
Reconfigurable Multicore Server Processors for Low
Power Operation

Ronald G. Dreslinski, David Fick, David Blaauw, Dennis Sylvester, Trevor Mudge

 University of Michigan, Advanced Computer Architecture Labratory,

2260 Hayword, Ann Arbor, MI, 48109
{rdreslin,dfick,blaauw,dennis,tnm}@eecs.umich.edu

Abstract. With power becoming a key design constraint, particularly in server
machines, emerging architectures need to leverage reconfigurable techniques to
provide an energy optimal system. The need for a single chip solution to fit all
needs in a warehouse sized server is important for designers. This allows for
simpler design, ease of programmability, and part reuse in all segments of the
server. A reconfigurable design would allow a single chip to operate efficiently
in all aspects of a server providing both single thread performance for tasks
requiring it, and efficient parallel processing helping to reduce power
consumption. In this paper we explore the possibility of a reconfigurable server
part and discuss the benefits and open questions still surrounding these
techniques.

Keywords: Reconfigurable, Low Power, Server Architectures.

1 Introduction

The exponential growth of the web has yielded an equally dramatic increase in the
demand for server style computers. According to IDC the installed base of servers
will exceed 40 million by 2010. In fact, these figures may be conservative as there is
a continual flow of unanticipated applications coming online. For example, Facebook,
which is only 3 years old, is expected to grow from 1,000 to 10,000 servers in a year.
The growth in servers has been accompanied by an equally dramatic growth in the
demand for energy to power them. Furthermore, the cost of this power and its
associated cooling is approaching the cost of the servers themselves [1]. For example,
it is estimated that the five largest internet sites consume at least 5MWh of power
each [2]. Meanwhile, through technology advancements and new design techniques
such as 3D die stacking, Moore’s law continues to hold. This means there is an
increasing number of transistors available on a chip. However the power allocated for
those transistors remains constant. This power envelope means that either new, low
power architectures need to be developed, or the additional transistors supplied by
Moore’s law will go unutilized.

At the same time the need for a chip that satisfies all applications within a server
environment is critical. Designers prefer to use the same chip for all portions of the
server to ease the programming constraints as well as keep cost and maintenance to a
minimum. Simply creating a low power chip capable of handling only a portion of

the workloads required in a server will not be economically viable unless current
designers rework their approach.

Therefore, there is a need for a system that supports both low power throughput
computing and fast single threaded performance to address the coming problems in
large scale servers. To address this we propose a system leveraging near
voltage scaling and parallel processing to reduce the power consumption of the
throughput oriented applications in a server. At the same time we employ
reconfigurable techniques to adapt to response times of the throughput computing or
to handle applications where single threaded performance is critical. This
reconfigurability will also rely heavily on the ability of the OS to measure and adapt
the chip to reduce power
performance. In this paper we ex
difficulties associated with the OS scheduling
point to future research directions

2 Reconfigurable Architecture

Although the techniques discussed
architecture, the following processor description will serve as an example for
illustration throughout the rest of the paper
reconfigurable architecture
discuss in the following subsections. The basic design is a machine with
Each core is tied to the same ISA
without concern for the ability of

Fig. 1. Example reconfigurable server architecture, using clustering techniques.

the workloads required in a server will not be economically viable unless current
k their approach.

Therefore, there is a need for a system that supports both low power throughput
computing and fast single threaded performance to address the coming problems in
large scale servers. To address this we propose a system leveraging near-
voltage scaling and parallel processing to reduce the power consumption of the
throughput oriented applications in a server. At the same time we employ
reconfigurable techniques to adapt to response times of the throughput computing or

plications where single threaded performance is critical. This
reconfigurability will also rely heavily on the ability of the OS to measure and adapt
the chip to reduce power consumption while still maintaining the needed
performance. In this paper we explore an example architecture and some of the
difficulties associated with the OS scheduling. We present some early solutions and
point to future research directions for remaining problems.

Reconfigurable Architecture

Although the techniques discussed in this paper are not directly tied to a particular
architecture, the following processor description will serve as an example for

throughout the rest of the paper. In Figure 1, we present our example
reconfigurable architecture, which has several interesting design points that we will
discuss in the following subsections. The basic design is a machine with
Each core is tied to the same ISA so that code can be migrated freely between cores
without concern for the ability of any given core to complete the task.

Example reconfigurable server architecture, using clustering techniques.

the workloads required in a server will not be economically viable unless current

Therefore, there is a need for a system that supports both low power throughput
computing and fast single threaded performance to address the coming problems in

-threshold
voltage scaling and parallel processing to reduce the power consumption of the
throughput oriented applications in a server. At the same time we employ
reconfigurable techniques to adapt to response times of the throughput computing or

plications where single threaded performance is critical. This
reconfigurability will also rely heavily on the ability of the OS to measure and adapt

while still maintaining the needed
some of the

present some early solutions and

in this paper are not directly tied to a particular
architecture, the following processor description will serve as an example for

, we present our example
eral interesting design points that we will

discuss in the following subsections. The basic design is a machine with 66 cores.
code can be migrated freely between cores

Example reconfigurable server architecture, using clustering techniques.

2.1 Core Types

There are two basic core types in the design. The first core type is a simple, in-order
execution core. This core is replicated 64 times across the architecture and is to be
used in highly parallel tasks to reduce energy consumption. In figure 1 it is the core
replicated 4 times in each cluster. The core itself is designed to run at a range of
frequency/voltage pairs. Depending on computational demands the cores can be
scaled to offer faster performance, but with increased power consumption. At the
lowest end of operation the cores operate in what we term the near-threshold (NTC)
operating region[3]. This region is where the supply voltage is at or just above the
threshold voltage of the transistor. In this region cores see approximately a 100x
reduction in power with only a 10x reduction in performance, resulting in a 10x
reduction in energy. The processor is not operated at subthreshold [4,5] voltage
levels, due to the poor energy/performance tradeoff that occurs at this point. See
figure 2 for a view of the tradeoffs of delay and energy in different supply voltage
regions.

Fig. 2. Energy and delay for different supply voltage operating regions.

 The second core type is a more complex out-of-order core. This core is
designed to operate only at full voltage and is used to perform single threaded tasks
that cannot be parallelized, or time critical tasks that would take too long on the
simple cores. In a server farm many tasks still require single thread performance and
any single solution chip needs to be able to provide this performance in addition to
any energy saving parallel cores it offers. These cores can either be enabled, or power
gated when not needed to reduce energy. Depending on the thermal characteristics of

these cores, nearby simple core clusters may need to be disabled while operating these
cores.

2.2 Clustered Architecture

In the work done by Zhai et. al [3,6], they propose the use of parallelism in
conjunction with NTC operation to achieve an energy efficient system. While
traditional superthreshold many-core solutions have been studied, the NTC domain
presents unique challenges and opportunities for architects. Of particular impact is the
reliability of NTC memory cells and differing energy optimal points for logic and
memory, as discussed below.

Zhai’s work showed that SRAMs, commonly used for caches, have a higher
energy optimal operating voltage than processors, by approximately 100mV [3]. This
results from the lower activity in caches, which amplifies leakage effects. SRAM
designs also face reliability issues in the NTC regime, leading to a need for larger
SRAM cells or error correction methods, further increasing leakage and the energy
optimal operating voltage. Due to this higher optimal operating voltage, SRAMs
remain energy efficient at higher supply voltages, and thus at higher speeds,
compared to logic. Hence, there is the unique opportunity in the NTC regime to run
caches faster than processors for energy efficiency, which naturally leads to
architectures where multiple processors share the same first level cache.

Fig. 3. Cluster Based Architecture.

These ideas suggest that we create an architecture with n clusters, each with
k cores, where each cluster shares a first level cache that runs k times faster than the
cores (Figure 3). Different voltage regions are presented in different colors and use
level converters at the interfaces. This architecture results in several interesting
tradeoffs. First, applications that share data and communicate through memory, such
as certain classes of scientific computing, can avoid coherence messages to other
cores in the same cluster. This reduces energy from memory coherence. However, the
cores in a cluster compete for cache space and incur more conflict misses, which may

in turn increase energ
applications where threads work on independent
often execute the same instruction sequences, allowing opportunity
clustered instruction cache. I
few processors (6-12), a

Since the caches are operating at a frequency that is higher than the cores, it
is possible to turn off some of the cores
higher frequency, and not have to change the cache frequency. This is beneficial
because the SRAM needs to be validated at each operating frequency and the timing
of signals, particularly relating to the sens
whereas core logic timing scales predictably with voltage
architecture we present a system with clusters of size 4, meaning there are 4 cores in
the cluster and the cache is operated at 4x the
allow each cluster to be operated in 4 modes. These modes correspond to the number
of cores being operated at
gated off. Figure 4 shows how
75MHz NTC operating po
modes is that the system is able to trade
is given a response time constraint, the OS can adap
frequency to achieve the en
using the M5 [7] full system simulator for a cluster of size 4. The benchmark being
run is a simplified version of the SpecWeb
clustered ICache and a 256kB clustered DCache. As can be seen the throughput in
the system remains nearly constant, but the response time of the system can be
reduced at the expense of additional power.

Fig. 4. Modes of operating a

energy use. This situation can be common in high performance
applications where threads work on independent data. However, these workloads
often execute the same instruction sequences, allowing opportunity for savings with a

ustered instruction cache. Initial research of this architecture [3,6] shows that
12), a gain of 5-6X performance improvement can be achieved

Since the caches are operating at a frequency that is higher than the cores, it
is possible to turn off some of the cores in the cluster, clock the remaining cores at a
higher frequency, and not have to change the cache frequency. This is beneficial
because the SRAM needs to be validated at each operating frequency and the timing
of signals, particularly relating to the sense amplifier, are sensitive to timing changes
whereas core logic timing scales predictably with voltage. In our example
architecture we present a system with clusters of size 4, meaning there are 4 cores in
the cluster and the cache is operated at 4x the frequency of the cores. We propose to
allow each cluster to be operated in 4 modes. These modes correspond to the number
of cores being operated at a particular time, while the remaining cores are power

Figure 4 shows how each of the 4 configurations would look, assuming a
75MHz NTC operating point when all 4 cores are enabled. The benefit of using these

is that the system is able to trade-off power for response time. So if the system
is given a response time constraint, the OS can adapt the number of cores and
frequency to achieve the energy optimal solution. Figure 5 shows a simulation run

] full system simulator for a cluster of size 4. The benchmark being
run is a simplified version of the SpecWeb[8] benchmark, in a system with a 64kB
clustered ICache and a 256kB clustered DCache. As can be seen the throughput in
the system remains nearly constant, but the response time of the system can be
reduced at the expense of additional power.

Modes of operating a 4 core cluster with 75MHz NTC frequency.

y use. This situation can be common in high performance
data. However, these workloads

for savings with a
that with a

can be achieved.
Since the caches are operating at a frequency that is higher than the cores, it

in the cluster, clock the remaining cores at a
higher frequency, and not have to change the cache frequency. This is beneficial
because the SRAM needs to be validated at each operating frequency and the timing

e amplifier, are sensitive to timing changes,
. In our example

architecture we present a system with clusters of size 4, meaning there are 4 cores in
We propose to

allow each cluster to be operated in 4 modes. These modes correspond to the number
time, while the remaining cores are power

rations would look, assuming a
of using these

off power for response time. So if the system
t the number of cores and

a simulation run
] full system simulator for a cluster of size 4. The benchmark being

system with a 64kB
clustered ICache and a 256kB clustered DCache. As can be seen the throughput in
the system remains nearly constant, but the response time of the system can be

Fig. 5. Tradeoff of response time and power for a cluster based architecture.

3 Thread to Core Mappings and Thread Migration

To fully utilize the capabilities of the reconfigurable system the operating system will
need to carefully orchestrate the mappings and migrations of threads to cores. The
system will need to have a set of constraints in terms of performance desired and the
operating system will perform some heuristic mapping and migration schemes to
optimize the system for power consumption. In the following subsections we detail
some of the decisions the operating system will need to make and present some
examples of performance metrics that can be used to guide these decisions.

3.1 Large Data Cache Requirement

Since the cores within a cluster share the same L1 cache space, there is the potential
for threads running on cores within the same cluster to thrash each others data. In
order to prevent this from impacting the overall runtime, the OS will need to detect
these competing threads and migrate them to different clusters. Preferably this will be
done by collocating the threads with large data cache requirements with threads
having small cache demands or on clusters where fewer cores are enabled reducing
the cache pressure. One possible detection scheme for this condition would be a
performance counter that tracks the number of cache evictions that a particular thread
causes of data that belonged to a different thread. This technique would employ 2-

bits of overhead on each cache line to distinguish the core for which the cache line
was originally fetched. On an eviction, if the core is not the one who originally
fetched the data, a counter is incremented for the core causing the eviction. When the
OS reads these counters it will be able to get an approximation for the negative impact
a particular thread has on others in the same cluster, allowing a decision to be made
about thread migration.

3.2 Shared Instruction Stream/Data

In some cases threads can either run the same instruction streams, i.e. SIMD, or may
operate on the same pieces of shared data. In these cases it is beneficial for the OS to
map these threads to the same cluster. There are several advantages to doing so.
First, there is less cluster based evictions due to the sharing of the cache line. Second,
in the case of data it avoids the costly process of moving data around when multiple
cores wish to modify the data. Third, the threads act as prefetchers for each other
reducing the latency of the system. As in the previous case, section 3.1, the same 2-bit
field can be added to each cache line noting the core in the cluster that fetched the
cache line. 10 counters can be used to keep track of pairs of cores that shared a line.
If a cache line is ever read by a core different than the one that fetched the data the
corresponding counter is incremented. This provides the OS with a count of currently
scheduled threads in a cluster and the amount of sharing that is taking place. To
detect threads that are not currently in the same cluster that would benefit from being
in the same cluster a more complex scheme would need to be designed on top of the
coherence protocol to detect these conditions. This is left for future work.

3.3 Producer/Consumer Communication Patterns

In some programming models there are producer/consumer data relationships. This is
where one threads output is constantly the input to another thread. In these types of
patterns it is beneficial for the OS to migrate the threads to the same cluster. By
doing so, the consumer can avoid going out of the cluster to get the data produced by
the producer. Depending on the interconnect in the system, if it isn’t possible to put
them in the same cluster, then there is also benefit by putting them in clusters near
each other. For example in a network-on-chip style interconnect having them close
reduces the number of cycles it takes to transfer the data, and it relieves congestion on
the network. An elegant solution to detecting these communication patterns has not
yet been worked out, but a possible solution in a directory based coherence machine
might involve tracking some read/write patterns on cache lines at the home node. This
again is left for future work.

3.4 Single Thread Performance

Some threads will require more performance because they may lie on the critical path
of execution. The OS needs to identify these threads and migrate them either to

clusters with fewer cores enabled, and thus a faster frequency, or in the extreme case
to one of the complex out-of-order cores in the system. These threads can hopefully
be identified by either the programmer or the compiler, but in some case may rely on
hardware feedback. In most cases these threads tend to serialize the operation of the
machine, so in situations where few threads are running, identifying the ones that
have been running the longest may indicate which threads need to be migrated to
faster cores. The OS may need to migrate threads to the complex cores for short
periods of time and measure overall utilization to determine if there is a positive
impact of running the threads at these locations.

4 Conclusions

With power becoming a major concern, particularly in servers, new energy optimal
architectures need to be explored. In this paper we looked at the use of reconfigurable
architectures to provide a single chip solution to a broad range of targets. When
parallelism is abundant the system can adapt and save large amounts of energy, at the
same time when single thread performance is the bottle neck the system can be
reconfigured to provide the necessary throughput. The architecture explored in this
paper employed near-threshold techniques, L1 cache clustering, and heterogeneous
design (in-order and out-of-order cores) to achieve extremely energy efficient
computation. The paper also looked forward at the difficult task the OS will have
with managing the thread to core mapping for energy optimality, and proposed some
initial techniques that might be employed by the OS.

References

1. Lim, K., Ranganathan, P., Chang, J., Patel, C., Mudge, T., Reinhardt, S.: Understanding and
Designing New Server Architectures for Emerging Warehouse-Computing Environments. In
Proceedings of the 35th ISCA, 315-326 (2008)

2. Report to Congress on Server and Data Center Energy Efficiency, US Environmental
ProtectionAgency,http://www.energystar.gov/ia/partners/prod_development/downloads/EP
A_Datacenter_Report_Congress_Final1.pdf.

3. Zhai, B., Dreslinski, R.G., Mudge, T. Blaauw, D., Sylvester, D.: Energy efficient near-
threshold chip multi-processing. ACM/IEEE ISLPED, pp. 32-37 (2007).

4. Zhai, B., Blaauw, D., Sylvester, D., Flautner, K.: Theoretical and practical limits of dynamic
voltage scaling. ACM/IEEE Design Automation Conference, pp. 868-873 (2004).

5. Wang, A., Chandrakasan, A.: A 180mV FFT processor using subthreshold circuit
techniques. IEEE International Solid-State Circuits Conference, pp. 292-529 (2004).

6. Dreslinkski, R. G., Zhai, B., Mudge, T., Blaauw, D., and Sylvester, D.: An Energy Efficient
Parallel Architecture Using Near Threshold Operation. In Proceedings of the 16th PACT,
175-188 (2007).

7. Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S. K.: The M5
Simulator: Modeling Networked Systems. IEEE Micro, vol. 26, no. 4, pp. 52-60,
July/August (2006).

8. SpecWeb99 benchmark. http://www.spec.org/web99.

