [7,
8]. In addition, defect-tolerant switches for communication
between cores are proposed in [9].

Figure 1 shows an example of a system exposed to wear-
out. The purpose of this diagram is to show the types of sys-
tem component that can be affected by wear-out based on
the most recent research ideas, rather than a contemporary
architecture. Cores in the main voltage domain have their
frequencies adjusted to match their individual fmax values.
A core in a separate voltage domain has its voltage adjusted
to meet a performance level dictated by the demands of soft-
ware running on it, to save energy. The cores communicate
through a set of fault-tolerant switches, which may employ a
directory protocol and dynamic routing around failed nodes.
There is external communication to off-chip DRAM mem-
ory, and a Flash-based disk cache [10]. All components of
the system are subject to wear-out over time. Management
at the system level is therefore important to obtain max-
imum throughput and lifetime. At a given point in time
management of the system can be handled the same way a
heterogeneous systems are handled. However, the change in
the system over long periods of time means that traditional
programming and compilation techniques available to het-
erogeneous scheduling may not be able to adapt. It will be
beneficial for the OS to have a variety of performance coun-
ters to adapt to the long term changes that occur within the
system due to wearout.

By deciding which software threads run on which cores, it
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Figure 1: Wear-out tolerant multicore chip

is possible to either maximize throughput or reduce power
and wearout effects. Thread management on heterogeneous
multicores has been addressed by prior work with the aim of
optimizing performance [11] or under a power budget [12].
However, these did not consider a hardware platform whose
performance changes over time. Several theoretical schedul-
ing algorithms have been proposed which increase perfor-
mance by running the most appropriate threads on each
core [13, 14, 15]. To be accurate, schedulers require detailed
knowledge and prediction of thread behavior on each core.

Centralized management on a dedicated unit has frequently
been proposed as an option. For example, ElastIC [4] has a
Diagnostic and Adaptivity processing unit (DAP) that takes
units off-line and tests them using test vectors and sensor
devices. It can also perform active healing to reverse wear-
out effects including negative bias temperature instability
(NBTI) and electromigration. The alternative is to tem-
porarily allocate the task of system management and thread
scheduling to an under-utilized computation unit [15].

The rest of the paper is organized as follows. Section
2.1 provides an explanation of process variation and wear-
out. Section 2.2 covers the aspects of memories (includ-
ing variable-size cache and Flash) and unreliable intercon-
nect is discussed in 2.3. From a software standpoint we
then provide background on Streaming applications (2.4)
and thread scheduling for heterogeneous systems (2.5). In
sections 3 and 4 we provide analytical results comparing dif-
ferent scheduling schemes to handle wearout. We conclude
in section 5 by suggesting a coordinated approach to man-
aging all of these components under wear-out conditions.

2. BACKGROUND & RELATED WORK
The first three sections will describe ways in which ini-

tially homogeneous systems degrade and become heteroge-
neous over time. Then the next two sections will present
background and related work on a particular task scheduling
problem for streaming workloads that will later be studied
in the context of a homogeneous chip undergoing wearout
effects.

2.1 Process Variation and Wearout
Recent trends [16, 17] suggest that the negative bias tem-

perature instability effect (NBTI) and dielectric breakdown
will remain critical mechanisms for degradation or “soft”
breakdown of integrated circuits despite the transition to
new manufacturing materials. Soft breakdown events, de-
fined as an event in which the system fails to meet previous
performance specifications (typically power or delay), are
particularly difficult to safeguard against using traditional
corner-based reliability qualification. Systems with different
workloads, usage profiles and environmental conditions will
degrade at different rates and to different extents. A suitable
reliability guideline for one system in operation may place
an unwarranted limitation on the performance of another
system under different conditions. A brief review of these
two dominant soft breakdown mechanisms will illustrate the
nature and magnitude of soft breakdown’s impact on system
performance that one can expect over system lifetime. It is
this impact on system performance that will lead an ini-
tially homogeneous system to degrade into a heterogeneous
one over time.

The NBTI effect is observed primarily in PMOSFET de-
vices biased negatively (conducting current) at high temper-
atures. The effect is caused by trap generation (and reversed
by annealing) near the oxide interface when Si-H bonds are
broken by collisions with holes. The effect is time depen-
dent, following a power law relationship with the time of
applied stress (α = 0.25) and exhibiting a strong depen-
dence upon the electric field across the oxide. The genera-
tion of the traps leads to a reduction in saturation current of
the device, increasing device and circuit delay as the transis-
tor ages. Interestingly, the process can partially reverse the
effects through natural annealing when stress is removed.
Thus, the precise degradation to expect on any given sys-
tem is highly dependent upon workloads and environmental
conditions. In [18], the simulated effect of NBTI on a 70nm
device is a 50-55mV threshold voltage (Vth) shift, leading
to 8-10% change in circuit delay over lifetime. Maximum
delay changes to NBTI effects average 8.5% across ISCAS85
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benchmark circuits in another work [19]. Although delay
change in these studies is limited to 10% or less, a 50 mV
shift in threshold may become more significant as the base-
line threshold voltage may scale in future technology gener-
ations. The timescale for the stress and recovery effects of
NBTI are uniquely short; 75% of the degradation or recov-
ery can be observed minutes after the application or removal
of voltage and temperature stress.

The oxide breakdown effect is caused by interaction with
tunneling charges through thin-film oxides, used on the gate
of MOSFET transistors and the insulation between neigh-
boring interconnects. Traps, or interface states created in
the oxide lead to a reduced energy required for a tunneling
charge to pass through the oxide. Over time, the gate leak-
age current of a degrading MOSFET will increase eventually
violating timing or power constraints and in extreme cases,
causing a permanent fault at a particular circuit node. The
oxide breakdown effect is exponentially dependent upon the
electric field (voltage) and the probability of defect gener-
ation also has a strong, positive correlation with the ox-
ide temperature. This implies that temperature reduction
through frequency or voltage decreases and improved cool-
ing can increase lifetime. Oxide-related soft breakdown can
cause up to 30% variation in the delay of a simple buffer
circuit [20]. The timescale for degradation in delay for oxide
soft breakdown is highly variable, with slow degradation to
ultimate failure taking up to years to develop [21].

A microprocessor and operating system can be made aware
of this wear-out via several hardware techniques. Sampling-
based detection [22, 2] works by either measuring signal
propagation time through an artificial delay, or identifying
and correcting late-arriving signals to handle the increas-
ing logic delay mentioned above. Another option is periodic
testing for correct operation under reduced delay margins
in order to expose new paths whose delays have increased
[23]. The operating system can periodically read the delay
metrics and alter its schedule to match the modified hard-
ware capabilities. For permanent, hard faults identified by
error correction and detection circuits (in memories, for ex-
ample) the OS can immediately be informed of the change
in latency or storage capacity.

2.2 Memory
On-chip cache memories are becoming increasingly sus-

ceptible to process parameter variations and voltage changes
[3]. This is also reflected by the adoption of cache fault-
tolerance schemes such as Intel’s Pellston [24], which selec-
tively disables individual faulty cache lines. Studies have
shown [25] that erratic fluctuations of minimum operating
voltage can occur for random cells in 90nm SRAM arrays.
SRAM reliability becomes worse with shrinking cell sizes,
and there are three basic solutions. These are to maintain a
higher voltage, keep SRAM cells relatively large or perform
error correction. Error correction (ECC) increases memory
access latency and if ECC capability is exceeded, reduces
capacity by disabling blocks. The operating system must
be aware of such changes to maintain maximum possible
performance.

As shown in Figure 2 (taken from [3]), cache cell failure
rate increases exponentially as voltage is scaled. The graph
shows that for this simulated 45nm process, a small reduc-
tion in voltage can cause a large increase in defective cache
lines. Supply voltage may need to be reduced to offset NBTI

and oxide breakdown effects or to reduce energy consump-
tion. As operating voltages are lowered there is a reduc-
tion in the static noise margin (SNM) of the SRAM cell.
Since SRAMs are typically sized for optimal density and
for use at high operating voltages, a reduction in SNM dra-
matically increases the likelihood that the cell value will be
flipped when exposed to noise. Random dopant fluctuations
(RDF) further exacerbate SRAM variability by changing de-
vice threshold voltage (Vth) [26]. At low voltages, there is
a stronger relationship between Vth and device drain cur-
rent, increasing the effect of RDF. Since RDF is a local
process variation, individual devices within a single SRAM
cell become mismatched, reducing static noise margin and
increasing failure rates. The effects of RDF are expected to
increase in newer process technologies since the change in
Vth is inversely proportional to the root of the channel area.
This will further increase SRAM failure rates.

As operating voltages are lowered conventional error cor-
recting codes quickly become overwhelmed by the number
of faulty bits. The only option at that point is to disable an
entire cache line. This will have a negative effect on perfor-
mance of which the operating system needs to be aware. In
a system employing adaptive voltage scaling, this is a realis-
tic scenario. Coupled with process variation, it is likely that
processor caches will not be of equal size and their impacts
should be considered. An operating system with knowledge
of the current cache size or miss rate can perform more intel-
ligent scheduling for performance or lifetime optimization.

Flash Memories are becoming a common feature of sys-
tems as a convenient, low-power non-volatile storage medium.
They can also be applied in a more intensive context such as
a low-power file cache [10]. As the Flash ages its write and
erase latencies increase to compensate for reducing thresh-
old voltage (Vt) margin (Figure 3) [27]. Erratic bits in Flash
memories [28] have been observed when blocks of bits are
erased, causing unpredictable jumps in threshold voltage.
This behavior is due to positive point charges in the tunnel
oxide, between the transistor channel and the floating-gate.
When the number of faulty bits per block exceed the ca-
pabilities of an error-correcting code (ECC), blocks are dis-
abled, reducing the capacity of the memory. Therefore this
is another instance of wear-out affecting system performance
over time, especially for file cache applications.

2.3 Interconnect
Electromigration is another reliability mechanism of in-

terest given the trend of multi-core design and increasingly
large on-chip memories. EM is an effect caused by the col-
lision of electrons and metal atoms in interconnect leading
to physical transport of the metal atoms in the direction of
electron flow. Over time, the transport mechanism leads to
opens or shorts in interconnect and failures in most circuits.
The EM effect is pronounced with high current densities
which may be observed in power networks on chip and is
1000 times more likely to lead to reliability issues in wires
featuring mostly uni-directional electron flow [29]. Large
bus structures between caches and processing elements or
nodes in a multi-core or network on a chip are likely to re-
sult in unidirectional electron flow, since the bus wires are
driven from different ends very frequently.

Hard faults may exist in the interconnect of a large mul-
tiprocessor system, and will not cause catastrophic failure if
appropriate fault tolerance is in place. Soft errors can also
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Figure 2: Cache cell failure rate for cells of increasing size (A, B and C) as a function of Voltage
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Figure 3: Increase in Flash program/erase time as flash cells wear out

occur and are often dealt with using multiple layers of error
correction [6]. Because of the increased likelihood of hard
faults in the future process technology where wear-out is
most significant, a NoC allows connection and disconnection
of faulty units. NoCs can affect performance however, espe-
cially for streaming applications where the choice of thread
to CPU allocation can change the number of nodes across
which data is routed.

As an example of how variable NoC latency can be han-
dled, hardware could track coherence traffic identifying which
threads communicate the most data to each other. With
prior knowledge of the running software, for example through
software hints, the operating system can be informed of
communication patterns without extra hardware. A thread
schedule can be formed whereby communicating threads are
physically adjacent to each other to minimize router hops on
a NoC.

2.4 Streaming Applications
Many modern applications are based on the concept of a

stream. Multiple examples are presented in [30] and include
software radio, network protocols, video and audio applica-
tions. They are characterized by operation on a large stream
of data items that are processed by one or more algorithms
in a graph of interconnected threads. The graph does not
change very often for the duration of a program run.

Vadlamani et al. investigate memory hierarchy perfor-
mance in the context of streaming programs on multi-threaded
and multi-core hardware [31]. By measuring the coher-
ence overhead of communication between threads within and
across cores, they make architecture-specific software opti-
mizations tailored for each architecture. For example, the
synchronized pipelined parallelism model (SPPM) splits al-
gorithms into stages allocated to each thread. These threads
are forced to communicate through the cache, increasing
performance for chips with shared L2 cache. However, for
cores with private L2 caches, communication latency offsets
the benefits of SPPM over the standard spatial decompo-
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sition model (SDM) where the same algorithm operates on
different data in parallel.

When the time arrives to allocate a thread to another core
(to maximize performance), consumer threads should be al-
located to the core that produced their input data because
the producer’s local cache will still contain that information.
This is a similar concept to Polymorphic Threads [31] except
that it would be a secondary hint applied to the through-
put based thread migration scheme which we examine in our
experiments (Section 3.1).

To demonstrate our wear-out aware schemes we employ a
restricted type of stream program as a simple benchmark.
It consists of a chain of threads running on a system with
the same number of processors (Figure 4). The first thread
simulates the work involved in processing a block of data by
performing a number of iterations of a loop, before writing a
block of data into a queue. Each pair of threads in the chain
is connected by a queue from which it reads the next block of
data to be processed, before writing the results to its output
queue. This is similar to the benchmarks used with SPPM
but with more processors and threads on a multi-core chip.

The benchmark is complete when a specified number of
blocks have been processed by every thread in the chain.
This simple program is adequate to show the benefits of
wear-out aware scheduling.

2.5 Task Scheduling in Heterogeneous Systems
Task scheduling on heterogeneous multi-cores is a widely

studied field. Theoretical as well as practical works exist,
providing scheduling policies and heuristics to determine
which thread to run on which processor and at what time.
Our work specifically addresses streaming applications, and
the following related work is relevant.

In [11] they present a dynamic assignment policy based on
runtime thread behavior. Running SPEC2000 benchmarks
on a system with Alpha EV5 and EV6 processors, they mi-
grate threads between cores based on changes in IPC. Simu-
lations are driven by execution traces on the M5 simulator.
For a multi-core system where the cores have the same archi-
tecture, IPC alone is not an effective metric for scheduling
because any thread will have the same IPC on any core (ig-
noring cache variations).

The Synchronized Pipelined Parallelism Model (SPPM)
[32] runs experiments using a streaming model similar to
our own. Producer and consumer thread pairs run on a si-
multaneous multi-threading (SMT) processor. A bound is
placed on the minimum and maximum amount of uncon-

sumed data that has been placed in the cache. By restrict-
ing the amount of shared data spilling out of the cache, they
show a performance increase. We extend this work by con-
sidering heterogeneous CMPs rather than SMT, and longer
thread chains than a single producer/consumer pair. In our
software model, we also allow buffer sizes to be restricted,
minimizing cache spills.

The authors of paper [13] modify the “maximum utiliza-
tion scheduler” algorithm to work better with processors
running at different speeds. They point out that the gen-
eral problem of minimizing the execution time of dependent
tasks on multiple processors is NP-hard.

In [15] they propose a dynamic scheduling algorithm called
Self-Adjusting Scheduling for Heterogeneous systems (SASH).
They also propose the use of a dedicated scheduling proces-
sor so as not to interfere with task execution. The algorithm
requires an estimate of the execution time of any task on any
processor. Therefore a real implementation needs hardware
performance statistics to provide this information for a more
effective schedule.

3. METHODOLOGY
After understanding some of the mechanisms in which ho-

mogeneous processors wear out and a particular schedul-
ing problem that arises for streaming applications, focus is
now shifted to quantifying gains from different scheduling
schemes. The following section will describe the analysis we
performed.

3.1 CPU Allocation Policies
To show the benefits of intelligent thread scheduling on

heterogeneous systems, we compare three different policies,
as follows;

• “No wear” - the baseline where all processors run at
maximum frequency

• “Static” - allocate the most work intensive thread to
the fastest cores, in descending order. The allocation
remains for the duration of the program run.

• “Linear” - A dynamic thread migration scheme whereby
a linear program calculates the amount of time that
each thread should spend on each core to equalize
block throughput between threads. A thread migra-
tion schedule is then derived using a simple algorithm.
This has the effect of maximizing steady-state perfor-
mance.
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As our “No wear” baseline we assume a system of homo-
geneous processors running at 2 GHz. Threads are statically
allocated to cores, so the overall block throughput of the sys-
tem is restricted by the thread with the longest execution
time per block.

The “Static” policy also restricts execution of each thread
to a single core. However, the cores run at different frequen-
cies representing a worn-out system. The threads are allo-
cated to cores starting with the most demanding thread on
the fastest core. This reduces the amount of idle time where
threads are waiting for the bottleneck thread to produce or
consume data.

The “Linear” policy employs a schedule determined us-
ing several constraints and a linear program. The program
specifies how long each thread should execute on each core
relative to the others. The main constraints equalize the
blocks per second metric (block throughput) of each thread.
The objective is to obtain maximum blocks per second un-
der this constraint. By equalizing the thread throughput,
buffers are neither empty or full most of the time, reducing
stalls. For our example, the schedule was derived using the
MATLAB linear program solver. For a reasonable number of
cores, it is feasible to periodically evaluate the schedule and
re-adjust the amount of time threads spend on each core.
If the workload is fairly consistent, frequent re-evaluation
is not necessary and and can be performed on one of the
common cores or a dedicated scheduling core.

The following simple model approximates throughput in
our system.

Let each thread Tx require Ix instructions to process a
unit of data (block). When running on CPUy of a Y-core
multiprocessor chip with frequency Fy, block throughput for
thread x on core y is;

Throughputx,y =
IPC ∗ Fy

Ix
(1)

Since we can measure cycles per block (Cx) for the core
which a thread is running on, throughput can also be defined
by;

Throughputx,y =
Fy

Cx
(2)

Assuming that any thread will exhibit the same cycles per
block on any core, this can be used as a measure of how a
thread will perform. However, parameters such as different
IPC, bus to core clock ratios and different cache sizes can
break this assumption on a complex heterogeneous system.

Our policy uses a linear programming algorithm to decide
how long each thread should run on each core to obtain max-
imum overall throughput. As an example, if a producer runs
on a fast core and completes its work before a slower con-
sumer, the consumer can switch to the fast core to complete
its work. This has two advantages;

• Some produced input data will still be present in the
producer core’s cache

• The consumer finishes earlier because it runs on a
faster core for some of the time.

The linear programming problem is defined as follows.
The variables in our problem are the fraction of time each

thread should spend on each core. Therefore with X threads
and Y cores, there are X ∗Y variables. These variables are;

{v1,1, v1,2, ..., v1,Y , ..., v2,1, v2,2, ..., vX,Y } (3)

The throughput function which we want to maximize is;

v1,1.
F1

C1
+ v1,2.

F2

C1
+ ... + v1,Y .

FY

C1
(4)

This equation represents the average throughput of thread
1. Later, we specify constraints such that the throughput of
every chained thread is equal.

Now we define the constraints which must be met. These
fall into three categories;

• Equivalence constraints specifying that every thread’s
throughput is equal

• Bounding the fraction of time that threads execute on
any one core between 0 and 1

• Bounding the fraction of time a thread can be executed
between 0 and 1

The throughput constraints are expressed between each
possible pair of threads. Therefore a total of

(
X
2

)
constraints

are needed, specified as follows.
For each pair of threads Ta and Tb, add a constraint;

(
va,1.

F1
Ca

+ va,2.
F2
Ca

+ ... + va,Y .FY
Ca

)
−(

vb,1.
F1
Cb

+ vb,2.
F2
Cb

+ ... + vb,Y .FY
Cb

)
= 0

(5)

Another Y constraints are needed to bound the time threads
spend on each core. For each thread x, add the following
constraint;

0 ≤
Y∑

y=1

vx,y ≤ 1 (6)

Finally, to ensure that each thread is busy between 0 and
100% o the time, a constraint is added for each core y;

0 ≤
X∑

x=1

vx,y ≤ 1 (7)

A further step is required to derive a schedule after the lin-
ear program provides the amount of time each thread should
spend on each core. The simplest approach is to take the
first CPU and allocate threads to that core in sequential
order. For each successive core, threads are allocated in
sequential order to the first time slot where that thread is
not already allocated to another core. The linear program
constraints ensure that it is possible to derive a schedule in
this way, since no thread consumes more than a maximum
execution period of 1.0 across any combination of cores.

Future scheduling algorithms should look at additional
performance metrics from the system that will help to han-
dle changes in cache size and routing latencies. It will also
be beneficial to detect sharing patterns and schedule threads
that communicate in physically close locations or migrate
consuming threads into their producers location to avoid
cache warmup penalties. We leave these performance coun-
ters and scheduling algorithms for future work.
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Figure 5: Data block throughput comparisons for different thread work and CPU frequency ratios
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4. RESULTS
In Figure 5 we present a theoretical comparison of the

scheduling policies applied to 3 threads running on 3 cores.
Figures 5(a) and 5(b) assume all threads require equal work
per block (hence the ratio 1:1:1 in the graph title). The first
graph shows a moderately worn out system with three cores
at clock frequencies 2.0, 1.8 and 1.6 GHz. The first plot on
each figure is block throughput normalized to a static thread
allocation on a non-worn out system with three cores, all at
2.0 GHz. For low levels of wear-out, the “Static” policy per-
forms relatively well (Figure 5(a)). However at greater lev-
els of cpu imbalance (5(b)) there is significant performance
degradation. In all cases, a static allocation that does not as-
sign the most demanding threads to the fastest cores would
be even slower. The optimal solution found using the “Lin-
ear” policy recovers some of the performance lost due to
wear-out, providing a more graceful degradation in perfor-
mance. The second plot on each figure indicates the aver-
age time spent idle across all three cores. With a balanced
thread workload, there is obviously no idle time in the “No
wear” case. However, when core frequencies become imbal-
anced, faster cores are forced to become idle while waiting
for the slowest thread to complete (Figures 5(c) and 5(e)).
The static allocation results in a significant amount of idle
time due to thread and core frequency mismatch. Periodi-
cally migrating the threads between cores (the “Linear” pol-
icy) makes use of available idle time to increase throughput.
As graphs move down the page the thread workload becomes
more imbalanced.

The final plot gives the output of the MATLAB linear
program solver as the fraction of time each thread spends on
each core. The allocation ensures that block throughput of
each thread is equalized while at the same time maximizing
blocks per second. Sometimes it is impossible to eliminate
all of the idle time (Figure 5(e) for example) because the
most demanding thread (T3) spends almost all the time
on the fastest core and becomes the bottleneck. The other
threads are significantly less demanding and easily match
T3’s throughput on the slightly slower cores leaving some
slack time on core 3. The most benefits are seen when there
is greater frequency deviation between cores.

5. CONCLUSION AND FUTURE WORK
In this paper we have set the scene for operating system

based management of wear-out effects. We primarily ad-
dressed performance optimization considering only proces-
sor elements. A wealth of future work exists in producing a
coordinated scheme to manage the interacting effects of in-
creasing cache and memory latency and decreasing storage
capacity.

Our investigation into scheduling policies for a stream-
ing benchmark indicates that making the operating system
aware of thread throughput can recover a large fraction of
performance lost due to wear-out. It is therefore worthwhile
to investigate systems with more cores. Increasing numbers
of processors and the use of NoCs implies greater latency
between physically distant cores. Information on streaming
data patterns can be used by an enhanced scheduler to min-
imize cost by placing communicating threads close to each
other. Since the software itself follows a streaming model,
the communication patterns are known in advance by the
operating system, which may otherwise have to be discov-

ered by hardware.
We conclude that multiple, accurate hardware performance

statistics are required to get good throughput on a worn-out
multi-core chip.
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