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Abstract. With power becoming a key design constraint, particularly in server 
machines, emerging architectures need to leverage reconfigurable techniques to 
provide an energy optimal system.  The need for a single chip solution to fit all 
needs in a warehouse sized server is important for designers.  This allows for 
simpler design, ease of programmability, and part reuse in all segments of the 
server.  A reconfigurable design would allow a single chip to operate efficiently 
in all aspects of a server providing both single thread performance for tasks 
requiring it, and efficient parallel processing helping to reduce power 
consumption.  In this paper we explore the possibility of a reconfigurable server 
part and discuss the benefits and open questions still surrounding these 
techniques. 
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1   Introduction 

The exponential growth of the web has yielded an equally dramatic increase in the 
demand for server style computers. According to IDC the installed base of servers 
will exceed 40 million by 2010.  In fact, these figures may be conservative as there is 
a continual flow of unanticipated applications coming online. For example, Facebook, 
which is only 3 years old, is expected to grow from 1,000 to 10,000 servers in a year.  
The growth in servers has been accompanied by an equally dramatic growth in the 
demand for energy to power them. Furthermore, the cost of this power and its 
associated cooling is approaching the cost of the servers themselves [1].  For example, 
it is estimated that the five largest internet sites consume at least 5MWh of power 
each [2]. Meanwhile, through technology advancements and new design techniques 
such as 3D die stacking, Moore’s law continues to hold.  This means there is an 
increasing number of transistors available on a chip.  However the power allocated for 
those transistors remains constant.  This power envelope means that either new, low 
power architectures need to be developed, or the additional transistors supplied by 
Moore’s law will go unutilized. 

At the same time the need for a chip that satisfies all applications within a server 
environment is critical.  Designers prefer to use the same chip for all portions of the 
server to ease the programming constraints as well as keep cost and maintenance to a 
minimum.  Simply creating a low power chip capable of handling only a portion of 



the workloads required in a server will not be economically viable unless current 
designers rework their approach.

Therefore, there is a need for a system that supports both low power throughput 
computing and fast single threaded performance to address the coming problems in 
large scale servers.  To address this we propose a system leveraging near
voltage scaling and parallel processing to reduce the power consumption of the 
throughput oriented applications in a server.  At the same time we employ 
reconfigurable techniques to adapt to response times of the throughput computing or 
to handle applications where single threaded performance is critical.  This 
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Fig. 1. Example reconfigurable server architecture, using clustering techniques.
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reconfigurability will also rely heavily on the ability of the OS to measure and adapt 
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performance.  In this paper we explore an example architecture and some of the 
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point to future research directions for remaining problems. 
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2.1   Core Types  

There are two basic core types in the design.  The first core type is a simple, in-order 
execution core.  This core is replicated 64 times across the architecture and is to be 
used in highly parallel tasks to reduce energy consumption. In figure 1 it is the core 
replicated 4 times in each cluster.  The core itself is designed to run at a range of 
frequency/voltage pairs.  Depending on computational demands the cores can be 
scaled to offer faster performance, but with increased power consumption.  At the 
lowest end of operation the cores operate in what we term the near-threshold (NTC) 
operating region[3].  This region is where the supply voltage is at or just above the 
threshold voltage of the transistor.  In this region cores see approximately a 100x 
reduction in power with only a 10x reduction in performance, resulting in a 10x 
reduction in energy.  The processor is not operated at subthreshold [4,5] voltage 
levels, due to the poor energy/performance tradeoff that occurs at this point. See 
figure 2 for a view of the tradeoffs of delay and energy in different supply voltage 
regions. 
 

 
 

Fig. 2. Energy and delay for different supply voltage operating regions. 
 

 The second core type is a more complex out-of-order core.  This core is 
designed to operate only at full voltage and is used to perform single threaded tasks 
that cannot be parallelized, or time critical tasks that would take too long on the 
simple cores.  In a server farm many tasks still require single thread performance and 
any single solution chip needs to be able to provide this performance in addition to 
any energy saving parallel cores it offers.  These cores can either be enabled, or power 
gated when not needed to reduce energy.  Depending on the thermal characteristics of 



these cores, nearby simple core clusters may need to be disabled while operating these 
cores.  

2.2   Clustered Architecture 

In the work done by Zhai et. al [3,6], they propose the use of parallelism in 
conjunction with NTC operation to achieve an energy efficient system. While 
traditional superthreshold many-core solutions have been studied, the NTC domain 
presents unique challenges and opportunities for architects. Of particular impact is the 
reliability of NTC memory cells and differing energy optimal points for logic and 
memory, as discussed below. 

Zhai’s work showed that SRAMs, commonly used for caches, have a higher 
energy optimal operating voltage than processors, by approximately 100mV [3]. This 
results from the lower activity in caches, which amplifies leakage effects. SRAM 
designs also face reliability issues in the NTC regime, leading to a need for larger 
SRAM cells or error correction methods, further increasing leakage and the energy 
optimal operating voltage. Due to this higher optimal operating voltage, SRAMs 
remain energy efficient at higher supply voltages, and thus at higher speeds, 
compared to logic. Hence, there is the unique opportunity in the NTC regime to run 
caches faster than processors for energy efficiency, which naturally leads to 
architectures where multiple processors share the same first level cache. 

 

 
Fig. 3. Cluster Based Architecture. 
 

These ideas suggest that we create an architecture with n clusters, each with 
k cores, where each cluster shares a first level cache that runs k times faster than the 
cores (Figure 3). Different voltage regions are presented in different colors and use 
level converters at the interfaces. This architecture results in several interesting 
tradeoffs. First, applications that share data and communicate through memory, such 
as certain classes of scientific computing, can avoid coherence messages to other 
cores in the same cluster. This reduces energy from memory coherence. However, the 
cores in a cluster compete for cache space and incur more conflict misses, which may 
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Fig. 4. Modes of operating a 
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because the SRAM needs to be validated at each operating frequency and the timing 
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Figure 4 shows how each of the 4 configurations would look, assuming a 
75MHz NTC operating point when all 4 cores are enabled.  The benefit of using these 
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Fig. 5. Tradeoff of response time and power for a cluster based architecture. 

3   Thread to Core Mappings and Thread Migration 

To fully utilize the capabilities of the reconfigurable system the operating system will 
need to carefully orchestrate the mappings and migrations of threads to cores.  The 
system will need to have a set of constraints in terms of performance desired and the 
operating system will perform some heuristic mapping and migration schemes to 
optimize the system for power consumption.  In the following subsections we detail 
some of the decisions the operating system will need to make and present some 
examples of performance metrics that can be used to guide these decisions. 

3.1   Large Data Cache Requirement 

Since the cores within a cluster share the same L1 cache space, there is the potential 
for threads running on cores within the same cluster to thrash each others data.  In 
order to prevent this from impacting the overall runtime, the OS will need to detect 
these competing threads and migrate them to different clusters.  Preferably this will be 
done by collocating the threads with large data cache requirements with threads 
having small cache demands or on clusters where fewer cores are enabled reducing 
the cache pressure.  One possible detection scheme for this condition would be a 
performance counter that tracks the number of cache evictions that a particular thread 
causes of data that belonged to a different thread.  This technique would employ 2-



bits of overhead on each cache line to distinguish the core for which the cache line 
was originally fetched.  On an eviction, if the core is not the one who originally 
fetched the data, a counter is incremented for the core causing the eviction. When the 
OS reads these counters it will be able to get an approximation for the negative impact 
a particular thread has on others in the same cluster, allowing a decision to be made 
about thread migration.   

3.2   Shared Instruction Stream/Data 

In some cases threads can either run the same instruction streams, i.e. SIMD, or may 
operate on the same pieces of shared data.  In these cases it is beneficial for the OS to 
map these threads to the same cluster.  There are several advantages to doing so.  
First, there is less cluster based evictions due to the sharing of the cache line.  Second, 
in the case of data it avoids the costly process of moving data around when multiple 
cores wish to modify the data. Third, the threads act as prefetchers for each other 
reducing the latency of the system. As in the previous case, section 3.1, the same 2-bit 
field can be added to each cache line noting the core in the cluster that fetched the 
cache line.  10 counters can be used to keep track of pairs of cores that shared a line.  
If a cache line is ever read by a core different than the one that fetched the data the 
corresponding counter is incremented.  This provides the OS with a count of currently 
scheduled threads in a cluster and the amount of sharing that is taking place.  To 
detect threads that are not currently in the same cluster that would benefit from being 
in the same cluster a more complex scheme would need to be designed on top of the 
coherence protocol to detect these conditions.  This is left for future work. 

3.3   Producer/Consumer Communication Patterns 

In some programming models there are producer/consumer data relationships.  This is 
where one threads output is constantly the input to another thread.  In these types of 
patterns it is beneficial for the OS to migrate the threads to the same cluster.  By 
doing so, the consumer can avoid going out of the cluster to get the data produced by 
the producer.  Depending on the interconnect in the system, if it isn’t possible to put 
them in the same cluster, then there is also benefit by putting them in clusters near 
each other. For example in a network-on-chip style interconnect having them close 
reduces the number of cycles it takes to transfer the data, and it relieves congestion on 
the network.  An elegant solution to detecting these communication patterns has not 
yet been worked out, but a possible solution in a directory based coherence machine 
might involve tracking some read/write patterns on cache lines at the home node. This 
again is left for future work.  

3.4   Single Thread Performance 

Some threads will require more performance because they may lie on the critical path 
of execution.  The OS needs to identify these threads and migrate them either to 



clusters with fewer cores enabled, and thus a faster frequency, or in the extreme case 
to one of the complex out-of-order cores in the system.  These threads can hopefully 
be identified by either the programmer or the compiler, but in some case may rely on 
hardware feedback.  In most cases these threads tend to serialize the operation of the 
machine, so in situations where few threads are running, identifying the ones that 
have been running the longest may indicate which threads need to be migrated to 
faster cores.  The OS may need to migrate threads to the complex cores for short 
periods of time and measure overall utilization to determine if there is a positive 
impact of running the threads at these locations. 

4   Conclusions 

With power becoming a major concern, particularly in servers, new energy optimal 
architectures need to be explored.  In this paper we looked at the use of reconfigurable 
architectures to provide a single chip solution to a broad range of targets.  When 
parallelism is abundant the system can adapt and save large amounts of energy, at the 
same time when single thread performance is the bottle neck the system can be 
reconfigured to provide the necessary throughput.  The architecture explored in this 
paper employed near-threshold techniques, L1 cache clustering, and heterogeneous 
design (in-order and out-of-order cores) to achieve extremely energy efficient 
computation.  The paper also looked forward at the difficult task the OS will have 
with managing the thread to core mapping for energy optimality, and proposed some 
initial techniques that might be employed by the OS.  
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