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Abstract—The growing impact of within-die process variation pessimistic analysis results since it assumes that all devices on
has created the need for statistical timing analysis, where gate de- 3 die have worst-case characteristics, ignoring their inherent
lays are modeled as random variables. Statistical timing analysis statistical variation. The emerging dominance of within-die

has traditionally suffered from exponential run time complexity iati theref : bstacle for det inisti
with circuit size, due to arrival time dependencies created by re- variations, theretore, poses a major obstacle 1or aeterministic

converging paths in the circuit. In this paper, we propose anew ap- STA, giving rise to the need for new statistical timing analysis
proach to statistical timing analysis which uses statistical bounds approaches.

and selective enumeration to refine these bounds. First, we provide  Variations in the delays of a circuit can be broadly classified
a formal definition of the statistical delay of a circuit and derive a  ;4i5 two categoriessnvironmentavariations angrocessvaria-

statistical timing analysis method from this definition. Since this ti Envi tal iati db taintv in th
method for finding the exact statistical delay has exponential run UONS- ENvironmental variations are caused by uncertainty in the

time complexity with circuit size, we also propose a new method €nvironmental conditions during the operation of a chip, such
for computing statistical bounds which has linear run time com- as power supply and temperature variations. Process variations
plexity. We prove the correctness of the proposed bounds. Since are due to uncertainty in the device and interconnect charac-
we provide both a lower and upper bound on the true statistical qigtics, such as effective gate length, doping concentrations,
delay, we can determine the quality of the bounds. If the com- . - .
puted bounds are not sufficiently close to each other, we propose aox'de thickness and ILD t_hlcknegs. A number of m_ethOdS have
heuristic to iteratively improve the bounds using selective enumer- been proposed to determine the impact of such variations on the
ation of the sample space with additional run time. The proposed delay of individual gates and interconnect [13]-[17]. In general,
methods were implemented and tested on benchmark circuits. The these variations can be divided iftetween-dievariations (or
results demonstrate that the proposed bounds have only a small jiar. gie variation) anavithin-die variations (or intra-die vari-
error, which can be further reduced using selective enumeration . o . . L
with modest additional run time. ations). Within-die yar|at|0ns can have a de_termlnlsnc compo-
nent due to topological dependencies of device processing, such

as CMP effects and topologically correlated lithographic distor-
tions [3]—[5]. In some cases, such topological dependencies can
be directly accounted for in the analysis, thereby reducing the
|. INTRODUCTION statistical variation [18], [19], whereas in other cases, such vari-
griiions are treated as random.

In this paper, we propose a formal model and an efficient
ﬂilysis method for statistical STA in the presence of random
t

Index Terms—Probability, process variation, ststistical analysis,
yield prediction.

TATIC timing analysis has become an indispensable p
f performance verification. Traditionally, the variation

in the underlying process parameters have been modeledI§" di it Si bet di iati
static timing analysis (STA) using so-called case analysis. yyffhin-dié process variations. since between-die variations are

this methodology, best-case, nominal, and worst-case Sple%equately captured using case analysis, we focus on within-die
parameters sets'are constr’ucted an(':l the timing analysisv%iations' We also treat all variations as random variations,
performed several times, each time using one case file. Eé'eﬁaningthattopological dependencies are either removed prior

execution of static timing analysis is, therefore, deterministi%? thet agglyss or are trea:eld as ;gndomlt;]/anatr:otﬂs. we aIsc()j
meaning that the analysis uses deterministic delays for t %30| a dressIeQV|ron$ega vanba |onts,a:j (;);Jg ﬁprqptqse
gates and any statistical variation in the underlying silicon fgodetand analysis methods can be extended to such variations.

hidden. While this approach has been successfully used in thg)eterministic timing analysis has seen significant improve-

past to model die-to-die variations in device and interconn nt since It was first infroduced [1], [2]3 incluQing methods
delay, it is not able to accurately model variations within account for effects such as cross-coupling noise [6]-{11] and

single die. With the continual scaling of feature sizes, th%owersupplynmse [12]. The extensive use of deterministic STA

ability to control critical device parameters on a single die hag'" large part due to its linear run time complexity with circuit

become increasingly difficult. Using a worst-case analysis fGF-<: Iln (':tontty:aft-’ Stat'St'Calt_S;rA.tf;]aS. an .ltvln'derlylr;]g \r/]vorst-case
these so-calleavithin-die variations, therefore, leads to veryComp exity that IS exponential with circuit size, which poses a
fundamental obstacle to its practical application. This high run
time complexity is the result of reconverging paths in the cir-
Manuscript received September 24, 2002; revised December 23, 2002. ﬁ]‘i’ét which cguses correlations between their path delays due. to
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layout topology, are more likely to have similar gate delays aftprobabilistic timing graph transformations. In Section 1V, we
fabrication. Due to the correlation between arrival times, mamerive our method for exact statistical timing analysis. In Sec-
statistical STA approaches [20]-[27] have either high run timéisn V, we present the computation of the lower and upper sta-
or they ignore the presence of these correlations. Recentlytjsdical bounds on the true statistical behavior. In Section VI,
number of new methods have been proposed to address thenie-present methods for exact graph reduction and for refine-
creasing significance of process variations. In [28], [29], a novelent of the computed bounds using selective enumeration. In
method using discretized probability distributions is propose8ection VII, we present our results and in Section VIII our con-
However, the run time of the method is exponential and the prduding remarks.
posed approaches to reduce the run time have an unclear impact
on the accuracy. In [30], a method using statistical bounds is
proposed with gate delays restricted to Gaussian distributions.
Since the delay of CMOS gates is nonlinear with respect to itsIn this section, we present a formal model of statistical static
process parameters, the probability distribution of gate delayming analysis. Our goal is to model the impact of gate delay
is typically not Gaussian. Also, Gaussian distributions are uwariations due to within-die process variations on the circuit
bounded, meaning that they predict a finite probability of zemelay. Although at design time, the delay of each gate is un-
delay or very large delay for a gate, which is not physically fe&nown, after a chip has been manufactured, the gate delays are
sible. In [31], a path based statistical delay computation is prixed and have a deterministic value for each particular die. The
sented which has the advantage that it incorporates an accufalgication of a large set of die can be thought of as our proba-
delay model that accounts for signal slope and output loadidglistic experiment, and each fabricated die as an experimental
However, the analysis is performed on one path at a time and thicome. The randomness or variability of the circuit delay is,
number of critical and near-critical paths in a circuit can be vetiierefore, over the fabricated die, and it is the probability distri-
large, especially in highly optimized circuits. In [32], a new cirbution of the circuit delay that statistical timing analysis aims to
cuit optimization method was, therefore, proposed that reducggain.
the number of near critical paths in a circuit, thereby improving At this point, we do not account for temporal variations of
the statistical delay of the circuit. The optimization, howevethe gate delays due to environmental factors, such as power
was performed using deterministic timing analysis. supply fluctuations, temperature dependence and noise, which
In this paper, we propose a hew method for statistical STAre better modeled using case analysis. However, our general
Since the formulation of statistical STA has varied in subtle banalysis approach could be extended to these types of variations
important ways in the literature, we first provide a formal models well. Also, for simplicity of formulation, we ignore the pres-
of statistical STA. We then derive a procedure for statistical STénce of false paths since these are orthogonal to the issues dis-
in a strict manner from this problem formulation. Since the contussed in this paper. We now give the following definition of a
putational complexity of this exact statistical STA method is eximing graph:
ponential with the circuit size, we also present a new methodDefinition 1: A timing graphG is a directed graph having ex-
for computing bounds on the exact probability distribution ddctly one source and one sinknode= {N, E, ns,n;}, where
the circuit delay and proof the correctness of these bounds. THe= {n1,no,...,n;} is a set of nodesty = {ey,ea,...,¢}
computed bounds are themselves probability distribution funs-a set of edges;; € N is the source node, andr € N is
tions that can be used to obtain a conservative estimate of the sink node and each edge F is simply an ordered pair of
circuit delay at any desired confidence point. By restricting otmodese = (n;,n;).
analysis to bounds on the true statistical behavior of the circuit,The nodes in the timing graph correspond to nets in the cir-
we are able to preserve the important characteristic of determintt, and the edges in the graph correspond to connections from
istic STA which has a linear run time complexity with circuitgate inputs to gate outputs. Although circuits generally have
size. Since we provide both a lower and upper bound on thaultiple inputs and outputs, we can trivially transform them to
true statistical delay, we can determine the quality or error of tiggaphs with a single source and sink by adding a virtual source
computed bounds. Finally, we propose a heuristic method todnd sink node.
eratively improve the computed bounds using selective enumerin our formulation, adeterministictiming graphGp repre-
ation of the sample space with additional run time. Combinesknts a particular manufactured die, where each gate has a fixed
the proposed methods provide a statistical STA approach witblay value. Each edgen G is assigned a delay(e), which
linear run time, that is guaranteed conservative, has a boundepresents the deterministic propagation delay from a gate’s
error, and can be iteratively refined at the expense of additiomaput to its output. Similar to other statistical STA methods, we
computational effort. The proposed methods were implementigdore the dependence of gate delay on the transition time of the
and tested on benchmark circuits. The difference between tfae input signals.
expected values of the upper and lower bound was shown to bé path P of a timing graphG is a sequence of nodes, such
small, ranging from 2% to 10%, and this difference could biat each pair of adjacent nodeg andn; has an edge,; =
reduced by 62% on average, using the proposed selective efy ny). The path delay p of pathP is the sum of all the delays
meration method, with modest additional run time. D(e;;) of edges;; on pathP. Among all paths terminating at
The remainder of this paper is organized as follows. In Sea-noden, we define the path with the maximum delay as the
tion Il, we present a formal model of statistical STA and outritical path ofn. The delay of the critical path terminating at a
modeling assumptions. In Section Ill, we present a number mbder is equal to itsarrival time, ¢, (n). The critical path of the

Il. STATISTICAL TIMING ANALYSIS FORMULATION
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Fig. 1. Delay probability density and cumulative distribution functions.

sink nodern ¢ of a timing graph is referred to disecritical path To simplify the implementation of statistical STA, it is often
of the timing graph, and the arrival time of, is referred to as more convenient to approximate continuous probability density
its graph delay and cumulative distribution functions with discrete functions. A

After fabrication, a deterministic timing grapip can be discrete pdf, corresponding to continuous df), can be rep-
conceptually formulated for each die. However, during the deesented by a sequence of paids, ;), whered;, = iA and
sign of a chip, the gate delays are unknown and must be modejed= fd +A/2 (t)dr. For computational efficiency, we use
as random variables. Each gate delay is, therefore, SIOeCIerd(ﬁ$crete pdfs “and CDFs in the final implementation of our pro-
ther with a cumulative probability distribution functio€DF) posed statistical timing analysis approach. However, for gener-
or probability density functiongdf) and we define groba- ality, we will formulate the statistical timing analysis task using
bilistic timing graphG p as follows. continuous functions.

Definition 2: A probabilistic timing graphp is a timing  We now consider the sample spatef a probabilistic timing
graph whose edges are assigned random variables of dejeaphG p, consisting of all deterministic timing graptig, with
values. edge delays corresponding to the nonzero values of their proba-

Fig. 1 shows an example of a delay cumulative probabilitility distribution functions. The probability that a timing graph
distribution function and its corresponding probability densitgy, in S has edges with delay D; betweent; andT; is
function. Since these functions represent the variation of gate
delays, they have the following obvious but important property?(t1 < 71 <1, te <7 < T5,...)

Property 1: A delay CDF equals O for all delay values less Ty 1>
than a finite minimum valuel,;, and equals 1 for all values = //...p(ﬁ,'fz, coodndry .o (1)
greater than a finite maximum valué,... A delay pdf is P

nonzero only on a finite intervall[,,;,,, dyax]- is the ioi bability density f
These properties follow from the fact that the delay ofare\é\i herep(ri, 7o, ..., .. .) I the joint probability density func-

ion of edge delays. Slnce as previously stated, we assume
gate cannot be less that some finite minimum delay valug
that all edge delays are independent random variables, this joint
or more than some finite maximum delay valjg, .

probability function is simply the product of the individual prob-

We assume statistical independence of all edge delays, sim&gnity density functions of edge delayand we can rewrite (1)
to a number of previous statistical STA methods [20]-{25], [28hs follows [35]:

[29], [31]. In practice, edge delays may be spatially or topolog-

ically correlated, meaning that gates located within close prok{t1 < 71 < Ty, t; <15 < Ts,...)
imity of each other or that have similar layout topologies will T T,

have an increased likelihood of having similar gate delays. The // 1r)p2(r2) .. . drdry ... (2)
spatial and topological correlations between gate delays impacts

the distribution of the circuit delay and complicates the anal-

ysis by creating additional correlations between path delay¥herep;(r;) is the delay probability density function of edge
We explicitly state the assumed independence of gate delay in &iven a deterministic timing grapip in S, we can compute
number of places and also note here that the entire formulatiéhdelay D(Gp), using any of the currently available means,
presented in this paper is based on this assumption. The cg#ch as traditional static timing analysis. The del2yG'p) is,
tribution of this paper is, therefore, that it provides an efficieriherefore, defined on the sample spacand is a random vari-
solution to the problem of path delay correlation due to path rable. The objective of statistical timing analysis is to find the
convergence. However, the methods presented in this paper €& of D(Gp), which is defined as follows.

also be extended to timing graphs with correlated edge delaysPefinition 3: The cumulative probability distribution func-
Note also that our method does not restrict the shape of the Ctisin of the delay of a probabilistic timing graph with indepen-
of edge delays to some specific shape, such as a Gaussiandgét edge delays is expressed as

tribution. The shape of the edge delay CDFs are unrestricted as

long as they satisfy Property 1 and they are valid probability dis- (D(Gp) < t) = / pi(t)pa(ta) ... dtidts ... (3)
tribution functions. D(Gp)<t

ty ta
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Fig. 2. Graph representation of gates with correlated pin-to-pin delays and interconnect delay variations.
where p;(t;) is the probability density function of the delay nlopwy "2 g ™
of edgei and the integration is performed over the volume of O——=0 a®
sample space where the delBYGp) of timing graphGp is (a)
less than. 120)
The probability density function can be computed by simple )
differentiation of the CDF. The cumulative probability distri- nl 9O "

bution function of the graph delay can be used in a number of
ways. First, given a particular performance constraint, the prob- (b)

ability of obtaining a fabricated die that meets or exceeds tHig. 3. Series and parallel reduction.

constraint can be determined, as illustrated in Fig. 1. The prob-

ability of obtaining a die that meets the specified performaneéth a single fanout edge,.;. The total pin-to-pin delay of

is also referred to as thgerformance yieldA design, for in- the gate is then distributed among edgesand p,.;, where
stance, can be improved until its performance yield meets a stife delays ofp; represent the uncorrelated component of the
ficient level. The graph delay CDF is also useful to determirgn-to-pin delays ang,.; represents the correlated component
the number of expected dies in a certain performance range,dlthe pin-to-pin delay. Note that this model can be extended
lowing prediction of the performance “binning” of the designto include interconnect delay, as shown in Fig. 2(b), with addi-
Conversely, given a required performance yield, the expectiahal edges representing the delay from the gate output node to
performance can be obtained. This allows a designer to detiwe sink nodes of the interconnect.

mine, for instance, the minimum expected performance of 95%

of the fabricated dies. [ll. PROBABILISTIC TIMING GRAPH TRANSFORMS

If we use discrete edge delay pdfs, we can compute the grapiBefore we discuss exact and bounded methods for com-
delay pdf by enumerating the entire sample space consistinging the CDF of the graph delay, we briefly discuss three
of all combinations of the nonzero delay probabilities of abasic transformations for probabilistic timing graphs with
edges. For each enumerated timing gré&ph in the sample independent edge delays.
space, we can then compute the graph delay and its probability
of occurrence. By summing the probability of all samples with. Series Reduction

same delay, we then obtain the probability density function of Fig. 3(a) shows a probabilistic timing graph consisting of two
the graph delay, shown in Fig. 1(b). Of course, this method dgries connected edges with delays described by @jifand
exponential in its run time complexity with circuit size and I$,(¢). The total delay of the timing graph is the sum of its edge

not useful as a practical solution. However, its formulation igelays and by applying (3), the CDF of the graph delly, (¢)
useful as a formal definition and for understanding the undgg

lying problem that needs to be solved.
Finally, we note that each edge in the timing graph is associ- P(Dg, <t)= / p(t1) - q(t2)dt1dts. (4)
ated with a so-callegin-to-pin delay from an input node of a

gate to the output node of that gate. Asinput gate is, therefore, ] ]
represented wit edges in the timing graph. Since all edgérhe pdf of the sum of the two independent edge delays is the

delays are independent, this assumes that all pin-to-pin del§9gvolution of its edge delay pdfs, as is well known from stan-
of a gate are independent. In practice, the pin-to-pin delays@'d probability theory [35], and the two edges can be replaced
a gate will be strongly correlated since they are determined Wifh @single edge having the following probability density func-
common transistors in the gate structure. To address this corrdi@™:

tion, the graph representation of a gate can be extended to model o0

this dependence using the representation as shown in Fig. 2(a). Pay(t) = /p(t —7)-q(7) - dr. (5)
Each gate is represented with a set of fanin edgen series 9

ty +.t2 <t
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IV. STATISTICAL TIMING ANALYSIS

Gp -~ = !\ The initial formulation presented in the Section Il relies on
/O the enumeration of all possible edge delays with non- zero prob-
ability and is difficult to use for an efficient solution to the
- - problem. Deterministic timing analysis has traditionally used an
approach where arrival times are propagated through the circuit
in topological order. We, therefore, derive such a propagation
O based approach for computing the graph delay pdf, in a manner
> > that is consistent with the definition dd,, in Section Il. We
o a

b first define the probability distribution of the latest arrival time,
A, (t) at noden as follows.
Fig. 4. Subgraph substitution with a single edge. Definition 4: The latest arrival timed,, at noden of Gp is
arandom variable where its CDF, () is the probability that a
deterministic timing graplé” p in the sample spac&(Gp) has

The probability distribution function of the graph delay is obz, 4rrival timet,(n) < t.

tained through integration of (5). In the subsequent discussion, we will refer to the latest ar-
) rival time as simplythearrival time. We also note that a similar
B. Parallel Reduction derivation can be performed for tiearliestarrival time. Also,

Fig. 3(b) shows a timing grapi » consisting of two parallel the arrival time for the source nodg is a deterministic value
edges with delays described by pgfg) and¢(¢) and CDFs equal to 0. We now make the following useful definition.
P(t) andQ(t). Since the delays of both edges are statistically Definition 5: A fanin subgrapttis ,, of timing graphGp at
independent, the probabilit#( D¢, < t) is the product of the noden is a timing graph consisting of all edges and nodes of
probabilities that each edge delay is less than or equal to G p thatlie on a path from the source nadeof G/ to noden,
and where node is set as the sink node; of Gg ,,.
P, (t) = P(t) - Q(t). (6) The arrival timeA,, at noden is equivalent to the graph delay
of the fanin subgrapli7s ,,. The objective of statistical timing

Through differentiation, we obtain the probability density funcanalysis is to compute the arrival time CDF of nadebased

tion of the graph delay)(G p) as follows: on the arrival time CDFs of its fanin nodeg. We can then use
such a method to propagate arrival times through the circuit in
Pgp(t) = P(t) - q(t) + p(t) - Q(1). (7) topological fashion. To compute the arrival time at nedeve

must consider if the arrival times of its fanin nodesare in-
Therefore, the graph in Fig. 3(b) can be replaced with a singléPendent random variables. We, therefore, state the following

edge having the pdig,(t). theorem: - .
Theorem 1: For a timing graphZp with independent edge
C. Subgraph Substitution delays, two arrival timesl,, ; and A,, ; at nodes; andn; are

o independent if the fanin subgrapb& ; andGs ; at nodes;
Let graphG:p have subgrapltps, as shown in Fig. 4, such 5, - are disjoint (meaning they have no common edges) or if
that: . any common edges have a deterministic delay.
1) Gp1 and complementary gragfipy = Gp — Gp1 have  The validity of Theorem 1 is intuitively obvious from the fact
only 2 common nodes andb. that the sample space@f ; andG's ; are disjoint and hence the
2) Node a (b) has only incoming (outgoing) edges bearrival times4,, ; andA,, ; are independent. For completeness,
longing to subgrapli’ p; and outgoing (incoming) edgesg proof is given below.
belonging to subgrapt¥'p . Proof: The arrival timeA,, ; is equal to the delay of its
Let the subgraplé’ »; have a graph delay pdiG ;). We can fanin subgraphD(Gs ;) and arrival timeA4,, ; is equal to the
substitute subgrap&'p1 in graphGp with a single edged, b) delay of its fanin subgrapP(Gs ;). The joint probability that
having the same delay pd{ G p1). This results in a simpler D(Gg,;) is less thanl; andD(Gs ;) is less thani;, assuming
timing graph with the same graph delay. This can be proverdependence of the edge delays, can be written as (8), found
by rearranging the integration in (3) for the initial graph delagt the bottom of the page, whetg; is the delay of gaté in
CDF and separating the integration over the random variabksographs ; andt; ;. is the delay of gaté in subgraphGs ;.
corresponding to the delays of subgraph; . Using the fact that all; .. belong to the domain dD(G's ;) and

P(D(Gs;) < di, D(Gs ;) < dj) = / pia(tin)piz(tiz) - pia(ti)pia(tje) . dtadtia. .. dt; dt;o
D(Gs,)<d:,D(Gs ;)<d;

(8)
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1) Convolve the arrival time CDR,, ; at each node,, ; with
the edge delay CDF of the edge connecting with n.

2) Compute the arrival time CDR,, at noden by applying
(6) on the convolved CDFs.

As also noted in [24], the computation of the arrival time pdfs
in statistical timing analysis is, therefore, very similar to arrival
(@) time propagation in deterministic timing analysis, where propa-
gation of deterministic arrival times is replaced with convolution
and selection of the latest arrival time is replaced with parallel
reduction using (6). The run time complexity of this method is
linear with the size of the circuit. Unfortunately, this procedure
P, . is only valid if the arrival times are independent. For this to be
o) P true for all nodes, the graph will have the form of a tree-like

structure, with the root of the tree as the sink node of the graph
Fig. 5. Arrival time computation for node. Dotted edges in (a) belong to @and all leaf nodes of the tree connected to the source npde
graphG p only and solid edges belong @s, . with an edge with deterministic delay. In practice, such timing
graphs are rare and we, therefore, now discuss how to compute
all t; ,, belong to the domain abD(G's ;) we can rewrite (8) as arrival times in the presence of dependent arrival times.
follows:

B. Dependent Arrival Time Propagation

P(D(sti) < di, D(Gs,5) < dj) If the fanin subgraph&is; of fanin nodesn, ; of noden
- pii(ti)pio(tia). .. dti1dt; s share one or more edges with random delays, the arrival times
T o A,.; will be dependent random variables, even in case that edge

D(Gs:)<d: delays are independent. Since application of (6) assumes statis-
pja(tj)ps2(tiz)...dtj1dt;s. (9) fical i_ndepgndence, it cannot be useq tq compute t_he maximum
D(Ge)<d; of arrival times4,, ;. An example of a timing graph with depen-
= dent arrival times is shown in Fig. 6(a). To determine for which
From which follows: portions the subgraphSs; share edges, we use the following

definition of adependenceset.
P(D(Gs,;) < di, D(Gs,j) < d; Definition 6: Consider a pair of fanin nodes, ; andn,, »
= P(D(Gs,;) <d;)- P(D(Gs;) < dj;). (10) of noden, with fanin subgraphs¢ss; andGs ». The intersec-
tion graphG consists of edges and nodes shared:gy; and
From standard probability theory, it follows that the fanin SU@S,Q, exc|uding the source nod;es_ The set of dependence
graphs delay$)(G's;) and D(Gs,;) are independent and, cor-nodes for the fanin node pair, ; andn, » is the set of nodes
respondingly, the arrival timed,, ; andA,, ; are independent. {4, n,, ... n,, ...}, suchthai, lies onthe intersection graph
U @y, and such that, has one or more fanout edges that lie on ei-
We first consider the case where the arrival times of fan'mer(;&1 or G's 5, but not on both. The set of dependence nodes

nodesn,, of noden are independent. for noden is the union of the dependence node sets over all pos-
. . . sible pairs of its fanin nodes.
A. Independent Arrival Time Propagation In Fig. 6(a), the intersection grapf; for the fanin node

Without loss of generality, we consider a nodewith two pair f and . of noden; is shaded and consists of nodes
fanin nodesn, ; andn, ». We then consider fanin subgraph{q,r, a,b,c,d}. The set of dependence nodes for nedeis
Gs., at noden, as shown in Fig. 5(a). Since the arrival timegb, d}, since these nodes are part of the intersection géaph
A, at noden,, ; and A, at noden,, » are assumed to be inde-and have a fanout edge that lies on only one of the two fanin
pendent, their fanin subgrapl&; ; andG's » are disjoint, and subgraphs of andh. Note thata is not in the dependence set
using the subgraph substitution from Section Ill, each can be mé-n; since all its fanout edges belong to the fanin subgraphs
placed with a single edgs, 1 ande, », as shown in Fig. 5(b). of both f andh. However, the dependence set of ndde {a}.
The edge delay CDF af, ; ande, » are set equal to the graphAlso nodesh and e have empty dependence sets since their
delay CDFs of7s 1 andGg. 2, which is equal to the arrival time intersection graphs are empty. Conceptually, dependence nodes
CDFs A; and A,. The resulting graph, as shown in Fig. 5(b)mark the last points in the graph where the fanin subgraphs of
can be reduced to a single edge by performing series and gam fanin nodes are shared and give rise to correlation between
allel reduction. The obtained edge delay CDF of the final edgeeir arrival times. The concept of dependence nodes is similar
betweemn, andn is equal to the graph delay CDF of subgrapto that used in probabilistic simulation [33]. We refer to a
G s, Which, inturn, is equal to the arrival time CDE, atnode node inGp as aconvergenceioden,. if it has a nonempty
n. dependence set. We also define the global set of dependence
Givenindependentarrival time CDBs ; atfanin nodes,, ;, nodesSp as the union of the dependence sets over all nodes
we, therefore, compute the arrival time CDF, at noden as and refer to a node as a dependence node if it is an element in
follows. this list.
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computations, each weighted by the conditional probability
Since during the computation ¢f, ;, edgee; has a determin-
istic delay it is no longer a random variable and does not create
dependence between arrival times. Nedg; is, therefore, no
longer a dependence node and we can propagate arrival times
using independent arrival time propagation until we encounter
the next global dependence nods; ». Here, we repeat the
same process, enumerating the arrival time pdiab using
conditional probabilities and eliminating it as a dependence
node.

Below is the procedure for dependent arrival time propaga-
tion:

1. Propagate arrival time pdfs in the cir-

cuit until the first dependence node ng IS
encountered.

2. Enumerate the pairs ( t;,p;) of the ar-

rival time pdf at ng and for each pair
propagate t; with conditional probability

Pi-

3. Propagate  t;, using independent arrival
time propagation until the next dependence
node is encountered and repeat step 2.

4. Compute the final arrival time pdf at

f all graph nodes z by summing their condi-

Gps q b@<&@
05/ g tional arrival time pdfs weighted by the
ny
r \

product of their conditional probabili-
h ties.

(@)
Note that, although we refer to emunerationdefpendence
Fig. 6. Dependent arrival time computation for neddn (a), the intersection nodes, the enumeration is more preciselgm‘phinstances ac-
graph ofn ; is shaded and dependence nodes pfre black. . . . . .
cording to the discretization of the arrival time at the depen-
dence node. Also, above procedure computes the arrival time

In order to compute the graph delay of a grapp with one for all nodes in the timing graph, including the sink node, and
or more dependence nodes, we sort the list of global depeequires enumeration of all dependence nodes. However, if the
dence nodes in topological order. We then consider the first nagleival time is needed for only a subset of nodes in the graph,
np,1 in the ordered sefp. In Fig. 6(a),Sp = {a,b,d}, and it may not be necessary to enumerate all dependence nodes in
np1 = a. By selecting the first nodep ; in the list, we ensure the graph since only the dependence nodes associated with this
that the fanin subgrapi s ; at nodernp ; does not contain any subset of nodes needs to be enumerated. Of course, these de-
dependence nodes. It follows that we can repldgg with a pendence nodes may again have dependence nodes themselves
single edge:; connecting source node, andnp 1, where the that will need to be enumerated as well, leading to a recursive
edge delay CDHD; of e; is equal to the arrival time CDF of formulation.
A, atnp 1, as shown in Fig. 6(b). Similarly, it is clear that the We will now show that the set of nodes at which arrival
arrival time CDF ofA; atnp; can be computed using inde-times are enumerated is the sufficient and necessary set for
pendent arrival time propagation, as explained in the previoggact computation of the graph delay CDF. First, from the
Section. construction of the exact statistical timing analysis algorithm

For simplicity, we assume that the edge delay pdf is in the above description, it is clear that enumeration of all
discrete and is specified by a set/ofdelay, probability pairs dependence nodes is a sufficient condition. The enumeration of
(di, p;). According to our construction, random variabl®y a dependence node eliminates that node as a dependence node
does not depend on the edge delays of other edges in flwn the timing graph. After enumeration of all dependence
transformed graplt7,. Then, using conditional probabilitiesnodes, all arrival times converging at a node are independent in
[35], the arrival time pdfp,(t) at a convergence node of each enumerated instance of the timing graph. Therefore, the
np,1, can be computed as follows;. (t) = Zf:o pi - pi(t), exact graph delay can be computed using independent arrival
wherep, ;(t) is the arrival time pdf at node when the delay time propagation in each enumerated instance of the timing
D, of e; is equal tod; andp; = P(D; = d;). We, therefore, graph, showing the sufficiency of enumerating all dependence
compute the arrival time pdgif. (¢) by performingk arrival time nodes.
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Next, we show that enumeration of all dependence nodes
also a necessary condition, meaning that it is not possible t
enumerate fewer nodes without arrival time dependencies r delay overestimated
maining in the circuit. Without loss of generality, we consider
convergence node; in Fig. 6(a) with fanin nodeg andh and P(t)
with dependence nodé€s, d}. We now show how, based on the
properties of dependence nodes given in Definition 6, enume
ation of nodé is necessary. Since we only use properties spec -
ified in Definition 6, the same arguments also translate to nod_ circuit delay
d and all other dependence nodes in a circuit. We firs_t obserg/ie 7. CDF Q(1) is a consenvative bound on CDP(). Probabilt
that there eXI_St_5_a path from nobieo bqth nOdef_ andh Smce’_ co%i’esbonding to a particular delay is underestimated and délay corres;))/onding
based on Definition 6, nodeies on the intersection of the faninto a particular probability is overestimated.
subgraphs of nodeéandh. Also, based on Definition 6, at least
one fanout edge df does not lie on both fanin subgraphs, but . . .
only on one of the fanin subgraphs. In Fig. 6(a) this is edige)( graphs or timing graphs with mostly tree-like structures. In the

which lies on the fanin subgraph ¢fout not the fanin subgraph next section, we, therefore, show how to efficiently compute

of h. From this, it follows that there exists at least one pair cﬁo\ljvngs on :)he %nvalr tlrinr: (r:[\)/Fz ind ': ?necrtn:in :]/I,fwe drlnscltjsst
paths {1, p2) from nodeb to nodesf andh, such that this pair of 0 €se bounds are improved by enumeration ot a smaif se

paths is disjoint, meaning they do not share any common edg%fs(.jeloenolence nodes.

In Fig. 6(a), this pair of pathsjg = (b, e, f) andps = (b,d, h).

We now consider subgrapti,, of timing graphG,,,, con-
sisting of all edges and nodes on paphsandp, and on fanin
subgraph ob, as shown in Fig. 6(d). We assume that nofles We now propose an efficient method for computing lower and
andh have arrival timest ; andA,,, respectively. We now show upper bounds of the exact arrival time CDF@f> for timing
that enumeration of nodieis a necessary condition to ensuregraphs with independent edge delays. We are interested in both
that arrival timesA y andA;, are independent. First, we note thatipper and lower bounds since this allows us to determine the
enumeration of any nodes in the fanin subgraph@bnsisting quality of the bounds by comparing their difference. In general,
of nodes, ¢, anda) does not eliminate the dependence betweeeveral types of statistical bounds on a CDF have been defined.
Ay and Ay, since the fanin edge:(b) of nodeb will still con-  In this paper, we use the so-called Stochastic bound [35], which
tribute a common, random delay to batty and A,,. Second, is defined as follows.
enumeration of any nodes that lie only on either patlor p, Definition 7: The arrival time CDRQ(t) is an upper bound
(such as nodeg ande) also does not eliminate the dependencef the arrival time CDRP(¢) if and only if for allt, Q(t) < P(t).
betweenA ; andA,, since these nodes affect only one of the two A similar definition can be formulated for lower bounds. The
paths. Therefore, since enumeration of any node other that nogkeaning of the defined bound is shown in Fig. 7 with two ar-
b in subgraph,,; does not eliminate the dependencelgfand rival time CDFsP(t) andQ(t), whereQ(t) is an upper bound
Ay, it follows that enumeration of nodeis a necessary condi- on P(t). Note that the upper bour@(t) is itself a valid CDF
tion for eliminating this dependence. and that for all time points, the probability defined ) is

In the original timing grapld,,1, the arrival times propagatedless than that aP(¢). Therefore, not only the expected vajug
alongp; andp, combine with arrival times from other paths.of P(t¢), but also other characteristics, such as the 95% confi-
However, it is clear that the dependence between arrival tim#snce point (performance yield), are boundedXy) on P(¢).
propagated along; andp; is sufficient to create dependenceBy using CDFQ(¢) instead ofP(t), we will, therefore, over-
between the arrival times at nodgandh in G,1, even after the estimate the delay corresponding to a particular probability or
arrival times along; andp, combine with other arrival times. performance yield, resulting in a conservative analysis for late
From this it follows that enumeration of dependence nodea arrival times, as shown in Fig. 7. Similarly, for a particular re-
necessary condition for eliminating the dependence between tugred delay, the probability that a die will meet this delay con-
arrival times at nod¢f andh in G);. Since nodé was chosen straint will be underestimated by usirg(¢) instead ofP(¢).
as a generic dependence node and we only relied on its propéote, therefore, thaf(¢) is an upper bound of(¢) from the
ties as defined by Definition 6, the same arguments apply to plrspective of arrival times but is a lower bound B(t) from
dependence nodes and it follows that enumeration of all dep#me perspective of performance yield. In this paper, we consider
dence nodes is a necessary condition for exact statistical timlmmunds from the arrival time perspective and we, therefore, refer
analysis using independent arrival time propagation. to Q(t) as anupperbound onP(t).

The number of dependence nodes is typically significantly We can compute upper and lower bounds for bothlaest
less then the number of edgesdah. Dependent arrival time arrival time, corresponding to slow paths in the circuit, as well
propagation, therefore, has a lower complexity than enumees-for theearliestarrival times, corresponding to fast pathsin the
tion of the entire sample space. Nevertheless, the run time ceeuit. Fast paths are important for detecting hold violations and
mains exponentially with the number of dependence nodes daee conditions in a circuit. To obtain a conservative analysis, an
to the recursive formulation of the method. Dependent arrivapperbound must be used for thegestarrival times and sower
time propagation is, therefore, useful only for very small timingound must be used for tlearliestarrival times. For clarity, we

A
probability

probability underestimated

V. STATISTICAL BOUNDS
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focus in this paper on late arrival times, although the analysis Gpy " n b " d
can be applied to early arrival times as well. g a s
n3
c e
A. Upper Bound Computation @)

To efficiently compute an upper bound on the exact graph
delay CDF ofG,,, we propose the following theorem for random
variables.

Theorem 2: Let z, y andz be independent random variables
that satisfy Property 1. Let;, 2> be independent random vari-
ables with CDFs that are identical to the CDF9fand that are
also independent from andz. The CDF of random variable
max(z1 + y, 2 + 2) is an upper bound on the CDF of randonfig- 8. Bounded graph transformation through node splitting.
variablemax(z + y, z + 2).

Proof: The probability distribution function of random o syhdomainy < » we define a one to one mapping (bijec-

variablesmax(z + y, = + z) andmax(z1 +y, 2 + 2) are tion) so that {1, z», y, z) corresponds tof =, y, z) i.e.,z1 = v
andz, = z. In this subdomainy < z and therefore, inequality
P(t) = / p(z)q(y)r(z)dzdydz (11)  max(z+y, z+2) < t follows from inequalitymax(z1 +y, 2+
et max(y,z)<t z) = max(v + y,x + z) < t. Therefore, the region of integra-
i tion for computingP, <. (t) includes the integration region for
Q)= ple1)p(w2)q(y)r(z)derdradydz  computingQ, <. (t) and hence),<.(t) < P,<.(t) because in
max (w1 +y,e0+z)<t both cases we integrate the same funciién, v, y, ).

(12) For subdomairny > = we define a one to one mapping (bijec-
tion) sothat {1, z2, v, z) corresponds taf, v, y, 2) i.e.,z1 = x
andz, = v. Similar to the above consideratiomax(z +
y,x + z) < t follows from max(z1 + y,z2 + 2) < t =
max(z +y, v+ z) < tinthis subdomain and the region of inte-
gration for computing®,~ . (¢) includes the region of integration

wherep(x), ¢(y), r(z) are the probability density functions of
x,y andz, respectively. Multiplying (11) by the integral of prob-
ability density function/”"_p(v)dv = 1, rearranging some of
the terms and renaming integration variables, gives us:

' for computing@, > (t). ThereforeQ,~.(t) < Pys.(t).
P(t)= ; 2)dzdvdydz.
) / Pe)p(v)aly)r(z)dudvdyd Combining inequalities fo)(t) and P(t) from each sub-
max(z+y,x+2z)<t,—co<v<oo (13) domain, we obtain the inequalit§(t) < P(t) for the whole

Integrals from formulae (12) and (13) for probabilitysampleSpace’ which proves the theorem. =

distributions Q(t) and P(t) have the same integration Ve can graphicallyillustrat_e Theoremng follows. Consider
functions f(z1, 22,7, 2) = p(x1)p(z2)q(y)r(z) and the simple graplG,; shown in Fig. 8(a) with d_elay equal to
f(z,v,y,2) = p(x)p(v)e(y)r(z) and differ only in the max((ds + dy + da), (da + de + de)), whered; is the delay
names of the variables. Note that random variable inde- Of €dge:. Fig. 8(b) shows the timing grapfi p, where edge:
pendent from random variables y andz. We now split the IS Split into edges:; andas, each with the same delay CDFs
4D domain of both functions into two subdomains:< » asSa. The graph delay off p; is max((da1 + dy + da), (daz +
andy > z. Probability distributions(¢) and P(¢) can be e + d.)). From Theorem 2, it follows that/ p, has a graph
represented as the sum of two terms corresponding to fifgay CDF that is an upper bound on graph delay CDF of the

contribution of each subdomain: graphG p;. Infact, it is clear that the CDF of arrival times at all
nodes inG p, are upper bounds on the CDF of arrival times of
Q(t) =Qy<:(t) + Qy>:(t) corresponding nodes ifi p1 and hence we refer graghips as
anupper boundn graphzp;. In general(Gp; can have a more
= / f(@1,22,y, 2)dz1dwydydz complex structure with additional fanin and fanout edges at node

max(z1 +y,22+2)<t,y<z n2, etc. It can be shown that for a general timing graph,

splitting an edge into multiple edges, as illustrated in Fig. 8,
+ / a1, w2,y, 2)durdwadydz results in a grapl#’ p» that is an upper bound afip;, meaning
max(z1+y,z2+2)<ty>z that the arrival time CDFs of all nodes @ po are an upper
(14)  bound on the arrival time CDFs of the corresponding nodes in
P(t) =Py<.(t) + Py>.(t) Gpi.
Based on Theorem 2, we now pose the following useful corol-
= / f(z,v,y, z)dzdvdydz lary.
max(z+4y,z4+2)<t,—co<v<o0,y< 2 Corrolary 1: Given a graph&p with independent edge de-
lays and one or more convergence nodes. If arrival times are
+ / f(,v,y, z)dedodydz. computed for all nodes using the procedure of independent ar-
max(z+y,w+2)<t,—co<v<oo,y>z rival time propagation, the computed arrival time CDFs will be

(15) an upper bound on the true arrival time CDFs at those nodes.
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statistical maximum using (6) is taken, since their arrival times
are independent.

It is important to note that the proposed bounds are not re-
A stricted to Gaussian gate delay and arrival time pdfs, but are

min(X(?), Y(1)) valid for pdfs of any shape. Also, given gates withundecyate
delay pdfs, the proposed arrival time bounds have the property
that their maximum and minimum values with nonzero prob-
ability match that of the exact graph delay pdf. The proposed
bounds, therefore, have the useful property that the interval over
Fig. 9. Lower bound computation for two dependent arrival times. \(;VhIiCh arrival times can occur matches that of the exact graph
elay.

A
probability

)

t

The validity of Corrolary 1 can be seen by considering the VI,
timing graphG p; with dependence node, as illustrated in
Fig. 6(a). Following the procedure for dependent arrival time Our overall approach to statistical timing analysis consists of
propagation, we replace subgragh ; with a single edge;, the following steps.

GRAPH REDUCTION AND SELECTIVE ENUMERATION

as shown in Fig. 6(b), where the edge delay CDE,af equal 1) We perform exact graph reduction to decrease the
to the arrival time CDF at. We now create a grapfi po, as problem size without altering the delay of the graph.
shown in Fig. 6(c), which bounds p; by splitting edges;, such 2) We compute upper and lower bounds using the methods
that e is no longer a dependence nodeGtip,. By repeating explained in Section V.

this process for all dependence nodes, we obtain a timing graph3) We improve the computed bounds using enumeration of
G p i, that bounds the original timing gragghp, and which has a select set of dependence nodes.

no dependence nodes. We can compute the exact arrival tie now explain the exact graph reduction and the selective enu-
CDF of G p, by performing independent arrival time propagameration below in more detail.

tion. Finally, it is easy to observe that we need not explicitly

replace subgraptvs; with edgee; and subsequently split it. A. Exact Graph Reduction

Instead, we will compute identical arrival times to thos&gf,

by simply performing independent arrival time propagation on,
graphGpq, as stated in Corrolary 1.

This leads to the useful observation that an upper bound
the arrival times of a timing grap®,, is obtained by ignoring the
dependencies of arrival times and simply applying the proced
for independent arrival time computation, which has alinearr
time complexity with circuit size.

In order to reduce the size of the timing graph, we prune ar-
al times by considering their relative alignment at conver-
ence nodes. We consider two arrival time CDAsg,and A4,
At converge at node, as shown in Fig. 10(a). If the min-
imum arrival time with a nonzero probability i, of A1, is
feater than the maximum arrival time with a nonzero proba-
ility, t2 max Of A2, as shown in Fig. 10(b), it is clear that in
the entire sample spack A; will be greater tham,. We can,
therefore, prune arrival timd, from the timing graph without
changing its timing behavior. Note that, using this approach, en-
We now discuss the computation of a lower bound on thige subgraphs can at times be removed from the timing graph.
exact arrival time CDFs. Given the CDEY¢) andY (¢) of two Also, when two arrival timesl; and A, partially overlap, as
dependentandom variables: andy and the random variable shown in Fig. 10(c), the CDF aod, can be truncated & ,in.
z = max(z,y), it is clear that the CDRnin(X (¢),Y (t)), as Based on (6), values of; are required only fot > t; ,.i, Since
shown in Fig. 9, is a lower bound on the CDF ofThis can for ¢ < t; min, 41(t) = 0. Hence the CDF of, needs to be
be seen by considering the graph in Fig. 3(b), consisting of twomputed only for the rangg min t0 t2, max. Based on this, we
parallel edges with delays andy and edge delay CDEX(¢) truncate the arrival time CDF at fanin nodesrof by propa-
andY (t), respectively. The probability that the graph defay  gating the truncation timé; ,.i,» across gates in reverse topo-
max(z,y) exceeds a certain delayis greater than or equal tological order, at each gate subtracting the maximum gate delay
the probability that either edge delay excegdsgardless of the dp,.x with nonzero probability. The truncation tintg.unc; at
correlation of ther andy. In other wordsP(z > t) > P(z > noden; is, therefore, as followSiyunci = t1,min — 0, Where
t),andP(z > t) > P(y > t). SinceP(z > t) =1 — X(t), 6 isthe sum ofd,,., over all gates between nodeg andn..
Ply>t)=1-Y(t),andP(z > t) = 1 — Z(¢t), it follows An arrival timet,; < ti.unc,; at noden; always results in an
thatZ(t) < X(¢) andZ(t) < Y (¢), from which it follows that arrivalt, » at nodens, such that, » < ¢1,min and can be trun-
min(X(¢),Y(t)) is a lower bound on the CDF af cated. Furthermore, we also truncate the CDFs of the gate delay
The lower bound computation is, therefore, identical to irffor gates in the fanin cone of;. Given a fanin gatey with
dependent arrival time propagation, except that at convergemeaximum delayl, max, as shown in Fig. 10(d), the gate delay
nodes, the CDF of the propagated arrival time is computed BpF can be truncated &, (;unc = dg,max — tp, Wheret, =
taking the minimum of the incoming arrival time CDFs for eackh max —t1,min- Aftival time s max atns is the arrival time when
time point. The lower bound computation, therefore, has a linedt fanin gates ofi, have their maximum delay,,.... Hence, it
run time complexity with circuit size. For nodes with empty defollows that gate delays less thadp (runc = dg max — tp Will
pendence sets, such as nodemndh in Fig. 6(a), the regular always result in arrival times a#, that are less thaf ,i,. The

B. Lower Bound Computation
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Fig. 10. Pruning of arrival times by considering their relative alignment.
delay CDF of gatey is, therefore, pruned al, ¢;unc thereby &1
reducing the computational complexity of arrival time compu- S ) 4
tation. 4 n
In addition to pruning, we also utilize the series and parallel
graph transforms discussed in Section Il to reduce the size of __j’—r
L : : 4;
the timing graph. The pruning method and the series/parallel re- 2

duction are executed in a loop, until no further improvement is
made. Note that while the series transform and pruning method
reduce the graph size and the computational complexity, the par-
allel transform also resolves arrival time dependencies by re- 1o}
moving local reconvergences and improves the quality of the
computed bounds. It is, therefore, advantageous to reduce the o
graph size not only to improve the run time of the bound com-
putation, but also to improve the quality of the bounds.

(+) upper bound

mean of the output pdf

(o) exact

B. Selective Enumeration

(*) lower bound
In order to improve the quality of the bounds described in o

Section V, we combine the bound computation with enumera- ‘ ‘

tion of the sample space of the arrival time at a small set of de- * T emarton betwoon o ottt oz °

pendence nodes. Enumeration of dependence nodes improves ()

the computed bounds in two ways. First, the enumeration pa"—tllé 11. Expected values of bounds and exact arrival time at mods a

tions the sample spaceand thereby reduces the dependenciggction of the shift between expected valuesifand A, .

of arrival time CDFs. Second, when all dependence nodes of a

particular convergence node are enumerated, the arrival times @ur objective is to obtain a maximum improvement in the

this convergence node become independent and the lower bobadnds through enumeration of a minimum number of depen-

can be computed using their statistical maximum accordingdence nodes. We, therefore, need to select those dependence

(6), instead of the minimum operation used for computing thdes that most strongly impact the quality of the bounds at the

lower bound of dependent arrival times. In this case, the upmnk node. For simplicity, we measure the difference between

and lower bounds at the dependence node become equal to ¢aetupper and lower bounds as the difference of their expected

other. Selective enumeration, therefore, has the desirable preglues and refer to this measure asithand differenceTo illus-

erty that as the number of enumerated dependence nodedriate the factors that influence the effectiveness of enumerating a

creases, the quality of the bounds increases monotonically. Alparticular dependence node, we first consider the circuit shown

when all dependence nodes are enumerated, the lower and upjigrll(a) with two correlated arrival timet; and A, that con-

bounds will become equal to the exact arrival time CDF. verge at node,. We computed the upper and lower bounds as
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1. Compute enumeration merit of each dependence node
2. Order list of dependence nodes by decreasing merit

2. While (bound difference is not met and run time is not exceeded) {

3. Add an unselected dependence node with maximum merit to enumeration list

4. Recompute upper and lower bounds using the enumeration list

5. If (bound difference at nydid not improve sufficiently) remove last node from enumeration list.
6.}

Fig. 12. Selective enumeration algorithm.

well as the exact arrival time at nodewhile shifting the align- p

ment of the CDF of4; relative to the CDF of4,, by varying P ‘

the delay of gate, . Fig. 11(b) shows the expected value of th ! '
upper and lower bounds and the exact arrival time at node X t
plotted against the difference of the expected valugpfand P 1® '
As. As the shift betweenl; and A, increases, the two bounds '
rapidly converge to the true arrival time. This is caused by tt .
fact that if one arrival time CDF lies significantly after the other 4 ;
the later arrival time CDF dominates the result and the depep p2® Y
dence between the two arrival times has little impact. In the €
treme case, when the minimum time point of the later arriv
time CDF falls after the maximum time point of the earlier arp 4
rival time CDF, as shown in Fig. 10(b), the later arrival tim¢
propagates unaltered and the computed bound matches exe
with the true arrival time distribution. t

Itis also possible that, two dependent arrival times give rise &)g
a large bound difference at a nodg but this bound difference
does not propagate to the sink node. This occurs when along the _ ) _
propagation path from,. to the sink node:, the arrival time In each iteration of the algorithm, we enumerate the selected
bounds combine with other arrival time bounds that are alignégPendence nodes and compute bounds on the CDF of the graph
significantly later and that dominate. In this case, the sink nogg!ay. For each enumerated dependence madeve consider
n is shielded from node, and enumeration of its dependenc&ach possible arrival time valdgand compute bounds on the
nodes has little impact on the bound difference atTherefore, 9raph delay weighted by the conditional probabilitythat the
enumeration of a dependence node is effective only if its arriv&fifival time has a valug;. This approach can be generalized
time pdfs align at one or more convergence nodes and if the sich that, instead of considering each individual vajue the

node is not shielded from the arrival times at these convergerttigcrete pdf of an arrival time, we split the pdf into several-
nodes. tial pdfs p;(t), each partial pdf consisting of delay values in

an interval {; ;,t; ], as shown in Fig. 13. We then compute

Finding the minimum set of dependence nodes to obtain,a
required improvement in the bound difference is clearly an :}1@6 upper boung; pper () and lower boung; jower(t) on the

tractable problem. We, therefore, apply a heuristic which is Ig_raph delay using the method discussed in Section V, where the

o arrival time pdf at node:, is replaced with one of the partial
erative in nature and where the number of enumerated nodes . . : .
. . . ; ) pdfsp;(t). Before propagating each partial pdf, we first scale it
increased by one in each iteration. We first computeraumer- o ! .

) . S to have an area of 1, to ensure that it is a valid pdf. Each £ase
ation meritfor each dependence nodg, which is a measure

of the expected improvement in the bound difference by er(%jrresponds an arrival time aj; in the interval ;. ¢.] and

meratingn,, as discussed in Section VI-C. In each iteration as a probability’; of occurrence, equal to the areag{?).

the algorithm, dependence nodes are added to the set of eng: therefore, again compute the final upper bof’ﬁ‘f"véﬁ(?)
. i . . on the pdf of the graph delay using conditional probabilities, as
merated nodes in decreasing order of their enumeration mefrli i
) ) . : . .. follows:
If in a particular iteration the bound does not improve signifi-
cantly, the last added dependence node is removed from the set
! u)ert: P;- j,u )ert- 16
of enumerated nodes before a new dependence node is added. Papper(t) ; - Paupper () (16)
The algorithm is shown in pseudocode in Fig. 12. The algorithm
continues until either a required bound difference has been obPartial enumeration of arrival times requires fewer bound

tained, or until the allowed run time is exceeded. computations than full enumeration, and, therefore, reduces

v

v

p3®)

v

.13. Arrival time pdf and partial pdfs for three intervals.



AGARWAL et al: STATISTICAL TIMING ANALYSIS USING BOUNDS AND SELECTIVE ENUMERATION 1255
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»
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Fig. 14. Computation of partial pdfs and intervals.

the computational effort. The number of intervals used for ensible arrival times at dependence nodg over the fabricated
meration, therefore, provides a trade-off between the numluke.

of nodes that can be enumerated and the granularity of theiWe can again consider partial enumeration, where partial pdfs
enumeration. In practice, it was found that the bound reductipp,(t) and p, 4(t), corresponding to the left and right inter-
was most efficient using partial enumeration with two intervalsals, are propagated to the sink node and the final arrival time
This allows a much larger number of dependence nodes tofm at the sink node is computed as their weighted sum. How-
enumerated with reasonable run time and results in a greateer, instead of propagating partial pdfs, we propagate only the
reduction of the bound difference than when fewer dependerstart and end points of intervals; ; andw,. 4, using conven-
nodes are enumerated more finely. tional timing analysis, to obtain corresponding intervalg =

[t 6] andw,. ;= [t £79%] at the sink noder s, as
shown in Fig. 14(b). During interval propagation, we compute
eft intervalw, ; and a right intervaly; ,. for a noden; as fol-

e

C. Merit Computation

We employ a heuristic method to compute the enumerati
merit for a dependence node, representing the expected ) )
provement of the bound difference from enumeration of that * Givenaleftintervaty, ; = [t

min

3t 1] that is propagated

node. For simplicity, we limit our discussion to the enumeration
merit for the upper bound, although similar considerations
apply to the lower bound. At the sink node, the pdf of the
computed upper bound is skewed to the right (corresponding to
higher arrival time values) relative to the pdf of the exact arrival *
time. Hence, improvement of the bound through selective
enumeration results in a shift of the bound pdf to the left
(corresponding to lower arrival time values) so that it matches
more closely with the exact arrival time pdf. We, therefore, use

through a gatg with minimum gate dela);lfgnin and max-
imum gate delayl;**, the left interval at the output of the
gate iswy; = [t + d'®, %% 4 d**¥]. The right in-
terval is computed likewise. _

Given several left intervals[ty™, ¢y™], [t t
N [ .
bined left interval at that node iSn{ax(t}?{“? t
), max(B X, ).
terval is computed likewise.

L3
i), that converge at a node, the com-
L2
The right in-

the expected shift of the pdf as an indication of the effectiveneSsr nodes; that do not fall in the fanout cone of dependence

of enumerating a dependence node. node

ng, initial left and right intervals are taken to be equal to

For each dependence node, arrival times with nonzero the total interval at that nodes; ; = w,.; = [t™®, #3X], Note
probability fall in a finite window ", t7**]. We consider two that the computational effort of propagating the timing intervals

min

intervals in this window: a left intervab; 4 = [t}";", t}°*] and  from
right intervalw, s = [t 175%], where both/[%* and £}

a dependence node to the sink node is equivalent to that of

standard static timing analysis.

are equal to the median of the arrival time pdf, as shown in The computed intervab; ;(w,. ;) at the sink node indicates
Fig. 14(a). The integral of the arrival time pdf over each intervéhe earliest and latest possible arrival times at the sink ngde
is equal to 0.5 and hence each interval represents 50% of all pesulting from an arrival time at the dependence nogehat
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Fig. 15. Left and right arrival time intervals and bound pdfs.

110

falls in the intervakv; 4(w, 4). Also, the two intervalsy; ; and
w, s at the sink node will overlap, meaning thts > ¢min * \
due to the uncertainty of gate delays and the merging of intef ™[

vals at convergence nodes. Since the probability of an arriv
time occurring in either intervab; 4 or w, 4 at nodeng is 0.5,
the probability of an arrival time occurring in either interval s
andw, ; atthe sink node will be greater than or equal to 0.5, dus .
to the overlap of the intervals, as shown in Fig. 14(b). Hencng I (*) co288

after enumeration of dependence nagethe area of the arrival & *[ (o) ce80 |
time pdf over either interval will be greater or equal to 0.5, a‘% =r 1
shown in Fig. 14(c). However, due to the inherent errorinboun  *| i
computation, the arrival time pdf at the sink node without en. ~ ° 2 3 s s s 7 s s 0
meration can be significantly skewed to the right, as shown in o7 T SrSopensens et

Fig. 14(d). In this case, the area under the left interval can big. 16. Comparison of number of matching nodes between exact and heuristic
less than 0.5. Since after enumeratiomgfthe area under the rankings of dependence nodes.

left interval will be equal to or greater than 0.5, the amount by

which the areaiis less than 0.5 before enumeration is a good iridipruned at each node in the graph and only the smallest
cator of the expected shift of the arrival time pdf resulting frortervals are propagated. This ensures linear computational com-
enumeration. The enumeration merit of dependence ngie  plexity of the merit computation with circuit size. In our exper-

80

heuristic and exact compt
3

therefore, computed as follows: imentsk was set to 20 since the number of enumerated nodes
_ was less than this in all cases. Note that different enumeration
oo )05 —ayy, if (a5 <0.5) nodes are selected for the lower and upper bounds and that each
merity . a7 ¢
0, otherwise bound is computed separately. Also, the accuracy of the enumer-

ation merit can be improved by considering several intervals, al-

whereq, ¢ is the area of the arrival time pdf at the sink node ov : : .
the left intervalw; ; = [t;f‘}& t;{lj‘;"‘]. Note that the enumerationefigtugirr]ctl\:\ilglntervals was found to provide good accuracy in our

merit of a dependence node flawer bound computation can o . .
o : . We verified the effectiveness of the proposed enumeration
be computed similarly by observing the amount by which the " ) . .
. . X S . merit computation by comparing the ranking of dependence
arrival time pdf at the sink node over the right interval is less . ) oo X .
than 0.5 nodes based on their enumeration merit with their ranking based

A dependence node will have a high enumeration merit for the actual improvement of the bound when they were enu-

0 :
upper bound computation if its left and right intervals at th@erated. We compared the top 10% of nodes using the exact

. . o S .
sink node do not overlap significantly and if the pdf at the sin'i?mkIng with the top:% nodes based on the heuristic ranking,

. S A herex was varied from 1 to 10%. The percentage of nodes
node is skewed toward the right interval, as shown in Fig. 15(a). - . i .
: e in the heuristic ranking that matched with the top 10% in the
This occurs when the arrival times of the dependence node align L B
. ct ranking is shown in Fig. 16 for each valuerofThe two

at a convergence node and when the convergence node is 1o

shielded from the sink node. On the other hand, if the arriv%ﬁa €cted CII‘CU.IIS represe.nt those W't.h maX|mqm and mmmum
. . improvement in bound difference using selective enumeration.
times do not align at a convergence node, the pdf at the con

S : . V‘Fﬁ_e results demonstrate that in both cases, the heuristic ranking
gence node has no significant skew relative to the mtervals,(ﬂﬁnodeS matches well with the exact ranking
( .

shown in Fig. 15(b), and the computed enumeration merit wi
be small or zero. Also, if the arrival time pdf at a convergence
node is shielded from the sink node, the left and right intervals at
the sink node will be largely overlapping, as shown in Fig. 15(c), The proposed statistical timing analysis method, including
thereby also resulting in a low or zero enumeration merit.  the exact graph reduction, computation of upper and lower
Each dependence node requires a separate propagation oflefval time bounds and the method for selective enumeration,
and right intervals. However, for implementation efficiency, wavas implemented. Also, exact statistical timing analysis
propagate intervals for all dependence nodes simultaneoutilyough edge enumeration, as described in Section Il, and
Furthermore, since the computational complexity of computinigrough dependent arrival time propagation, as described in
intervals for all dependence nodes grows quadratically with t&ection 1V, was implemented. This was used to confirm the
size of the circuit, the list of propagated left and right intervalsorrectness of the computed bounds for circuits where it was

VII. RESULTS
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TABLE |
CIRCUIT STATISTICS AND EXACT REDUCTION IMPROVEMENT
Circuit # dependence nodes exact graph reduction
# convergence per convergence node %
name # node # edges 0 dﬁ total e — # edges improvement
cl7 13 19 3 3 0.66 3 15 21%
c432 198 379 59 53 12.5 52 217 43%
c499 245 481 51 59 6.7 59 369 23%
c880 445 815 90 64 7.2 52 293 64%
cl355 589 1137 323 250 3.7 58 920 19%
c1908 915 1556 149 249 5.7 105 877 44%
c2670 1428 2449 277 268 5.2 56 1107 55%
c3540 1721 3011 522 480 22.6 312 1895 37%
c5315 2487 4687 348 264 4.1 68 1138 76%
c6288 2450 4864 1646 1197 95.7 1171 3653 25%
c7552 3721 6459 1479 1050 5.8 367 4228 35%
TABLE 1

RESULTS OFBOUND COMPUTATION AND SELECTIVE ENUMERATION

expected value of computed expected value of bounds after selective enumeration
bounds

. .| monte % run time

et carlo lower upper % lower upper improvement # dzgl;ﬁ:xid reduction/ bc?und
PP difference with ' nodes / enumeration
enumeration (sec)

cl7 1.399 1.369 1.428 4167 1.399 1.399 100.000 3 0570277.0
c432 | 7.740 7.448 8.060 7.587 7.605 7.768 73.344 12 0.5/03/42
c499 | 5.168 4.730 5.282 10.451 4.984 5.215 58.152 13 0.5/0.3/39
c880 | 9.253 9.057 9.448 4.138 9.243 9.296 86.445 11 0.5/03/33
cl355 | 10.232 | 9.444 10.444 9.575 9.730 10.365 36.500 12 0.5/04/116
c1908 | 14.540 | 14.250 14.782 3.599 14.520 14.647 76.222 13 1.0/04/43
c2670 | 12.829 | 12.469 13.112 4.904 12.718 12.945 64.697 13 0.5/0.5/48
c3540 | 16.995 | 16.651 17.351 4.037 16.888 17.168 60.100 11 3.0/0.5/63
c5315 | 17.381 | 17.251 17.649 2.252 17.298 17.525 42.893 9 40/05/7
c6288 | 46.911 | 45.242 48.591 6.893 45.655 48.265 22.078 10 14 /0.8/173
c7552 | 15.851 [ 15.558 16.081 3.252 15.795 15.970 66.539 11 4.0/0.5/145

possible to compute the exact graph delay CDF. For largammber of dependence nodeslumn 5. The averagedplumn
circuits, Monte Carlo simulation with 100000 samples wa8) and maximum number of dependence noaesufnn j per
used. The statistical timing analysis was tested on the ISCA8nvergence node is also shown. Some circuits have extensive
benchmark circuits [34]. For each gate in the circuit, a delagconvergence, indicated by their high number of dependence
distribution was specified with a standard deviation rangingpdes, making them difficult test cases for statistical timing
from 10% to 15% of the mean of the distribution. A Gaussiaanalysis. The last two columns of Table | show the effective-
distribution, truncated at the 3 sigma point, was used. Thigss of the exact reduction techniques. On average, the number
distribution of gate delay was based on Monte Carlo simulatiar edges in the graph is reduced by 40% with a maximum re-
for individual gate structures using SPICE simulation. In theskiction of 76%.
simulations, intra-die gate length variations were applied, asTable Il shows the results for the bound computation and re-
measured for an industrial 0.338n process technology with finement through selective enumeration. The expected value of
test structures on a number of test chips. However, the proposieel lower bound ¢olumn 3 and upper boundcblumn 4 and
method for statistical timing analysis is not limited to anyheir relative differencegolumn § is shown. Although we only
particular type of process variation and can also be used withport the expected value in Table Il, the computed bounds are
delay variations resulting from other process factors. CDFs and allow the computation of other useful values, such as
In Table I, we show the circuit characteristics and results obnfidence points. The statistical upper and lower bounds have a
the exact graph reduction for the benchmark circuits. The talvtdatively small difference in their expected value ranging from
shows the number of convergence noaedi(mn 4 and the total 2.25% to 10.45%, demonstrating their effectiveness. Also, the
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Fig. 17. Comparison of CDF bounds and Monte Carlo for ¢880 and c¢7552.

Monte Carlo results fall between the computed bounds, as éom the statistical timing analysis result. In each of the three
pected. deterministic timing analysis runs, each gate had a delay value
Table Il also shows the bounds after selective enumeratifixed at, respectively, 50, 95, and 99% confidence points of its
(columns 6 and )fand the percentage improvement of theidelay probability distribution. As can be seen from Table Ill,
difference compared to the original bouna®lgmn §. The deterministic timing analysis, can be quite conservative for
total number of dependence nodes enumerated during the botlred higher confidence points, while it is optimistic for the
computation is shown in column 9. Excluding the first circuitmedian delay. The deterministic timing analysis overestimated
where the selective enumeration obtained bounds that exatklg delay of the bounded statistical timing analysis by as
matched the true graph delay, the improvement of the boundsich as 15% in the case of the 99% confidence point and
using selective enumeration ranged between 22.07 — 86.44%erestimated the delay by as much as 16% for the 50%
with an average of 62.45%. The number of dependence nodesfidence point. Finally, the last two columns of Table IlI
selected for enumeration was small, ranging from 3 to 13 nodebpw the minimum and maximum circuit delay values with
showing the somewhat surprising result that enumerating onlpanzero probability. As noted, these extreme values of the
few carefully chosen nodes can significantly improve the bourmbund pdf correspond to the delay obtained with deterministic
computation. timing analysis when all gate delays are set at their minimum
Three run times are shown in column 10 of Table II: the ruand maximum delay values with nonzero probability.
time required for circuit parsing, graph construction and graphWe next investigate the accuracy of approximating contin-
reduction (eductior), the run time for computing the initial uous gate delay distribution functions with discrete functions.
upper and lower bound$¥@und$, and the run time for the it- We performed Monte Carlo simulation using both continuous
erative refinement of these bounds through selective enumeaad discrete gate delay pdfs, where the discrete pdfs were con-
tion (enumeratioh The run time of the selective enumeratiorstructed using 8—10 delay/probability pairs. Fig. 18 shows the
method is found to be modest, not exceeding 145 s for all testcuit delay distribution obtained with the discrete and contin-
cases. Fig. 17 shows the CDFs for the proposed lower and uppeus Monte Carlo simulations for circuit c7552 and shows that
bound with and without selective refinement as well as the CORe two distributions are nearly indistinguishable. The error in
obtained through Monte Carlo simulation for the circuits c88the mean value of the circuit delay pdf obtained using discrete
and c7552. gate delay pdfs was 0.06%. It should also be noted that as arrival
We compared the results obtained using the proposed dtmes are propagated in the circuit, the arrival time distributions
tistical timing analysis method with traditional deterministiéncrease in their width and number of discretizations. Since the
timing analysis. In Table IIl, the circuit delay, computedomputational complexity of convolution grows quadratically
using the proposed statistical upper bound, is shown at thseigh the number of discretizations, the run time of bound com-
confidence points in columns 2—4. The 50% confidence poiptitation can be improved significantly by pruning the long tails
corresponds to the median circuit delay, while the 95% amd such distributions. The analysis and run time results shown
99% confidence points correspond to the expected delay at 989this paper were obtained without such pruning. However, the
and 99% performance yield. Columns 5-7, show the resuliterature reports a number of works exploring the trade-off be-
from deterministic timing analysis and its percentage different@een accuracy and run time using such pruning [28].
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TABLE 1lI
COMPARISON OFBOUNDED STATISTICAL STA WITH DETERMINISTIC STA

o bounded statistical STA deterministic STA extreme values of bound
cireutt 50% 95% 99% 50% / %diff | 95%/%diff | 99% / %diff minimum maximum

cl7 1.3% 1.52 1.58 1.257-9.29 1.5772.97 1.7277.93 0.85 1.85
c432 7.80 8.15 8.30 6.95/-10.90 8.52/4.34 9.17/9.49 4.70 10.10
c499 5.20 5.39 5.46 4.33/-16.83 5.42/0.55 5.89/17.30 3.00 6.30
c880 9.26 9.63 9.79 8.58/-7.40 10.48/8.11 | 11.29/13.25 5.80 12.35
cl355 10.37 10.57 10.66 8.70/-16.10 10.86/2.67 11.83/9.93 6.10 12.75
c1908 14.61 15.04 15.23 13.55/-7.26 16.42/8.41 | 17.59/13.42 9.10 19.55
c2670 12.92 13.32 13.49 11.65/-9.86 14.44/7.76 | 15.63/13.70 7.95 16.90
c3540 17.13 17.54 17.74 15.70/-8.35 19.36/9.41 | 20.88/15.05 10.60 22.85
c5315 17.50 17.92 18.12 16.40/-6.26 19.40/7.63 { 20.66/12.32 11.05 23.15
c6288 48.24 48.81 49.06 |42.43/-12.06 53.08/8.03 | 57.58/14.80 28.60 62.00
c7552 15.93 16.34 16.53 14.85/-6.76 17.85/8.43 | 19.09/13.43 10.10 21.05

Circuit - ¢7552

o9l

o8l

07|

06

0.4l

03}
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0.2} iscretizati
(o) without discretization

01}

Fig. 18. Comparison of circuit delay distribution using continuous and discr:

gate delay distributions.
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Fig. 19. Improvement in bound difference as a function of the number of

enumerated dependence nodes.

ation of a few carefully selected dependence nodes can result in
a significant improvement of the bound difference.

VIIl. CONCLUSION

In this paper, we have proposed an efficient method for com-
puting bounds on the statistical behavior of the circuit delay due
to within-chip process variations. We first presented a general
method for statistical timing analysis as well as exact methods to
reduce the problem size substantially. Since the exact statistical
timing analysis method has exponential run time complexity
with circuit size, we show how statistical bounds on the graph
delay can be computed with linear run time complexity. We

eﬂ)erove the correctness of the upper and lower bounds and demon-
strate on benchmark circuits that the obtained bounds are close
in practice. In order to further reduce the difference between the

bounds, we proposed an iterative refinement technique which

selectively enumerates dependence nodes in the circuit. Using
this technigue, the difference in the expected value of the bounds
could be reduced by 62.45% on average, with a modest run time
increase.
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