
A Highly Resilient Routing Algorithm for FaultTolerant NoCs

David Fick, Andrew DeOrio, Gregory Chen, Valeria Bertacco, Dennis Sylvester and David Blaauw
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109
{dfick, awdeorio, grgkchen, valeria, dmcs, blaauw}@umich.edu

ABSTRACT

Current trends in technology scaling foreshadow worsening tran-

sistor reliability as well as greater numbers of transistors in each

system. The combination of these factors will soon make long-term

product reliability extremely difficult in complex modern systems

such as systems on a chip (SoC) and chip multiprocessor (CMP)

designs, where even a single device failure can cause fatal system

errors. Resiliency to device failure will be a necessary condition at

future technology nodes. In this work, we present a network-on-

chip (NoC) routing algorithm to boost the robustness in intercon-

nect networks, by reconfiguring them to avoid faulty components

while maintaining connectivity and correct operation. This dis-

tributed algorithm can be implemented in hardware with less than

300 gates per network router. Experimental results over a broad

range of 2D-mesh and 2D-torus networks demonstrate 99.99% re-

liability on average when 10% of the interconnect links have failed.

1. INTRODUCTION
As the semiconductor industry moves further into the nanome-

ter regime, two salient problems arise: efficiently connecting the

increasing number of on-chip resources and effectively managing

decreasing transistor reliability. Current methods of connecting on-

chip resources, such as buses and crossbars, may soon be precluded

by the delay of long wires and the large number of elements that

must communicate with each other. Networks on Chip (NoC) help

mitigate this problem by decentralizing and distributing commu-

nication across the chip using a lightweight networking protocol,

resulting in a high throughput, scalable solution.

NoCs use a shared interconnect system to transmit packets of in-

formation between intellectual property components (IP, e.g., pro-

cessor cores, caches, ASICs, etc.) through a distributed system

of routers connected by links. Data sent through the network is

converted into a packet, a formatted block of data, by a network

adapter. Each packet is then labeled and divided into a sequence

of uniformly sized flow units (flits) and sent from the adapter to a

router [2], from where it travels from router to router through the

network.

While the NoC approach has been increasing in popularity with

commercial chips such as Tile64 [1] and Polaris [19], it is threat-

ened by the decreasing reliability of aggressively scaled transistors.

Transistors are approaching the fundamental limits of scaling, with

gate widths nearing the molecular scale, resulting in break down

and wear out in end products [10]. Permanent faults due to device

wearout are caused by mechanisms such as negative bias temper-

ature instability (NBTI), oxide breakdown, and electromigration.

These device level failures have architecture level ramifications, as

a single faulty link or router will cause an entire NoC to fail, halt-

ing all traffic. Future processor technology generations will require

significant error tolerance to many simultaneous faults.

On-chip networks provide excellent opportunities for building a

reliable system, as they provide redundant paths between IPs [18].

As the “glue” that holds a chip together, a NoC should be highly re-

silient to hardware failures and able to work around faulty routers

and links. In contrast, a faulty IP with even little or no protec-

tion can be disabled and isolated by the network, thus promoting

NoC as a reliable system platform. A disabled IP would not hin-

der network performance, as the associated router can still be used.

An ideal network should be able to diagnose where faults are in

its own components and then reconfigure to mitigate those faults,

maintaining full connectivity when possible. To avoid single points

of failure, the reconfiguration process should be distributed and per-

formed within the network itself.

1.1 Contribution of This Work
We present a distributed routing algorithm for networks on chip,

allowing a network to reconfigure around faulty components. Our

solution’s novelty lies in its ability to overcome large numbers of

faults in a fine-grained fault model without using virtual channels

or adaptive routing, and in a distributed nature, which avoids single

points of failure. Given only local information, the algorithm runs

in lockstep at each network router to collectively reconfigure the

network’s routing tables. Using a hardware implementation is more

reliable as it may be unknown what IPs are safe for routing com-

putation, and a software implementation would still require some

degree of hardware support. The algorithm is implemented with

less than 300 gates at each router, thus making it a low-overhead

approach for both simple designs (even those without virtual chan-

nels) as well as complex ones. We found that networks routed using

this algorithm are 99.99% reliable when 10% of the interconnect

links have failed.

2. RELATED WORK
Our work adopts the turn model originally proposed by Glass

and Ni for adaptively routed networks in [6], which prevents net-

work deadlock by disallowing various network turns. Later, in [7],

they showed how the technique can be applied to n-mesh networks

to tolerate (n-1) router failures (1 router failure for 2D-mesh). Their

strategy uses no virtual channels but requires adaptive routing, whereas

our work requires neither. Additionally we are not limited to any

particular number of failures.

Jie Wu uses the odd-even turn model to address convex, dis-

joint fault regions that do not lie on the mesh boundary [20]. Al-

though his technique does not require virtual channels, the fault-

requirements are strict. The work we present has no requirements

on the fault patterns.

A series of other works present solutions to adaptively route

around router fault regions while enduring various restrictions and

requirements [3, 4, 5, 11, 13, 14, 16, 17, 21, 22]. Packets are routed

normally until encountering a fault region, and are then transmit-

ted along the edge of that region. Initially, only rectangular, dis-

connected, non boundary regions could be tolerated while requir-

ing a large number of virtual channels. Sometimes fully functional

routers had to be disabled to meet the shape requirements. Recent

work extends these techniques to router failures of arbitrary pat-

terns using as few as two virtual channels. These additional virtual

channels do not add to the performance of the system, however,

as they are reserved for fault tolerance. Our work requires no vir-

978-3-9810801-5-5/DATE09 © 2009 EDAA

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 30,2010 at 19:10:14 UTC from IEEE Xplore. Restrictions apply.

Figure 1: NoC router. When a packet enters the router, its header
is decoded and the destination is looked up in the routing table. The
packet is then transmitted in the direction specified in the routing
table. Our algorithm rewrites this table when faults appear in the
network.

tual channels reserved for fault tolerance, so any virtual channels

added to the system add to performance. Moreover, our work al-

lows link-level failures and does not require adaptive routing, nor

do we disable functional routers.

Ho and Stockmeyer present a strategy that disables the IPs con-

nected to a few sacrificial lamb routers, which helps prevent dead-

lock [9]. They demonstrate high reliability for a small number of

faulty routers (3%), which is suitable for their application in the

Blue Gene supercomputer. Our work targets reliability at higher

failure rates while not disabling resources.

Other approaches use additional virtual channels combined with

adaptive routing to provide fault tolerance. Pruente et al. [12] present

a technique that tolerates link-level failures using a relatively com-

plicated algorithm and two virtual channels (one reserved for fault

tolerance), while Gomez et al. [8] are able to tolerate up to five link

failures with the addition of one virtual channel.

In contrast with previous work, our solution requires no virtual

channels, no adaptive routing, no particular fault restrictions, and

no disabled routers. Many these works provide 100% reliability

when conditions are met - while our technique can not guarantee

that, experimental results show over 99.99% reliability when up

to 10% of interconnect links have failed. Moreover, we provide

hardware implementation results proving the feasibility of our ap-

proach.

3. ROUTING ALGORITHM OVERVIEW
The routing algorithm presented in this paper reconfigures net-

work routing tables in an offline process. It consists of a basic

routing step and a number of rule checking steps. The rules con-

strain the basic routing step depending on the network topology

and existing faults in order to safely redirect traffic around failed

network resources, while the checks determine which rules to use.

The algorithm is specifically designed for deterministically routed

on-chip networks in SoC and CMP applications. Each router in our

network contains a routing table (Figure 1), which lists an output

port for each destination in the network. Packets traversing the net-

work have a header flit with a destination ID field that is used to

look up what direction to go at each router. Virtual channels are

not required, but could be used to provide additional performance.

The algorithm is implemented as a small hardware module in each

router that runs in a distributed lock-step fashion.

We model faults as link-level hard failures, thus each bidirec-

tional link can be individually bypassed, allowing routers to be

only partially functional. An entirely non-functional router is rep-

1: function main () {

2: foreach (rule) {

2: foreach (router) {

3: run_rule_check(rule, router)

4: }

5: }

6: foreach (dest) {

7: run_basic_routing_step(rules, dest)

8: }

9: }

10:

11: function run_basic_routing_step (rules, dest) {

12: if (dest == self) {

13: write_entry(‘‘local’’)

14: } else {

15: write_entry(‘‘invalid’’)

16: }

17: for num_router cycles {

18: if entry != ‘‘invalid’’ {

19: transmit_flags(rules)

20: } else {

21: check_for_flags(rules)

22: write_entry(priority_flag)

23: }

24: }

Figure 2: Pseudocode for rerouting algorithm. The function
run basic routing stepwill often be reused by run rule check.

resented by marking all four of its links as faulty. No restriction on

the number or location of faulty links is assumed, but the routers

must know which of their adjacent links are faulty. Each router

works with its neighbors to collectively reconfigure their routing ta-

bles based only on this information. In addition, it is assumed that

the routers know when they need to invoke the algorithm and how

to resume operation after reconfiguration finishes. Failure detection

and diagnosis, computation checkpointing, etc., are topics that have

been extensively explored in other work [15] and are not discussed

in this paper. The algorithm is comprised of multiple iterations of a

basic routing step – a procedure that updates an entry in all routing

tables for a particular destination. In the remainder of this section

we describe the basic routing step as well rules to constrain it. We

later show how to use these rules for specific topologies, 2D-mesh

and 2D-torus, in Sections 4 and 5 respectively.

3.1 Basic Routing Step
The basic routing step is shown in the second half of Figure

2. Each router selects the best direction to route a given destina-

tion based on information provided by its neighbors, then updates

the corresponding entry in its routing table. Routers communicate

through flags – one-bit signals transmitted to adjacent routers. At

any point during the execution of the algorithm, entries in a rout-

ing table are marked either valid, if the corresponding destination

is known to be reachable, or invalid otherwise. In the valid case

the entry also contains the direction that packets must take to reach

that destination.

To determine the best path to the destination, all routers start by

initializing the corresponding entry to invalid, except for the router

connected to the destination locally. This router marks the entry as

valid, and the proper direction in the table (Entry Initialization).

All routers then repeat the following two steps until every router

has had an opportunity to update its entry:

1. Flag transmission. During the flag transmission step, all

routers whose destination entry is valid will send a flag to all

of their adjacent routers. The other routers are silent.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 30,2010 at 19:10:14 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Example of six iterations of the algorithm’s basic step. The only rule enforced disallows the Northeast corner turns, so the
Southwest routers must go around the East side of the faulty link. “D” denotes the destination being routed, “!” denotes routers that wrote a
valid entry that step, and “¬” denotes places where a turn rule prevented a flag from propagating.

2. Routing entry update. In this step, all routers who have

(i) an invalid routing entry for the destination under analysis

and (ii) have received a flag through any of their links in the

previous step, update their entry to valid with the direction

of the incoming flag. If a router has received a flag through

multiple links, a priority selection procedure is used to select

the preferred routing direction. If a router has not received

any flag, or already has a valid entry, it does not take any

action.

Each panel of Figure 3 shows a single iteration of the basic rout-

ing step for a 3x3 mesh network. For an N router network, the

routing steps above must be repeatedN−1 times to cover the worst

case scenario, where the routers are connected as a long chain. At

the end of this process, if the router still has an invalid entry for

the destination under analysis, then that destination is unreachable

from that router.

3.2 Rules for the Basic Routing Step
To avoid deadlock loops forming while performing the basic

routing step, each router must also keep a set of rules – a list of

disallowed links and turns.

Links can be disallowed in the basic routing step by not transmit-

ting flags across them, or by not accepting transmitted flags. There-

fore a link can be disallowed by either router that it connects.

Turns comprised of a path through two links connected by a router

must be disallowed by their center router. The center router can

disallow a turn between two links by not transmitting flags from

one to the other, i.e., if its valid entry points to the second link, it

will not transmit flags to the first link.

These sets of rules are determined on a per-router basis depend-

ing on both the topology of the network and the present faults. In

our subsequent examples of 2D-mesh and 2D-torus networks, we

reuse the basic routing step to evaluate which rules are necessary

to avoid deadlock. Each router will start with a set of default rules,

removing or adjusting them based on the set of faulty links.

4. 2DMESH ROUTING
2D-mesh is a common network topology for large scale chip

multiprocessors due to its simple physical implementation. In this

section we first discuss the natural loops that form in a mesh, and

the rules required to prevent them. We then investigate situations

when rules at individual routers need to be removed to maintain

connectivity. Finally, we discuss a pathological case, as well as its

solution. An example of mesh routing is provided in Figure 3.

Figure 4: Disallowing turns to avoid deadlock. Three examples
are shown routing the same set of packets on the left, and the
turns that they use on the right. Top row shows how the basic
routing step will perform with no rules and no faults no deadlock
loops appear in the turn graph. The center row shows how routing
the same packets results forms a deadlock loop when a fault is
present. All packets take the only other available 2hop route, and
use overlapping resources which will eventually conflict with each
other indefinitely. The third row shows how we disallow a turn
to make one packet to take a longer path around the fault (green),
which prevents a deadlock loop. “¬” denotes places where a turn
rule prevented a flag from propagating.

4.1 2DMesh Rules
A fault-free 2D-mesh network routed according to our algorithm

will be deadlock-free without enforcement of any rules since S-E-

W-N priority leaves the Northwest and Northeast corners naturally

unused (Figure 4, first row). However, a single fault in the net-

work may cause a deadlock loop to form (Figure 4, second row).

Deadlock occurs when a loop of utilized turns is formed. The basic

routing step naturally uses minimal length paths, and every turn in

the loop around the fault is the minimal length path between the

two routers that it connects, thereby creating deadlock.

Glass and Ni show that disallowing a pair of turns in an adaptive

routing network prevents deadlock situations [6]. One turn must be

disallowed for the clockwise direction, and another for the counter-

clockwise direction. In our experience, the best results were ob-

tained when both the clockwise and counter-clockwise turns at the

same corner were disallowed. An example of how disallowing a

pair turns removes deadlock is shown in the bottom row of Figure

4.

In our examples we choose to disallow the Northeast corner turns,

which are North→East and East→North.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 30,2010 at 19:10:14 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Selectively removing rules to allow full network con
nectivity. Strict adherence to the disallowed turn rule may result
in a case where some routers are not able to reach the Northwest
destination, although possible paths exist (left). This occurs be
cause the routers on the western edge have the East→North turn
disabled to avoid deadlock. Therefore, we remove the turn rule at
theWest router, restoring network connectivity (right). “D” denotes
the destination being routed and “/” denotes routers unable to reach
the destination.

4.2 Selectively Removing 2DMesh Rules
Strict adherence to disallowed the turn rule may produce an in-

consistent network, where consistency means that if one router can

reach another then a return path also exists. In Figure 5, a sin-

gle faulty horizontal link on the North edge of the network pre-

vents six of the routers from obtaining a valid path to the North-

west router. All of the routers on the West edge of the network can

reach this router by directing traffic to the North, however, since the

East→North turn is disallowed, these fringe routers never transmit
a flag to the East, cutting off the rest of the routers.

In order to prevent this scenario we must identify routers where

the turn rules should be removed to maintain a consistent network.

To do this, we must check each corner by trying route from one

end of the corner to the other using the basic routing step. If this

cannot be successfully accomplished with the disallowed turn, then

the corner turns must be allowed to maintain network consistency

and both turns for the corner are then allowed. The center router

knows if the corner was successfully routed based on the flags that

it receives from the two other routers. We check one corner router

at a time, so the minimal number of rules are removed in sequence.

If this were not done then both fringe routers would have their turns

allowed and the second faulty link in the example would cause a

deadlock.

4.3 Pathological Case
A pathological case infrequently arises in large networks with

many faults. As shown in Figure 6, deadlock loops can form when

two subnetworks are connected by a router with the turn rule re-

moved. Effectively, the deadlock loop passes through the connect-

ing router twice, as if folded over a point. We reduce this problem

by using a routing priority that disfavors a different corner - in our

example we use S-E-W-N priority to disfavor the Northwest corner.

The pathological case can still appear if there is a single fault inside

of each of the subnetworks, since the Northwest turns will still be

used in that case, similar to the second row of Figure 4. We address

this by formally disallowing a different corner for one of the sub-

networks. Once we have changed which corner is being disallowed

for this part of the network via a directed broadcast, we must check

each of these new rules.

The pattern can also repeat inside one side for a large network, so

we allow the turn to be changed back to the original turn when new

rules need to be removed. This part of the algorithm can loop by

changing between these two corners as long as it needs. Any router

that does not have its corner rule modified becomes “fixed”, and

Figure 6: Pathological case for large networkswithmany faults.
The corner rule for the Southwest router was removed as desired,
but a deadlock loop forms by passing through that router twice. We
adjust the rules for one side to break the loop.

is no longer changeable so that forward progress is made. In our

implementation we switch between the Northeast and Northwest

corners, broadcasting the corner-change signal to the East/North

and North/West respectively.

5. 2DTORUS ROUTING
Tori are very similar to meshes so we start with the same rules

described in our 2D-mesh example. Unique challenges for the basic

routing step (described in Section 3.1) are present, since a torus net-

work automatically forms deadlock loops even in absence of faults.

5.1 2DTorus Rules
Torus networks form loops around the outside of the network

by continuing in the same direction until reaching the same router

again. We address these loops with the addition of link rules. We

first disallow all wrap-around links along the top edge of the net-

work, then disallow one horizontal link in each row of the network.

The horizontal links prevent a loop from forming in the same row.

The vertical link rules along the North edge prevent a zigzagging

pattern from looping around the network, as well as loops that

would form in the same column. We choose a staggered pattern

for the horizontal links in order maintain the performance provided

by the torus topology.

Each of these new rules (vertical link and horizontal link) needs

to be checked, as shown in the first part of Figure 2. Horizontal

link rules can be checked first, and all in parallel. If there is a

broken link in the same row as a horizontal link rule then it is not

necessary to have the rule since the broken link provides the same

benefits. We can accomplish this check with a horizontal broadcast,

where knowledge of broken links propagates horizontally and lifts

any horizontal link rules. Since this broadcast starts at the ends of

each broken link it is guaranteed to reach every router in the row.

Vertical link rules can be checked similarly to the corner rules.

One side of the link maintains the rule - we route the other side of

the link and check if this side ever has a valid entry. If it does not

then the link is needed for consistency and the rule is discarded.

The horizontal and vertical rules only need to be checked once,

regardless of whether the corner rules are changed or not. They are

put in place to create a network that can be successfully routed by

manipulating the corner rules.

5.2 Corner Rule Consistency
The 2D-torus topology adds the possibility of corner evaluation

being inconsistent. Each corner has two turns, so the corner could

be evaluated by routing one turn or the other. Meshes are always

consistent, i.e., routing either turn yields the same result (routable

or unroutable). Tori can be inconsistent in some cases since paths

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 30,2010 at 19:10:14 UTC from IEEE Xplore. Restrictions apply.

around the outside of the network may be blocked off when routing

one turn versus another. This often happens when one of the routers

connected by the turn is reachable only through the center router.

When the other connected router is the destination, the first router is

not able to reach it since the center router always routes directly to

the destination, which blocks off all possibilities for the first router.

When the first router is the destination, however, the second router

may find a path around the outside of the network, which is an

option that would not be available in a 2D-mesh network.

Removing this turn rule would allow a deadlock path in the net-

work, but not allowing it would create an inconsistent network. We

resolve this by applying a fix-up to this turn in the form of a new

link rule. Whichever connected router could not find the other is cut

off by the center router, therefore disallowing the link to the other

router will not cut off any part of the network. This forces both

connected routers to take the path around the outside of the net-

work to reach the other, and keeps the network consistent while not

allowing deadlock. Since this rule is only added when it is needed,

it doesn’t need a rule check.

5.3 2DTorus Optimization
The link rules imposed for tori disallows more turns than neces-

sary since they in effect disallow two sets of turns, one set for each

connected router. We can limit this rule to only one set by ignor-

ing the rule when the destination is on either side of the link. If

we cross a disallowed link to reach a destination then we must also

ignore the turn rule for that router in order to maintain network

consistency. This allows us to more efficiently use the 2D-torus

topology without incurring deadlock or consistency problems.

6. EXPERIMENTAL RESULTS
We evaluated our algorithm on a number of 2D mesh and torus

network sizes, ranging from 4x4 to 12x12 (Table 1). These sizes

are representative of current industrial designs such as Tile64 (8x8)

[1] and Polaris (10x8) [19]. Using a cycle-accurate simulator writ-

ten in C++, each router was modeled as a single cycle design with

16-flit input FIFOs. Stimulus was produced with a constrained-

random traffic generator with each packets being 8 flits long. We

modeled faults as link-level failures, which allowed for a high de-

gree of flexibility, since routers can retain partial functionality when

experiencing faulty sub-components.

Table 1: Networks topologies and sizes used for evaluation.
2D-Mesh 4x4 24 links 2D-Torus 4x4 32 links

8x8 112 links 8x8 128 links
12x12 264 links 12x12 288 links

6.1 Reliability Analysis
In our first study, we explore the relationship between the num-

ber of faulty links and the reliability of the network. We randomly

inject a number of unique link faults into various network topolo-

gies. After injecting the faults and allowing the network to recon-

figure, we inspect the resulting tables to verify that the following

properties hold true:

• No deadlock condition is present: no set of turns used in
routing the network form a ring (see Figure 4).

• Routing tables are consistent: if router A has a valid entry for
router B, then A and B have the same set of valid entries.

• No routers are unnecessarily cut off: if adjacent routers A
and B are connected by a non-faulty link, then each have a

valid entry for the other.

We repeated the experiment one million times for each data point,

obtaining the results shown in Figure 7. As shown in the chart, all

10 20 30 40
99.5

99.6

99.7

99.8

99.9

100.0

R
el

ia
bi

lit
y

(%
)

Links Broken (%)

 Torus
 Mesh

12x12

8x8

4x4

42 Links
 Broken

30 Links
 Broken

10
%

Figure 7: Reliability with increasing faults. All topologies were
found to be at least 99.99% reliable at the 10% point.

0.0 0.1 0.2 0.3
10

20

30

40

50

60

La
te

nc
y

(C
yc

le
s)

Traffic Density

0 Links
Broken

18 Links
Broken
(14.1%)

8x8 Torus Network

Figure 8: Packet latency for a given traffic density and number
of faults. The highlighted region shows the range of 5th to 95th
percentile, while the center line denotes the median. The network
hits a latency wall at 0.30 and 0.15 traffic densities for 0 faults and
18 fault respectively.

network configurations exhibit a reliability over 99.99% when a

tenth of the links are faulty. Smaller 4x4 networks had 100% relia-

bility for 2D-mesh, and 99.99999% reliability for 2D-torus, regard-

less of the number of faulty links. With larger networks however,

the probability of a faulty network configuration increased as the

number of faults increased beyond this point, although reliability

in real implementations would be much higher, since errors tend to

exhibit spatial locality (temperature, utilization, clock distribution,

etc.).

6.2 Performance Evaluation
In our second study, we investigated the effects of link failures

on the performance of the network. Specifically, we measured the

average latency of packets traversing the network as the density of

randomly generated traffic increased. Density is shown as a per-

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 30,2010 at 19:10:14 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

12x12

M
ax

im
um

 T
ra

ffi
c

D
en

si
ty

Links Broken (%)

 Torus
 Mesh

4x4

8x8

Figure 9: Network traffic saturation. The amount of traffic
that a network can support before it reaches the latency wall for a
given number of faults. The median traffic density is used for this
calculation.

centage of the total injection bandwidth of the system, which is

fixed and proportional to the number of routers in the network.

Figure 8 shows the result of this analysis for an 8x8 2D-torus

network. For low traffic densities, the latency is kept under 20 cy-

cles, however, as the density increases, network saturation occurs,

resulting in a latency wall. With injected faults, the latency wall is

reached at lower traffic densities, as indicated by the graph. In addi-

tion, random fault injection creates variation in the onset of network

saturation, shown by the shaded region (5th to 95th percentile).

In our next experiment we further investigate the relationship be-

tween the number of broken links and the location of the latency

wall, analyzing multiple network configurations. Here, we vary

the number of broken links and record the traffic density at which

the latency wall (70-80 cycle latency) is encountered. Each data

point represent 5000 tests of 50,000 packets. The results shown in

Figure 9 demonstrate that with an increasing failure rate, network

saturation occurs at progressively lower traffic densities. This can

be attributed to fewer operational paths available for communica-

tion among network routers, as well as longer routes around failed

network components.

6.3 Area Evaluation
Finally, we evaluated the area impact of implementing our rerout-

ing solution in hardware. We implemented the 2D-torus variant of

the algorithm as a Verilog module, and synthesized it with Synop-

sys Design Compiler and a state-of-the-art 45nm library. The over-

head of implementing the algorithm in a 4x4 network was less than

300 gates per router. For comparison, a 12x12 network requires

an additional 30 gates, attributed to slightly larger state machine

counters.

7. CONCLUSIONS
In this work, we have presented a general fault tolerant routing

algorithm targeting NoC designs implemented on unreliable silicon

as foreseen for future technology nodes. We also discuss specific

implementations of the algorithm for 2D-mesh and 2D-torus net-

works. Our solution routes around network failures by leveraging
redundancy inherent in NoC topologies while not incurring virtual

channel costs. At less than 300 gates per router, this approach is an

efficient and effective addition to either simple or complex router

designs. Experimental results showed an average reliability of over

99.99% when 10% of the network links have failed across a variety

of networks sizes. Our routing algorithm enables the deployment

of NoC architectures and systems where network connectivity and

correctness must be maintained possibly at a performance cost, en-

abling graceful performance degradation as network resources fail.

8. ACKNOWLEDGMENT
This research was funded in part by the Gigascale Systems Re-

search Center and the United States National Science Foundation.

9. REFERENCES
[1] S. Bell et al. TILE64 processor: A 64-core SoC with mesh
interconnect. Proc. ISSCC, 2008.

[2] T. Bjerregaard and S. Mahadevan. A survey of research and practices
of network-on-chip. ACM Computer Survey, 38(1), 2006.

[3] S. Chalasani and R. V. Boppana. Fault-tolerant wormhole routing
algorithms for mesh networks. IEEE Trans. on Computers, 44(7),
1995.

[4] A. Chien and J. H. Kim. Planar-adaptive routing: Low-cost adaptive
networks for multiprocessors. Proc. ISCA, 1992.

[5] J. Duato. A theory of fault-tolerant routing in wormhole networks.
IEEE Trans. on Parallel and Distributed Systems, 8(8), 1997.

[6] C. J. Glass and L. M. Ni. The turn model for adaptive routing. ACM
SIGARCH Computer Architecture News, 20(2), 1992.

[7] C. J. Glass and L. M. Ni. Fault-tolerant wormhole routing in meshes
without virtual channels. IEEE Trans. on Parallel and Distributed
Systems, 7(6), 1996.

[8] M. E. Gomez, J. Duato, J. Flich, P. Lopez, A. Robles, N. A.
Nordbotten, O. Lysne, and T. Skeie. An efficient fault-tolerant
routing methodology for meshes and tori. IEEE Computer
Architecture Letters, 3(1), 2004.

[9] C.-T. Ho and L. Stockmeyer. A new approach to fault-tolerant
wormhole routing for mesh-connected parallel computers. IEEE
Trans. on Computers, 53(4), 2004.

[10] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Reliability modeling
and management in dynamic microprocessor-based systems. In Proc.
DAC, 2006.

[11] S.-P. Kim and T. Han. Fault-tolerant wormhole routing in mesh with
overlapped solid fault regions. Parallel Computing, 23(13), 1997.

[12] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A
cheap and robust fault-tolerant packet routing mechanism. ACM
SIGARCH Computer Architecture News, 32(2):198, 2004.

[13] S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient unicast and
multicast support for CMPs. 2008.

[14] J.-D. Shih. A fault-tolerant wormhole routing scheme for torus
networks with nonconvex faults. Proc. IPF, 88(6), 2003.

[15] D. P. Siewiorek and R. S. Swarz. Reliable computer systems (3rd
ed.): design and evaluation. 1998.

[16] C.-C. Su and K. G. Shin. Adaptive fault-tolerant deadlock-free
routing in meshes and hypercubes. IEEE Trans. on Computers, 45(6),
1996.

[17] P.-H. Sui and S.-D. Wang. Fault-tolerant wormhole routing algorithm
for mesh networks. IEEE Computers and Digital Techniques, Jan
2000.

[18] D. Sylvester, D. Blaauw, and E. Karl. ElastIC: An Adaptive
Self-Healing Architecture for Unpredictable Silicon. IEEE Design &
Test, 2006.

[19] S. R. Vangal et al. An 80-tile sub-100w teraflops processor in 65-nm
cmos. IEEE Journal of Solid-State Circuits, 2008.

[20] J. Wu. A fault-tolerant and deadlock-free routing protocol in 2d
meshes based on odd-even turn model. IEEE Trans. on Computers,
52(9), 2003.

[21] J. Zhou and F. Lau. Adaptive fault-tolerant wormhole routing in 2d
meshes. Proc. IPDPS, 2001.

[22] J. Zhou and F. C. M. Lau. Multi-phase minimal fault-tolerant
wormhole routing in meshes. Parallel Computing, 30(3), 2004.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 30,2010 at 19:10:14 UTC from IEEE Xplore. Restrictions apply.

