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Abstract—The growing impact of within-die process variation
has created the need for statistical timing analysis, where gate de-
lays are modeled as random variables. Statistical timing analysis
has traditionally suffered from exponential run time complexity
with circuit size, due to arrival time dependencies created by re-
converging paths in the circuit. In this paper, we propose a new ap-
proach to statistical timing analysis which uses statistical bounds
and selective enumeration to refine these bounds. First, we provide
a formal definition of the statistical delay of a circuit and derive a
statistical timing analysis method from this definition. Since this
method for finding the exact statistical delay has exponential run
time complexity with circuit size, we also propose a new method
for computing statistical bounds which has linear run time com-
plexity. We prove the correctness of the proposed bounds. Since
we provide both a lower and upper bound on the true statistical
delay, we can determine the quality of the bounds. If the com-
puted bounds are not sufficiently close to each other, we propose a
heuristic to iteratively improve the bounds using selective enumer-
ation of the sample space with additional run time. The proposed
methods were implemented and tested on benchmark circuits. The
results demonstrate that the proposed bounds have only a small
error, which can be further reduced using selective enumeration
with modest additional run time.

Index Terms—Probability, process variation, ststistical analysis,
yield prediction.

I. INTRODUCTION

STATIC timing analysis has become an indispensable part
of performance verification. Traditionally, the variation

in the underlying process parameters have been modeled in
static timing analysis (STA) using so-called case analysis. In
this methodology, best-case, nominal, and worst-case SPICE
parameters sets are constructed and the timing analysis is
performed several times, each time using one case file. Each
execution of static timing analysis is, therefore, deterministic,
meaning that the analysis uses deterministic delays for the
gates and any statistical variation in the underlying silicon is
hidden. While this approach has been successfully used in the
past to model die-to-die variations in device and interconnect
delay, it is not able to accurately model variations within a
single die. With the continual scaling of feature sizes, the
ability to control critical device parameters on a single die has
become increasingly difficult. Using a worst-case analysis for
these so-calledwithin-die variations, therefore, leads to very
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pessimistic analysis results since it assumes that all devices on
a die have worst-case characteristics, ignoring their inherent
statistical variation. The emerging dominance of within-die
variations, therefore, poses a major obstacle for deterministic
STA, giving rise to the need for new statistical timing analysis
approaches.

Variations in the delays of a circuit can be broadly classified
into two categories:environmentalvariations andprocessvaria-
tions. Environmental variations are caused by uncertainty in the
environmental conditions during the operation of a chip, such
as power supply and temperature variations. Process variations
are due to uncertainty in the device and interconnect charac-
teristics, such as effective gate length, doping concentrations,
oxide thickness and ILD thickness. A number of methods have
been proposed to determine the impact of such variations on the
delay of individual gates and interconnect [13]–[17]. In general,
these variations can be divided intobetween-dievariations (or
inter- die variation) andwithin-dievariations (or intra-die vari-
ations). Within-die variations can have a deterministic compo-
nent due to topological dependencies of device processing, such
as CMP effects and topologically correlated lithographic distor-
tions [3]–[5]. In some cases, such topological dependencies can
be directly accounted for in the analysis, thereby reducing the
statistical variation [18], [19], whereas in other cases, such vari-
ations are treated as random.

In this paper, we propose a formal model and an efficient
analysis method for statistical STA in the presence of random
within-die process variations. Since between-die variations are
adequately captured using case analysis, we focus on within-die
variations. We also treat all variations as random variations,
meaning that topological dependencies are either removed prior
to the analysis or are treated as random variations. We also
do not address environmental variations, although the proposed
model and analysis methods can be extended to such variations.

Deterministic timing analysis has seen significant improve-
ment since it was first introduced [1], [2], including methods
to account for effects such as cross-coupling noise [6]–[11] and
power supply noise [12]. The extensive use of deterministic STA
is in large part due to its linear run time complexity with circuit
size. In contrast, statistical STA has an underlying worst-case
complexity that is exponential with circuit size, which poses a
fundamental obstacle to its practical application. This high run
time complexity is the result of reconverging paths in the cir-
cuit which causes correlations between their path delays due to
shared sections of such paths. A second source of correlation
between arrival times results from spatial and topological cor-
relation of the individual gate delays. For instance, gates that are
positioned within close proximity on a die, or that are similar in
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layout topology, are more likely to have similar gate delays after
fabrication. Due to the correlation between arrival times, many
statistical STA approaches [20]–[27] have either high run times
or they ignore the presence of these correlations. Recently, a
number of new methods have been proposed to address the in-
creasing significance of process variations. In [28], [29], a novel
method using discretized probability distributions is proposed.
However, the run time of the method is exponential and the pro-
posed approaches to reduce the run time have an unclear impact
on the accuracy. In [30], a method using statistical bounds is
proposed with gate delays restricted to Gaussian distributions.
Since the delay of CMOS gates is nonlinear with respect to its
process parameters, the probability distribution of gate delays
is typically not Gaussian. Also, Gaussian distributions are un-
bounded, meaning that they predict a finite probability of zero
delay or very large delay for a gate, which is not physically fea-
sible. In [31], a path based statistical delay computation is pre-
sented which has the advantage that it incorporates an accurate
delay model that accounts for signal slope and output loading.
However, the analysis is performed on one path at a time and the
number of critical and near-critical paths in a circuit can be very
large, especially in highly optimized circuits. In [32], a new cir-
cuit optimization method was, therefore, proposed that reduces
the number of near critical paths in a circuit, thereby improving
the statistical delay of the circuit. The optimization, however,
was performed using deterministic timing analysis.

In this paper, we propose a new method for statistical STA.
Since the formulation of statistical STA has varied in subtle but
important ways in the literature, we first provide a formal model
of statistical STA. We then derive a procedure for statistical STA
in a strict manner from this problem formulation. Since the com-
putational complexity of this exact statistical STA method is ex-
ponential with the circuit size, we also present a new method
for computing bounds on the exact probability distribution of
the circuit delay and proof the correctness of these bounds. The
computed bounds are themselves probability distribution func-
tions that can be used to obtain a conservative estimate of the
circuit delay at any desired confidence point. By restricting our
analysis to bounds on the true statistical behavior of the circuit,
we are able to preserve the important characteristic of determin-
istic STA which has a linear run time complexity with circuit
size. Since we provide both a lower and upper bound on the
true statistical delay, we can determine the quality or error of the
computed bounds. Finally, we propose a heuristic method to it-
eratively improve the computed bounds using selective enumer-
ation of the sample space with additional run time. Combined,
the proposed methods provide a statistical STA approach with
linear run time, that is guaranteed conservative, has a bounded
error, and can be iteratively refined at the expense of additional
computational effort. The proposed methods were implemented
and tested on benchmark circuits. The difference between the
expected values of the upper and lower bound was shown to be
small, ranging from 2% to 10%, and this difference could be
reduced by 62% on average, using the proposed selective enu-
meration method, with modest additional run time.

The remainder of this paper is organized as follows. In Sec-
tion II, we present a formal model of statistical STA and our
modeling assumptions. In Section III, we present a number of

probabilistic timing graph transformations. In Section IV, we
derive our method for exact statistical timing analysis. In Sec-
tion V, we present the computation of the lower and upper sta-
tistical bounds on the true statistical behavior. In Section VI,
we present methods for exact graph reduction and for refine-
ment of the computed bounds using selective enumeration. In
Section VII, we present our results and in Section VIII our con-
cluding remarks.

II. STATISTICAL TIMING ANALYSIS FORMULATION

In this section, we present a formal model of statistical static
timing analysis. Our goal is to model the impact of gate delay
variations due to within-die process variations on the circuit
delay. Although at design time, the delay of each gate is un-
known, after a chip has been manufactured, the gate delays are
fixed and have a deterministic value for each particular die. The
fabrication of a large set of die can be thought of as our proba-
bilistic experiment, and each fabricated die as an experimental
outcome. The randomness or variability of the circuit delay is,
therefore, over the fabricated die, and it is the probability distri-
bution of the circuit delay that statistical timing analysis aims to
obtain.

At this point, we do not account for temporal variations of
the gate delays due to environmental factors, such as power
supply fluctuations, temperature dependence and noise, which
are better modeled using case analysis. However, our general
analysis approach could be extended to these types of variations
as well. Also, for simplicity of formulation, we ignore the pres-
ence of false paths since these are orthogonal to the issues dis-
cussed in this paper. We now give the following definition of a
timing graph:

Definition 1: A timing graph is a directed graph having ex-
actly one source and one sink node: , where

is a set of nodes,
is a set of edges, is the source node, and is
the sink node and each edge is simply an ordered pair of
nodes .

The nodes in the timing graph correspond to nets in the cir-
cuit, and the edges in the graph correspond to connections from
gate inputs to gate outputs. Although circuits generally have
multiple inputs and outputs, we can trivially transform them to
graphs with a single source and sink by adding a virtual source
and sink node.

In our formulation, adeterministictiming graph repre-
sents a particular manufactured die, where each gate has a fixed
delay value. Each edgein is assigned a delay , which
represents the deterministic propagation delay from a gate’s
input to its output. Similar to other statistical STA methods, we
ignore the dependence of gate delay on the transition time of the
gate input signals.

A path of a timing graph is a sequence of nodes, such
that each pair of adjacent nodes and has an edge

. The path delay of path is the sum of all the delays
of edges on path . Among all paths terminating at

a node , we define the path with the maximum delay as the
critical path of . The delay of the critical path terminating at a
node is equal to itsarrival time, . The critical path of the
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Fig. 1. Delay probability density and cumulative distribution functions.

sink node of a timing graph is referred to asthecritical path
of the timing graph, and the arrival time of , is referred to as
its graph delay.

After fabrication, a deterministic timing graph can be
conceptually formulated for each die. However, during the de-
sign of a chip, the gate delays are unknown and must be modeled
as random variables. Each gate delay is, therefore, specified ei-
ther with a cumulative probability distribution function (CDF)
or probability density function (pdf) and we define aproba-
bilistic timing graph as follows.

Definition 2: A probabilistic timing graph is a timing
graph whose edges are assigned random variables of delay
values.

Fig. 1 shows an example of a delay cumulative probability
distribution function and its corresponding probability density
function. Since these functions represent the variation of gate
delays, they have the following obvious but important property:

Property 1: A delay CDF equals 0 for all delay values less
than a finite minimum value and equals 1 for all values
greater than a finite maximum value . A delay pdf is
nonzero only on a finite interval [ ].

These properties follow from the fact that the delay of a real
gate cannot be less that some finite minimum delay value
or more than some finite maximum delay value .

We assume statistical independence of all edge delays, similar
to a number of previous statistical STA methods [20]–[25], [28],
[29], [31]. In practice, edge delays may be spatially or topolog-
ically correlated, meaning that gates located within close prox-
imity of each other or that have similar layout topologies will
have an increased likelihood of having similar gate delays. The
spatial and topological correlations between gate delays impacts
the distribution of the circuit delay and complicates the anal-
ysis by creating additional correlations between path delays.
We explicitly state the assumed independence of gate delay in a
number of places and also note here that the entire formulation
presented in this paper is based on this assumption. The con-
tribution of this paper is, therefore, that it provides an efficient
solution to the problem of path delay correlation due to path re-
convergence. However, the methods presented in this paper can
also be extended to timing graphs with correlated edge delays.
Note also that our method does not restrict the shape of the CDF
of edge delays to some specific shape, such as a Gaussian dis-
tribution. The shape of the edge delay CDFs are unrestricted as
long as they satisfy Property 1 and they are valid probability dis-
tribution functions.

To simplify the implementation of statistical STA, it is often
more convenient to approximate continuous probability density
and cumulative distribution functions with discrete functions. A
discrete pdf, corresponding to continuous pdf , can be rep-
resented by a sequence of pairs ( ), where and

. For computational efficiency, we use
discrete pdfs and CDFs in the final implementation of our pro-
posed statistical timing analysis approach. However, for gener-
ality, we will formulate the statistical timing analysis task using
continuous functions.

We now consider the sample spaceof a probabilistic timing
graph , consisting of all deterministic timing graphs with
edge delays corresponding to the nonzero values of their proba-
bility distribution functions. The probability that a timing graph

in has edges with delay between and is

(1)

where is the joint probability density func-
tion of edge delays. Since, as previously stated, we assume
that all edge delays are independent random variables, this joint
probability function is simply the product of the individual prob-
ability density functions of edge delaysand we can rewrite (1)
as follows [35]:

(2)

where is the delay probability density function of edge.
Given a deterministic timing graph in , we can compute

its delay , using any of the currently available means,
such as traditional static timing analysis. The delay is,
therefore, defined on the sample spaceand is a random vari-
able. The objective of statistical timing analysis is to find the
CDF of , which is defined as follows.

Definition 3: The cumulative probability distribution func-
tion of the delay of a probabilistic timing graph with indepen-
dent edge delays is expressed as

(3)
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Fig. 2. Graph representation of gates with correlated pin-to-pin delays and interconnect delay variations.

where is the probability density function of the delay
of edge and the integration is performed over the volume of
sample space where the delay of timing graph is
less than .

The probability density function can be computed by simple
differentiation of the CDF. The cumulative probability distri-
bution function of the graph delay can be used in a number of
ways. First, given a particular performance constraint, the prob-
ability of obtaining a fabricated die that meets or exceeds this
constraint can be determined, as illustrated in Fig. 1. The prob-
ability of obtaining a die that meets the specified performance
is also referred to as theperformance yield. A design, for in-
stance, can be improved until its performance yield meets a suf-
ficient level. The graph delay CDF is also useful to determine
the number of expected dies in a certain performance range, al-
lowing prediction of the performance “binning” of the design.
Conversely, given a required performance yield, the expected
performance can be obtained. This allows a designer to deter-
mine, for instance, the minimum expected performance of 95%
of the fabricated dies.

If we use discrete edge delay pdfs, we can compute the graph
delay pdf by enumerating the entire sample space consisting
of all combinations of the nonzero delay probabilities of all
edges. For each enumerated timing graph in the sample
space, we can then compute the graph delay and its probability
of occurrence. By summing the probability of all samples with
same delay, we then obtain the probability density function of
the graph delay, shown in Fig. 1(b). Of course, this method is
exponential in its run time complexity with circuit size and is
not useful as a practical solution. However, its formulation is
useful as a formal definition and for understanding the under-
lying problem that needs to be solved.

Finally, we note that each edge in the timing graph is associ-
ated with a so-calledpin-to-pindelay from an input node of a
gate to the output node of that gate. An-input gate is, therefore,
represented with edges in the timing graph. Since all edge
delays are independent, this assumes that all pin-to-pin delays
of a gate are independent. In practice, the pin-to-pin delays of
a gate will be strongly correlated since they are determined by
common transistors in the gate structure. To address this correla-
tion, the graph representation of a gate can be extended to model
this dependence using the representation as shown in Fig. 2(a).
Each gate is represented with a set of fanin edgesin series

(a)

(b)

Fig. 3. Series and parallel reduction.

with a single fanout edge . The total pin-to-pin delay of
the gate is then distributed among edgesand , where
the delays of represent the uncorrelated component of the
pin-to-pin delays and represents the correlated component
of the pin-to-pin delay. Note that this model can be extended
to include interconnect delay, as shown in Fig. 2(b), with addi-
tional edges representing the delay from the gate output node to
the sink nodes of the interconnect.

III. PROBABILISTIC TIMING GRAPH TRANSFORMS

Before we discuss exact and bounded methods for com-
puting the CDF of the graph delay, we briefly discuss three
basic transformations for probabilistic timing graphs with
independent edge delays.

A. Series Reduction

Fig. 3(a) shows a probabilistic timing graph consisting of two
series connected edges with delays described by pdfand

. The total delay of the timing graph is the sum of its edge
delays and by applying (3), the CDF of the graph delay
is

(4)

The pdf of the sum of the two independent edge delays is the
convolution of its edge delay pdfs, as is well known from stan-
dard probability theory [35], and the two edges can be replaced
with a single edge having the following probability density func-
tion:

(5)
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Fig. 4. Subgraph substitution with a single edge.

The probability distribution function of the graph delay is ob-
tained through integration of (5).

B. Parallel Reduction

Fig. 3(b) shows a timing graph consisting of two parallel
edges with delays described by pdfs and and CDFs

and . Since the delays of both edges are statistically
independent, the probability is the product of the
probabilities that each edge delay is less than or equal to:

(6)

Through differentiation, we obtain the probability density func-
tion of the graph delay as follows:

(7)

Therefore, the graph in Fig. 3(b) can be replaced with a single
edge having the pdf .

C. Subgraph Substitution

Let graph have subgraph , as shown in Fig. 4, such
that:

1) and complementary graph have
only 2 common nodes and .

2) Node ( ) has only incoming (outgoing) edges be-
longing to subgraph and outgoing (incoming) edges
belonging to subgraph .

Let the subgraph have a graph delay pdf . We can
substitute subgraph in graph with a single edge ( )
having the same delay pdf . This results in a simpler
timing graph with the same graph delay. This can be proven
by rearranging the integration in (3) for the initial graph delay
CDF and separating the integration over the random variables
corresponding to the delays of subgraph .

IV. STATISTICAL TIMING ANALYSIS

The initial formulation presented in the Section II relies on
the enumeration of all possible edge delays with non- zero prob-
ability and is difficult to use for an efficient solution to the
problem. Deterministic timing analysis has traditionally used an
approach where arrival times are propagated through the circuit
in topological order. We, therefore, derive such a propagation
based approach for computing the graph delay pdf, in a manner
that is consistent with the definition of in Section II. We
first define the probability distribution of the latest arrival time,

at node as follows.
Definition 4: The latest arrival time at node of is

a random variable where its CDF is the probability that a
deterministic timing graph in the sample space has
an arrival time .

In the subsequent discussion, we will refer to the latest ar-
rival time as simplythearrival time. We also note that a similar
derivation can be performed for theearliestarrival time. Also,
the arrival time for the source node is a deterministic value
equal to 0. We now make the following useful definition.

Definition 5: A fanin subgraph of timing graph at
node is a timing graph consisting of all edges and nodes of

that lie on a path from the source nodeof to node ,
and where node is set as the sink node of .

The arrival time at node is equivalent to the graph delay
of the fanin subgraph . The objective of statistical timing
analysis is to compute the arrival time CDF of node, based
on the arrival time CDFs of its fanin nodes. We can then use
such a method to propagate arrival times through the circuit in
topological fashion. To compute the arrival time at node, we
must consider if the arrival times of its fanin nodesare in-
dependent random variables. We, therefore, state the following
theorem:

Theorem 1: For a timing graph with independent edge
delays, two arrival times and at nodes and are
independent if the fanin subgraphs and at nodes
and are disjoint (meaning they have no common edges) or if
any common edges have a deterministic delay.

The validity of Theorem 1 is intuitively obvious from the fact
that the sample space of and are disjoint and hence the
arrival times and are independent. For completeness,
a proof is given below.

Proof: The arrival time is equal to the delay of its
fanin subgraph and arrival time is equal to the
delay of its fanin subgraph . The joint probability that

is less than and is less than , assuming
independence of the edge delays, can be written as (8), found
at the bottom of the page, where is the delay of gate in
subgraph and is the delay of gate in subgraph .
Using the fact that all belong to the domain of and

(8)
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Fig. 5. Arrival time computation for noden. Dotted edges in (a) belong to
graphG only and solid edges belong toG .

all belong to the domain of we can rewrite (8) as
follows:

(9)

From which follows:

(10)

From standard probability theory, it follows that the fanin sub-
graphs delays and are independent and, cor-
respondingly, the arrival times and are independent.

We first consider the case where the arrival times of fanin
nodes of node are independent.

A. Independent Arrival Time Propagation

Without loss of generality, we consider a nodewith two
fanin nodes and . We then consider fanin subgraph

at node , as shown in Fig. 5(a). Since the arrival times
at node and at node are assumed to be inde-

pendent, their fanin subgraphs and are disjoint, and
using the subgraph substitution from Section III, each can be re-
placed with a single edge and , as shown in Fig. 5(b).
The edge delay CDF of and are set equal to the graph
delay CDFs of and , which is equal to the arrival time
CDFs and . The resulting graph, as shown in Fig. 5(b),
can be reduced to a single edge by performing series and par-
allel reduction. The obtained edge delay CDF of the final edge
between and is equal to the graph delay CDF of subgraph

, which, in turn, is equal to the arrival time CDF at node
.
Given independent arrival time CDFs at fanin nodes ,

we, therefore, compute the arrival time CDF at node as
follows.

1) Convolve the arrival time CDF at each node with
the edge delay CDF of the edge connecting with .

2) Compute the arrival time CDF at node by applying
(6) on the convolved CDFs.

As also noted in [24], the computation of the arrival time pdfs
in statistical timing analysis is, therefore, very similar to arrival
time propagation in deterministic timing analysis, where propa-
gation of deterministic arrival times is replaced with convolution
and selection of the latest arrival time is replaced with parallel
reduction using (6). The run time complexity of this method is
linear with the size of the circuit. Unfortunately, this procedure
is only valid if the arrival times are independent. For this to be
true for all nodes, the graph will have the form of a tree-like
structure, with the root of the tree as the sink node of the graph
and all leaf nodes of the tree connected to the source node
with an edge with deterministic delay. In practice, such timing
graphs are rare and we, therefore, now discuss how to compute
arrival times in the presence of dependent arrival times.

B. Dependent Arrival Time Propagation

If the fanin subgraphs of fanin nodes of node
share one or more edges with random delays, the arrival times

will be dependent random variables, even in case that edge
delays are independent. Since application of (6) assumes statis-
tical independence, it cannot be used to compute the maximum
of arrival times . An example of a timing graph with depen-
dent arrival times is shown in Fig. 6(a). To determine for which
portions the subgraphs share edges, we use the following
definition of adependenceset.

Definition 6: Consider a pair of fanin nodes and
of node , with fanin subgraphs and . The intersec-
tion graph consists of edges and nodes shared by and

, excluding the source node . The set of dependence
nodes for the fanin node pair and is the set of nodes

, such that lies on the intersection graph
, and such that has one or more fanout edges that lie on ei-

ther or , but not on both. The set of dependence nodes
for node is the union of the dependence node sets over all pos-
sible pairs of its fanin nodes.

In Fig. 6(a), the intersection graph for the fanin node
pair and of node is shaded and consists of nodes

. The set of dependence nodes for nodeis
, since these nodes are part of the intersection graph

and have a fanout edge that lies on only one of the two fanin
subgraphs of and . Note that is not in the dependence set
of since all its fanout edges belong to the fanin subgraphs
of both and . However, the dependence set of nodeis .
Also nodes and have empty dependence sets since their
intersection graphs are empty. Conceptually, dependence nodes
mark the last points in the graph where the fanin subgraphs of
two fanin nodes are shared and give rise to correlation between
their arrival times. The concept of dependence nodes is similar
to that used in probabilistic simulation [33]. We refer to a
node in as aconvergencenode if it has a nonempty
dependence set. We also define the global set of dependence
nodes as the union of the dependence sets over all nodes
and refer to a node as a dependence node if it is an element in
this list.
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Fig. 6. Dependent arrival time computation for noden. In (a), the intersection
graph ofn is shaded and dependence nodes ofn are black.

In order to compute the graph delay of a graph with one
or more dependence nodes, we sort the list of global depen-
dence nodes in topological order. We then consider the first node

in the ordered set . In Fig. 6(a), , and
. By selecting the first node in the list, we ensure

that the fanin subgraph at node does not contain any
dependence nodes. It follows that we can replace with a
single edge connecting source node and , where the
edge delay CDF of is equal to the arrival time CDF of

at , as shown in Fig. 6(b). Similarly, it is clear that the
arrival time CDF of at can be computed using inde-
pendent arrival time propagation, as explained in the previous
Section.

For simplicity, we assume that the edge delay pdf is
discrete and is specified by a set ofdelay, probability pairs
( ). According to our construction, random variable
does not depend on the edge delays of other edges in the
transformed graph . Then, using conditional probabilities
[35], the arrival time pdf at a convergence node of

, can be computed as follows: ,
where is the arrival time pdf at node when the delay

of is equal to and . We, therefore,
compute the arrival time pdf by performing arrival time

computations, each weighted by the conditional probability.
Since during the computation of , edge has a determin-
istic delay it is no longer a random variable and does not create
dependence between arrival times. Node is, therefore, no
longer a dependence node and we can propagate arrival times
using independent arrival time propagation until we encounter
the next global dependence node, . Here, we repeat the
same process, enumerating the arrival time pdf at using
conditional probabilities and eliminating it as a dependence
node.

Below is the procedure for dependent arrival time propaga-
tion:

1. Propagate arrival time pdfs in the cir-
cuit until the first dependence node is
encountered.
2. Enumerate the pairs ( ) of the ar-
rival time pdf at and for each pair
propagate with conditional probability

.
3. Propagate , using independent arrival
time propagation until the next dependence
node is encountered and repeat step 2.
4. Compute the final arrival time pdf at
all graph nodes by summing their condi-
tional arrival time pdfs weighted by the
product of their conditional probabili-
ties.

Note that, although we refer to emuneration ofdependence
nodes, the enumeration is more precisely ofgraphinstances ac-
cording to the discretization of the arrival time at the depen-
dence node. Also, above procedure computes the arrival time
for all nodes in the timing graph, including the sink node, and
requires enumeration of all dependence nodes. However, if the
arrival time is needed for only a subset of nodes in the graph,
it may not be necessary to enumerate all dependence nodes in
the graph since only the dependence nodes associated with this
subset of nodes needs to be enumerated. Of course, these de-
pendence nodes may again have dependence nodes themselves
that will need to be enumerated as well, leading to a recursive
formulation.

We will now show that the set of nodes at which arrival
times are enumerated is the sufficient and necessary set for
exact computation of the graph delay CDF. First, from the
construction of the exact statistical timing analysis algorithm
in the above description, it is clear that enumeration of all
dependence nodes is a sufficient condition. The enumeration of
a dependence node eliminates that node as a dependence node
from the timing graph. After enumeration of all dependence
nodes, all arrival times converging at a node are independent in
each enumerated instance of the timing graph. Therefore, the
exact graph delay can be computed using independent arrival
time propagation in each enumerated instance of the timing
graph, showing the sufficiency of enumerating all dependence
nodes.
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Next, we show that enumeration of all dependence nodes is
also a necessary condition, meaning that it is not possible to
enumerate fewer nodes without arrival time dependencies re-
maining in the circuit. Without loss of generality, we consider
convergence node in Fig. 6(a) with fanin nodes and and
with dependence nodes . We now show how, based on the
properties of dependence nodes given in Definition 6, enumer-
ation of node is necessary. Since we only use properties spec-
ified in Definition 6, the same arguments also translate to node

and all other dependence nodes in a circuit. We first observe
that there exists a path from nodeto both node and since,
based on Definition 6, nodelies on the intersection of the fanin
subgraphs of nodesand . Also, based on Definition 6, at least
one fanout edge of does not lie on both fanin subgraphs, but
only on one of the fanin subgraphs. In Fig. 6(a) this is edge ()
which lies on the fanin subgraph ofbut not the fanin subgraph
of . From this, it follows that there exists at least one pair of
paths ( ) from node to nodes and , such that this pair of
paths is disjoint, meaning they do not share any common edges.
In Fig. 6(a), this pair of paths is and .

We now consider subgraph of timing graph , con-
sisting of all edges and nodes on pathsand and on fanin
subgraph of , as shown in Fig. 6(d). We assume that nodes
and have arrival times and , respectively. We now show
that enumeration of nodeis a necessary condition to ensure
that arrival times and are independent. First, we note that
enumeration of any nodes in the fanin subgraph of(consisting
of nodes , , and ) does not eliminate the dependence between

and , since the fanin edge ( ) of node will still con-
tribute a common, random delay to both and . Second,
enumeration of any nodes that lie only on either pathor
(such as nodesand ) also does not eliminate the dependence
between and since these nodes affect only one of the two
paths. Therefore, since enumeration of any node other that node

in subgraph does not eliminate the dependence ofand
, it follows that enumeration of nodeis a necessary condi-

tion for eliminating this dependence.
In the original timing graph , the arrival times propagated

along and combine with arrival times from other paths.
However, it is clear that the dependence between arrival times
propagated along and is sufficient to create dependence
between the arrival times at nodesand in , even after the
arrival times along and combine with other arrival times.
From this it follows that enumeration of dependence nodeis a
necessary condition for eliminating the dependence between the
arrival times at node and in . Since node was chosen
as a generic dependence node and we only relied on its proper-
ties as defined by Definition 6, the same arguments apply to all
dependence nodes and it follows that enumeration of all depen-
dence nodes is a necessary condition for exact statistical timing
analysis using independent arrival time propagation.

The number of dependence nodes is typically significantly
less then the number of edges in . Dependent arrival time
propagation, therefore, has a lower complexity than enumera-
tion of the entire sample space. Nevertheless, the run time re-
mains exponentially with the number of dependence nodes due
to the recursive formulation of the method. Dependent arrival
time propagation is, therefore, useful only for very small timing

Fig. 7. CDF Q(t) is a conservative bound on CDFP (t). Probability
corresponding to a particular delay is underestimated and delay corresponding
to a particular probability is overestimated.

graphs or timing graphs with mostly tree-like structures. In the
next section, we, therefore, show how to efficiently compute
bounds on the arrival time CDFs and in Section VI, we discuss
how these bounds are improved by enumeration of a small set
of dependence nodes.

V. STATISTICAL BOUNDS

We now propose an efficient method for computing lower and
upper bounds of the exact arrival time CDF of for timing
graphs with independent edge delays. We are interested in both
upper and lower bounds since this allows us to determine the
quality of the bounds by comparing their difference. In general,
several types of statistical bounds on a CDF have been defined.
In this paper, we use the so-called Stochastic bound [35], which
is defined as follows.

Definition 7: The arrival time CDF is an upper bound
of the arrival time CDF if and only if for all , .

A similar definition can be formulated for lower bounds. The
meaning of the defined bound is shown in Fig. 7 with two ar-
rival time CDFs and , where is an upper bound
on . Note that the upper bound is itself a valid CDF
and that for all time points, the probability defined by is
less than that of . Therefore, not only the expected value
of , but also other characteristics, such as the 95% confi-
dence point (performance yield), are bounded by on .
By using CDF instead of , we will, therefore, over-
estimate the delay corresponding to a particular probability or
performance yield, resulting in a conservative analysis for late
arrival times, as shown in Fig. 7. Similarly, for a particular re-
quired delay, the probability that a die will meet this delay con-
straint will be underestimated by using instead of .
Note, therefore, that is an upper bound on from the
perspective of arrival times but is a lower bound on from
the perspective of performance yield. In this paper, we consider
bounds from the arrival time perspective and we, therefore, refer
to as anupperbound on .

We can compute upper and lower bounds for both thelatest
arrival time, corresponding to slow paths in the circuit, as well
as for theearliestarrival times, corresponding to fast paths in the
circuit. Fast paths are important for detecting hold violations and
race conditions in a circuit. To obtain a conservative analysis, an
upperbound must be used for thelatestarrival times and alower
bound must be used for theearliestarrival times. For clarity, we
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focus in this paper on late arrival times, although the analysis
can be applied to early arrival times as well.

A. Upper Bound Computation

To efficiently compute an upper bound on the exact graph
delay CDF of , we propose the following theorem for random
variables.

Theorem 2: Let , and be independent random variables
that satisfy Property 1. Let , be independent random vari-
ables with CDFs that are identical to the CDF of, and that are
also independent from and . The CDF of random variable

is an upper bound on the CDF of random
variable .

Proof: The probability distribution function of random
variables and are

(11)

(12)

where , , are the probability density functions of
, and , respectively. Multiplying (11) by the integral of prob-

ability density function , rearranging some of
the terms and renaming integration variables, gives us:

(13)
Integrals from formulae (12) and (13) for probability
distributions and have the same integration
functions and

and differ only in the
names of the variables. Note that random variableis inde-
pendent from random variables, and . We now split the
4D domain of both functions into two subdomains:
and . Probability distributions and can be
represented as the sum of two terms corresponding to the
contribution of each subdomain:

(14)

(15)

Fig. 8. Bounded graph transformation through node splitting.

For subdomain we define a one to one mapping (bijec-
tion) so that ( ) corresponds to ( ) i.e.,
and . In this subdomain and therefore, inequality

follows from inequality
. Therefore, the region of integra-

tion for computing includes the integration region for
computing and hence because in
both cases we integrate the same function .

For subdomain we define a one to one mapping (bijec-
tion) so that ( ) corresponds to ( ) i.e.,
and . Similar to the above consideration,

follows from
in this subdomain and the region of inte-

gration for computing includes the region of integration
for computing . Therefore, .

Combining inequalities for and from each sub-
domain, we obtain the inequality for the whole
sample space, which proves the theorem.

We can graphically illustrate Theorem 2 as follows. Consider
the simple graph shown in Fig. 8(a) with delay equal to

, where is the delay
of edge . Fig. 8(b) shows the timing graph where edge
is split into edges and , each with the same delay CDFs
as . The graph delay of is

. From Theorem 2, it follows that has a graph
delay CDF that is an upper bound on graph delay CDF of the
graph . In fact, it is clear that the CDF of arrival times at all
nodes in are upper bounds on the CDF of arrival times of
corresponding nodes in and hence we refer graph as
anupper boundon graph . In general, can have a more
complex structure with additional fanin and fanout edges at node

, etc. It can be shown that for a general timing graph ,
splitting an edge into multiple edges, as illustrated in Fig. 8,
results in a graph that is an upper bound on , meaning
that the arrival time CDFs of all nodes in are an upper
bound on the arrival time CDFs of the corresponding nodes in

.
Based on Theorem 2, we now pose the following useful corol-

lary.
Corrolary 1: Given a graph with independent edge de-

lays and one or more convergence nodes. If arrival times are
computed for all nodes using the procedure of independent ar-
rival time propagation, the computed arrival time CDFs will be
an upper bound on the true arrival time CDFs at those nodes.
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Fig. 9. Lower bound computation for two dependent arrival times.

The validity of Corrolary 1 can be seen by considering the
timing graph with dependence node, as illustrated in
Fig. 6(a). Following the procedure for dependent arrival time
propagation, we replace subgraph with a single edge ,
as shown in Fig. 6(b), where the edge delay CDF ofis equal
to the arrival time CDF at . We now create a graph , as
shown in Fig. 6(c), which bounds by splitting edge , such
that is no longer a dependence node in . By repeating
this process for all dependence nodes, we obtain a timing graph

that bounds the original timing graph and which has
no dependence nodes. We can compute the exact arrival time
CDF of by performing independent arrival time propaga-
tion. Finally, it is easy to observe that we need not explicitly
replace subgraph with edge and subsequently split it.
Instead, we will compute identical arrival times to those of
by simply performing independent arrival time propagation on
graph , as stated in Corrolary 1.

This leads to the useful observation that an upper bound on
the arrival times of a timing graph is obtained by ignoring the
dependencies of arrival times and simply applying the procedure
for independent arrival time computation, which has a linear run
time complexity with circuit size.

B. Lower Bound Computation

We now discuss the computation of a lower bound on the
exact arrival time CDFs. Given the CDFs and of two
dependentrandom variables and and the random variable

, it is clear that the CDF , as
shown in Fig. 9, is a lower bound on the CDF of. This can
be seen by considering the graph in Fig. 3(b), consisting of two
parallel edges with delays and and edge delay CDFs
and , respectively. The probability that the graph delay

exceeds a certain delayis greater than or equal to
the probability that either edge delay exceeds, regardless of the
correlation of the and . In other words,

, and . Since ,
, and , it follows

that and , from which it follows that
is a lower bound on the CDF of.

The lower bound computation is, therefore, identical to in-
dependent arrival time propagation, except that at convergence
nodes, the CDF of the propagated arrival time is computed by
taking the minimum of the incoming arrival time CDFs for each
time point. The lower bound computation, therefore, has a linear
run time complexity with circuit size. For nodes with empty de-
pendence sets, such as nodesand in Fig. 6(a), the regular

statistical maximum using (6) is taken, since their arrival times
are independent.

It is important to note that the proposed bounds are not re-
stricted to Gaussian gate delay and arrival time pdfs, but are
valid for pdfs of any shape. Also, given gates withboundedgate
delay pdfs, the proposed arrival time bounds have the property
that their maximum and minimum values with nonzero prob-
ability match that of the exact graph delay pdf. The proposed
bounds, therefore, have the useful property that the interval over
which arrival times can occur matches that of the exact graph
delay.

VI. GRAPH REDUCTION AND SELECTIVE ENUMERATION

Our overall approach to statistical timing analysis consists of
the following steps.

1) We perform exact graph reduction to decrease the
problem size without altering the delay of the graph.

2) We compute upper and lower bounds using the methods
explained in Section V.

3) We improve the computed bounds using enumeration of
a select set of dependence nodes.

We now explain the exact graph reduction and the selective enu-
meration below in more detail.

A. Exact Graph Reduction

In order to reduce the size of the timing graph, we prune ar-
rival times by considering their relative alignment at conver-
gence nodes. We consider two arrival time CDFs,and
that converge at node, as shown in Fig. 10(a). If the min-
imum arrival time with a nonzero probability of , is
greater than the maximum arrival time with a nonzero proba-
bility, of , as shown in Fig. 10(b), it is clear that in
the entire sample space, will be greater than . We can,
therefore, prune arrival time from the timing graph without
changing its timing behavior. Note that, using this approach, en-
tire subgraphs can at times be removed from the timing graph.

Also, when two arrival times and partially overlap, as
shown in Fig. 10(c), the CDF of can be truncated at .
Based on (6), values of are required only for since
for , . Hence the CDF of needs to be
computed only for the range to . Based on this, we
truncate the arrival time CDF at fanin nodes of by propa-
gating the truncation time across gates in reverse topo-
logical order, at each gate subtracting the maximum gate delay

with nonzero probability. The truncation time at
node is, therefore, as follows: , where

is the sum of over all gates between node and .
An arrival time at node always results in an
arrival at node , such that and can be trun-
cated. Furthermore, we also truncate the CDFs of the gate delay
for gates in the fanin cone of . Given a fanin gate with
maximum delay , as shown in Fig. 10(d), the gate delay
CDF can be truncated at , where

. Arrival time at is the arrival time when
all fanin gates of have their maximum delay . Hence, it
follows that gate delays less than will
always result in arrival times at that are less than . The
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Fig. 10. Pruning of arrival times by considering their relative alignment.

delay CDF of gate is, therefore, pruned at thereby
reducing the computational complexity of arrival time compu-
tation.

In addition to pruning, we also utilize the series and parallel
graph transforms discussed in Section III to reduce the size of
the timing graph. The pruning method and the series/parallel re-
duction are executed in a loop, until no further improvement is
made. Note that while the series transform and pruning method
reduce the graph size and the computational complexity, the par-
allel transform also resolves arrival time dependencies by re-
moving local reconvergences and improves the quality of the
computed bounds. It is, therefore, advantageous to reduce the
graph size not only to improve the run time of the bound com-
putation, but also to improve the quality of the bounds.

B. Selective Enumeration

In order to improve the quality of the bounds described in
Section V, we combine the bound computation with enumera-
tion of the sample space of the arrival time at a small set of de-
pendence nodes. Enumeration of dependence nodes improves
the computed bounds in two ways. First, the enumeration parti-
tions the sample spaceand thereby reduces the dependencies
of arrival time CDFs. Second, when all dependence nodes of a
particular convergence node are enumerated, the arrival times at
this convergence node become independent and the lower bound
can be computed using their statistical maximum according to
(6), instead of the minimum operation used for computing the
lower bound of dependent arrival times. In this case, the upper
and lower bounds at the dependence node become equal to each
other. Selective enumeration, therefore, has the desirable prop-
erty that as the number of enumerated dependence nodes in-
creases, the quality of the bounds increases monotonically. Also,
when all dependence nodes are enumerated, the lower and upper
bounds will become equal to the exact arrival time CDF.

(a)

(b)

Fig. 11. Expected values of bounds and exact arrival time at noden as a
function of the shift between expected values ofA andA .

Our objective is to obtain a maximum improvement in the
bounds through enumeration of a minimum number of depen-
dence nodes. We, therefore, need to select those dependence
nodes that most strongly impact the quality of the bounds at the
sink node. For simplicity, we measure the difference between
the upper and lower bounds as the difference of their expected
values and refer to this measure as thebound difference. To illus-
trate the factors that influence the effectiveness of enumerating a
particular dependence node, we first consider the circuit shown
Fig. 11(a) with two correlated arrival times and that con-
verge at node . We computed the upper and lower bounds as



1254 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

Fig. 12. Selective enumeration algorithm.

well as the exact arrival time at node, while shifting the align-
ment of the CDF of relative to the CDF of , by varying
the delay of gate . Fig. 11(b) shows the expected value of the
upper and lower bounds and the exact arrival time at node,
plotted against the difference of the expected value ofand

. As the shift between and increases, the two bounds
rapidly converge to the true arrival time. This is caused by the
fact that if one arrival time CDF lies significantly after the other,
the later arrival time CDF dominates the result and the depen-
dence between the two arrival times has little impact. In the ex-
treme case, when the minimum time point of the later arrival
time CDF falls after the maximum time point of the earlier ar-
rival time CDF, as shown in Fig. 10(b), the later arrival time
propagates unaltered and the computed bound matches exactly
with the true arrival time distribution.

It is also possible that, two dependent arrival times give rise to
a large bound difference at a node, but this bound difference
does not propagate to the sink node. This occurs when along the
propagation path from to the sink node , the arrival time
bounds combine with other arrival time bounds that are aligned
significantly later and that dominate. In this case, the sink node

is shielded from node and enumeration of its dependence
nodes has little impact on the bound difference at. Therefore,
enumeration of a dependence node is effective only if its arrival
time pdfs align at one or more convergence nodes and if the sink
node is not shielded from the arrival times at these convergence
nodes.

Finding the minimum set of dependence nodes to obtain a
required improvement in the bound difference is clearly an in-
tractable problem. We, therefore, apply a heuristic which is it-
erative in nature and where the number of enumerated nodes is
increased by one in each iteration. We first compute anenumer-
ation merit for each dependence node, which is a measure
of the expected improvement in the bound difference by enu-
merating , as discussed in Section VI-C. In each iteration of
the algorithm, dependence nodes are added to the set of enu-
merated nodes in decreasing order of their enumeration merit.
If in a particular iteration the bound does not improve signifi-
cantly, the last added dependence node is removed from the set
of enumerated nodes before a new dependence node is added.
The algorithm is shown in pseudocode in Fig. 12. The algorithm
continues until either a required bound difference has been ob-
tained, or until the allowed run time is exceeded.

Fig. 13. Arrival time pdf and partial pdfs for three intervals.

In each iteration of the algorithm, we enumerate the selected
dependence nodes and compute bounds on the CDF of the graph
delay. For each enumerated dependence node, we consider
each possible arrival time valueand compute bounds on the
graph delay weighted by the conditional probabilitythat the
arrival time has a value . This approach can be generalized
such that, instead of considering each individual valuein the
discrete pdf of an arrival time, we split the pdf into severalpar-
tial pdfs , each partial pdf consisting of delay values in
an interval [ ], as shown in Fig. 13. We then compute
the upper bound and lower bound on the
graph delay using the method discussed in Section V, where the
arrival time pdf at node is replaced with one of the partial
pdfs . Before propagating each partial pdf, we first scale it
to have an area of 1, to ensure that it is a valid pdf. Each case
corresponds an arrival time at in the interval [ ] and
has a probability of occurrence, equal to the area of .
We, therefore, again compute the final upper bound
on the pdf of the graph delay using conditional probabilities, as
follows:

(16)

Partial enumeration of arrival times requires fewer bound
computations than full enumeration, and, therefore, reduces
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Fig. 14. Computation of partial pdfs and intervals.

the computational effort. The number of intervals used for enu-
meration, therefore, provides a trade-off between the number
of nodes that can be enumerated and the granularity of their
enumeration. In practice, it was found that the bound reduction
was most efficient using partial enumeration with two intervals.
This allows a much larger number of dependence nodes to be
enumerated with reasonable run time and results in a greater
reduction of the bound difference than when fewer dependence
nodes are enumerated more finely.

C. Merit Computation

We employ a heuristic method to compute the enumeration
merit for a dependence node, representing the expected im-
provement of the bound difference from enumeration of that
node. For simplicity, we limit our discussion to the enumeration
merit for the upper bound, although similar considerations
apply to the lower bound. At the sink node, the pdf of the
computed upper bound is skewed to the right (corresponding to
higher arrival time values) relative to the pdf of the exact arrival
time. Hence, improvement of the bound through selective
enumeration results in a shift of the bound pdf to the left
(corresponding to lower arrival time values) so that it matches
more closely with the exact arrival time pdf. We, therefore, use
the expected shift of the pdf as an indication of the effectiveness
of enumerating a dependence node.

For each dependence node, arrival times with nonzero
probability fall in a finite window [ ]. We consider two
intervals in this window: a left interval and
right interval , where both and
are equal to the median of the arrival time pdf, as shown in
Fig. 14(a). The integral of the arrival time pdf over each interval
is equal to 0.5 and hence each interval represents 50% of all pos-

sible arrival times at dependence node, over the fabricated
die.

We can again consider partial enumeration, where partial pdfs
and , corresponding to the left and right inter-

vals, are propagated to the sink node and the final arrival time
pdf at the sink node is computed as their weighted sum. How-
ever, instead of propagating partial pdfs, we propagate only the
start and end points of intervals and , using conven-
tional timing analysis, to obtain corresponding intervals

and at the sink node , as
shown in Fig. 14(b). During interval propagation, we compute
a left interval and a right interval for a node as fol-
lows.

• Given a left interval that is propagated
through a gate with minimum gate delay and max-
imum gate delay , the left interval at the output of the
gate is . The right in-
terval is computed likewise.

• Given several left intervals
, that converge at a node, the com-

bined left interval at that node is [
]. The right in-

terval is computed likewise.
For nodes that do not fall in the fanout cone of dependence
node , initial left and right intervals are taken to be equal to
the total interval at that node: . Note
that the computational effort of propagating the timing intervals
from a dependence node to the sink node is equivalent to that of
standard static timing analysis.

The computed interval at the sink node indicates
the earliest and latest possible arrival times at the sink node,
resulting from an arrival time at the dependence nodethat
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Fig. 15. Left and right arrival time intervals and bound pdfs.

falls in the interval . Also, the two intervals and
at the sink node will overlap, meaning that

due to the uncertainty of gate delays and the merging of inter-
vals at convergence nodes. Since the probability of an arrival
time occurring in either interval or at node is 0.5,
the probability of an arrival time occurring in either interval
and at the sink node will be greater than or equal to 0.5, due
to the overlap of the intervals, as shown in Fig. 14(b). Hence,
after enumeration of dependence node, the area of the arrival
time pdf over either interval will be greater or equal to 0.5, as
shown in Fig. 14(c). However, due to the inherent error in bound
computation, the arrival time pdf at the sink node without enu-
meration can be significantly skewed to the right, as shown in
Fig. 14(d). In this case, the area under the left interval can be
less than 0.5. Since after enumeration ofthe area under the
left interval will be equal to or greater than 0.5, the amount by
which the area is less than 0.5 before enumeration is a good indi-
cator of the expected shift of the arrival time pdf resulting from
enumeration. The enumeration merit of dependence nodeis,
therefore, computed as follows:

if
otherwise

(17)

where is the area of the arrival time pdf at the sink node over
the left interval . Note that the enumeration
merit of a dependence node forlower bound computation can
be computed similarly by observing the amount by which the
arrival time pdf at the sink node over the right interval is less
than 0.5.

A dependence node will have a high enumeration merit for
upper bound computation if its left and right intervals at the
sink node do not overlap significantly and if the pdf at the sink
node is skewed toward the right interval, as shown in Fig. 15(a).
This occurs when the arrival times of the dependence node align
at a convergence node and when the convergence node is not
shielded from the sink node. On the other hand, if the arrival
times do not align at a convergence node, the pdf at the conver-
gence node has no significant skew relative to the intervals, as
shown in Fig. 15(b), and the computed enumeration merit will
be small or zero. Also, if the arrival time pdf at a convergence
node is shielded from the sink node, the left and right intervals at
the sink node will be largely overlapping, as shown in Fig. 15(c),
thereby also resulting in a low or zero enumeration merit.

Each dependence node requires a separate propagation of left
and right intervals. However, for implementation efficiency, we
propagate intervals for all dependence nodes simultaneously.
Furthermore, since the computational complexity of computing
intervals for all dependence nodes grows quadratically with the
size of the circuit, the list of propagated left and right intervals

Fig. 16. Comparison of number of matching nodes between exact and heuristic
rankings of dependence nodes.

is pruned at each node in the graph and only the smallestin-
tervals are propagated. This ensures linear computational com-
plexity of the merit computation with circuit size. In our exper-
iments was set to 20 since the number of enumerated nodes
was less than this in all cases. Note that different enumeration
nodes are selected for the lower and upper bounds and that each
bound is computed separately. Also, the accuracy of the enumer-
ation merit can be improved by considering several intervals, al-
though two intervals was found to provide good accuracy in our
test circuits.

We verified the effectiveness of the proposed enumeration
merit computation by comparing the ranking of dependence
nodes based on their enumeration merit with their ranking based
on the actual improvement of the bound when they were enu-
merated. We compared the top 10% of nodes using the exact
ranking with the top nodes based on the heuristic ranking,
where was varied from 1 to 10%. The percentage of nodes
in the heuristic ranking that matched with the top 10% in the
exact ranking is shown in Fig. 16 for each value of. The two
selected circuits represent those with maximum and minimum
improvement in bound difference using selective enumeration.
The results demonstrate that in both cases, the heuristic ranking
of nodes matches well with the exact ranking.

VII. RESULTS

The proposed statistical timing analysis method, including
the exact graph reduction, computation of upper and lower
arrival time bounds and the method for selective enumeration,
was implemented. Also, exact statistical timing analysis
through edge enumeration, as described in Section II, and
through dependent arrival time propagation, as described in
Section IV, was implemented. This was used to confirm the
correctness of the computed bounds for circuits where it was
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TABLE I
CIRCUIT STATISTICS AND EXACT REDUCTION IMPROVEMENT

TABLE II
RESULTS OFBOUND COMPUTATION AND SELECTIVE ENUMERATION

possible to compute the exact graph delay CDF. For larger
circuits, Monte Carlo simulation with 100 000 samples was
used. The statistical timing analysis was tested on the ISCAS
benchmark circuits [34]. For each gate in the circuit, a delay
distribution was specified with a standard deviation ranging
from 10% to 15% of the mean of the distribution. A Gaussian
distribution, truncated at the 3 sigma point, was used. This
distribution of gate delay was based on Monte Carlo simulation
for individual gate structures using SPICE simulation. In these
simulations, intra-die gate length variations were applied, as
measured for an industrial 0.13m process technology with
test structures on a number of test chips. However, the proposed
method for statistical timing analysis is not limited to any
particular type of process variation and can also be used with
delay variations resulting from other process factors.

In Table I, we show the circuit characteristics and results of
the exact graph reduction for the benchmark circuits. The table
shows the number of convergence nodes (column 4) and the total

number of dependence nodes (column 5). The average (column
6) and maximum number of dependence nodes (column 7) per
convergence node is also shown. Some circuits have extensive
reconvergence, indicated by their high number of dependence
nodes, making them difficult test cases for statistical timing
analysis. The last two columns of Table I show the effective-
ness of the exact reduction techniques. On average, the number
of edges in the graph is reduced by 40% with a maximum re-
duction of 76%.

Table II shows the results for the bound computation and re-
finement through selective enumeration. The expected value of
the lower bound (column 3) and upper bound (column 4) and
their relative difference (column 5) is shown. Although we only
report the expected value in Table II, the computed bounds are
CDFs and allow the computation of other useful values, such as
confidence points. The statistical upper and lower bounds have a
relatively small difference in their expected value ranging from
2.25% to 10.45%, demonstrating their effectiveness. Also, the
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Fig. 17. Comparison of CDF bounds and Monte Carlo for c880 and c7552.

Monte Carlo results fall between the computed bounds, as ex-
pected.

Table II also shows the bounds after selective enumeration
(columns 6 and 7) and the percentage improvement of their
difference compared to the original bounds (column 8). The
total number of dependence nodes enumerated during the bound
computation is shown in column 9. Excluding the first circuit,
where the selective enumeration obtained bounds that exactly
matched the true graph delay, the improvement of the bounds
using selective enumeration ranged between 22.07 – 86.44%,
with an average of 62.45%. The number of dependence nodes
selected for enumeration was small, ranging from 3 to 13 nodes,
showing the somewhat surprising result that enumerating only a
few carefully chosen nodes can significantly improve the bound
computation.

Three run times are shown in column 10 of Table II: the run
time required for circuit parsing, graph construction and graph
reduction (reduction), the run time for computing the initial
upper and lower bounds (bounds), and the run time for the it-
erative refinement of these bounds through selective enumera-
tion (enumeration). The run time of the selective enumeration
method is found to be modest, not exceeding 145 s for all test
cases. Fig. 17 shows the CDFs for the proposed lower and upper
bound with and without selective refinement as well as the CDF
obtained through Monte Carlo simulation for the circuits c880
and c7552.

We compared the results obtained using the proposed sta-
tistical timing analysis method with traditional deterministic
timing analysis. In Table III, the circuit delay, computed
using the proposed statistical upper bound, is shown at three
confidence points in columns 2–4. The 50% confidence point
corresponds to the median circuit delay, while the 95% and
99% confidence points correspond to the expected delay at 95%
and 99% performance yield. Columns 5–7, show the results
from deterministic timing analysis and its percentage difference

from the statistical timing analysis result. In each of the three
deterministic timing analysis runs, each gate had a delay value
fixed at, respectively, 50, 95, and 99% confidence points of its
delay probability distribution. As can be seen from Table III,
deterministic timing analysis, can be quite conservative for
the higher confidence points, while it is optimistic for the
median delay. The deterministic timing analysis overestimated
the delay of the bounded statistical timing analysis by as
much as 15% in the case of the 99% confidence point and
underestimated the delay by as much as 16% for the 50%
confidence point. Finally, the last two columns of Table III
show the minimum and maximum circuit delay values with
nonzero probability. As noted, these extreme values of the
bound pdf correspond to the delay obtained with deterministic
timing analysis when all gate delays are set at their minimum
and maximum delay values with nonzero probability.

We next investigate the accuracy of approximating contin-
uous gate delay distribution functions with discrete functions.
We performed Monte Carlo simulation using both continuous
and discrete gate delay pdfs, where the discrete pdfs were con-
structed using 8–10 delay/probability pairs. Fig. 18 shows the
circuit delay distribution obtained with the discrete and contin-
uous Monte Carlo simulations for circuit c7552 and shows that
the two distributions are nearly indistinguishable. The error in
the mean value of the circuit delay pdf obtained using discrete
gate delay pdfs was 0.06%. It should also be noted that as arrival
times are propagated in the circuit, the arrival time distributions
increase in their width and number of discretizations. Since the
computational complexity of convolution grows quadratically
with the number of discretizations, the run time of bound com-
putation can be improved significantly by pruning the long tails
of such distributions. The analysis and run time results shown
in this paper were obtained without such pruning. However, the
literature reports a number of works exploring the trade-off be-
tween accuracy and run time using such pruning [28].
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TABLE III
COMPARISON OFBOUNDED STATISTICAL STA WITH DETERMINISTIC STA

Fig. 18. Comparison of circuit delay distribution using continuous and discrete
gate delay distributions.

Fig. 19. Improvement in bound difference as a function of the number of
enumerated dependence nodes.

Finally, we show the obtained improvement in the bound dif-
ference as a function of the number of enumerated dependence
nodes for circuits C880 and C7552 in Fig. 19. The graph demon-
strates that the bound difference decreases monotonically with
the number of enumerated nodes. It also shows that the largest
improvement in the bound difference is obtained from the first
few selected dependence nodes and diminishes as the number
of enumerated nodes increases. This demonstrates that enumer-

ation of a few carefully selected dependence nodes can result in
a significant improvement of the bound difference.

VIII. C ONCLUSION

In this paper, we have proposed an efficient method for com-
puting bounds on the statistical behavior of the circuit delay due
to within-chip process variations. We first presented a general
method for statistical timing analysis as well as exact methods to
reduce the problem size substantially. Since the exact statistical
timing analysis method has exponential run time complexity
with circuit size, we show how statistical bounds on the graph
delay can be computed with linear run time complexity. We
prove the correctness of the upper and lower bounds and demon-
strate on benchmark circuits that the obtained bounds are close
in practice. In order to further reduce the difference between the
bounds, we proposed an iterative refinement technique which
selectively enumerates dependence nodes in the circuit. Using
this technique, the difference in the expected value of the bounds
could be reduced by 62.45% on average, with a modest run time
increase.
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