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Abstract—In aggressively scaled technologies, reliability concerns such as
oxide breakdown have become a key issue. Dynamic reliability management
(DRM) has been proposed as a mechanism to dynamically explore the trade-
off between system performance and reliability margin. However, existing
DRM methods are hampered by the fact that they do not accurately model
spatial and temporal variations in process and temperature parameters
which have a strong impact on chip reliability. In addition, they make
the simplifying assumption that the future workloads are identical to the
currently observed one. This makes them sensitive to sudden workload
variations and outliers. In this paper, we present a novel workload-
aware dynamic reliability management framework that accounts for local
variations in both the process and temperature. The reliability estimation,
along with the predicted remaining workload is fed to a dynamic volt-
age/frequency scaling module to manage the system reliability and optimize
processor performance. Using a fast on-line analytical/table-look-up method
we demonstrate an average error of 1% with up to 5 orders of magnitude
speedup compared to Monte Carlo simulation. Experiments on an Alpha-
like processor show our DRM framework fully utilizes the available margin
and achieves 28.7% performance improvement on average.

I. INTRODUCTION

Increasing manufacturing and environmental variabilities create new
challenges in designing a reliable system in nano-scale technologies [1].
Traditionally, chips are designed under the assumption of worst-case
temperature and supply voltage conditions to ensure a certain reliability
criterion throughout the lifetime [2]. Such guard-band approach approx-
imates the design as a uniform static transistor network and ignores
the dynamic nature of environmental conditions (temperature, supply
voltage, workload, etc.) and the static non-uniform nature of process
parameter variations. As a result, the approach is overly conservative
and incurs significant area/performance/power cost.

To resolve these issues, several dynamic mechanisms such as dy-
namic reliability management (DRM) and dynamic temperature man-
agement (DTM) have been proposed to recapture the system perfor-
mance and reliability margin [2]–[6]. Unlike DTM, which tends to
avoid temperature violations to minimize the chances of reliability
failure, DRM reacts to the current reliability state and then adjusts
the voltage/frequency to recover unacceptable reliability loss or use
available excess margin to boost performance by allowing operation at
a higher supply voltage [3]–[5]. Thus, DRM enables valid assessment
and control of system reliability for a user-defined lifetime target.

The concept of DRM was first introduced in [5], which considered
multiple failure mechanisms. Reference [6] extended the approach to
monitor and control the impact on lifetime reliability, by either thread
scheduling or dynamic voltage/frequency scaling (DVFS). In the latter
case, the current level of reliability degradation is used to set a voltage
limit that constrains the DVFS algorithm. The chip lifetime is therefore
guaranteed to be met with a high confidence level while maximizing
the allowable performance [6]. Karl, et.al., also explored the DRM
framework using a systematic model to improve the performance [2].
However, since the existing DRM approaches only partially consider the
manufacturing/environmental variabilities, they can incur inaccuracies
or unnecessary margins in realistic reliability assessment:

• First, none of [2], [5], [6] incorporate process variation in the
reliability prediction. Instead they rely on deterministic worst-
case process parameter values. As process variation has become
ever more pressing, such deterministic analysis is inaccurate and
degrades the efficiency of DRM.

• Second, many existing approaches only capture the temporal
temperature variation but neglect its spatial variation. Most perma-
nent wear-out mechanisms [7], such as oxide breakdown (OBD),
electromigration (EM) or thermal cycling, have an exponential de-
pendence on temperature. Thus, neglect of temperature difference
among functional blocks inevitably induces inaccuracy in results.

• Finally, existing DRM frameworks predict reliability by assuming
that the future workload is identical to the current one. However,

this assumption is very sensitive to sudden workload variations.
If the workload suddenly spikes, the DRM will erroneously
extrapolate this workload for the remainder of the lifetime and
limit the supply voltage overly strictly, thereby sacrificing possible
performance gain. On the other hand, if the workload suddenly
drops, the assumption that it will remain low throughout the
remainder of the chip lifetime will set the voltage limit too loosely,
thereby allowing a sudden high workload to consume most of the
remaining reliability budget. If this occurs near the end of the
lifetime, a final high workload could cause a chip failure before the
required life time is met, which would constitute a DRM failure.

In this paper, we propose a novel workload-aware dynamic reliability
management framework accommodating both the process and temper-
ature variations into the lifetime reliability analysis. Among all perma-
nent failure mechanisms, OBD has become increasingly prominent due
to the aggressive thickness scaling and hence is the initial focus of our
paper. After that we outline how to incorporate other permanent failure
mechanisms in our DRM framework. The proposed framework has the
following key modeling contributions:

• Process variation-aware OBD reliability assessment. Prior OBD
analysis either assumes oxide thickness uniformity across the chip
[8] or discards the temperature variations [9] and hence cannot be
employed by dynamic systems. To resolve this problem we extend
the approach in [8], [9] and project the tremendous parameter
space of device-level oxide thicknesses to the architecture-block
level by characterizing the block-level oxide thickness distribution.
The system reliability is then compactly expressed as the sum of N
double integrals for the N blocks and can be efficiently computed.

• Handling of spatial/temporal temperature variations. The evalua-
tion of OBD reliability at the granularity of blocks naturally en-
ables the incorporation of block-level spatial temperature variation
into the analysis 1. To handle the temporal variation, we partition
the lifetime into a series of time frames to investigate how OBD
reliability evolves with time and retains the cumulative damage
of its past states. Moreover, we also formulate the proposed
process variation and temperature-aware OBD model with a hybrid
analytical/table-look-up approach, which enables extremely fast
on-line computation. These key features (low complexity and
variation awareness) are crucial to effective reliability assessment
of a dynamic system.

• Confidence-based workload prediction. The DRM framework in
this paper uses a confidence-based workload prediction scheme to
anticipate the statistical characteristics of the long-term workload.
We examine the long-term workload temporal correlation and use
it to predict the mean of the remaining workload subject to a
certain level of confidence. The impact of future workloads is then
evaluated to improve the decisions on reliability control.

• DVFS control. We finally show how all these components can
be combined to formulate a comprehensive DRM framework
using a DVFS controlling scheme. A design flow to integrate
a proportional-integral-derivative (PID) controller into the pro-
posed nonlinear DRM system is introduced, which facilitates
voltage/frequency adjustment in the DVFS module.

We employ several benchmarks to verify the efficacy of our DRM
framework and underlying OBD reliability model. Experimental results
show that with the hybrid analytical/table-look-up implementation,
our reliabilty model can achieve an average error of 1% in lifetime
estimation for six different designs as well as five orders of magnitude
speedup compared with Monte Carlo simulation. Based on the model,
the framework can accurately control an Alpha processor to meet the
predefined lifetime with average performance improvement of 28.7%.

1This approach assumes temperature to be uniform across a block. However, large blocks
can be partitioned into smaller block sizes if this assumption does not hold.
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Fig. 1. A high-level block diagram of the proposed DRM system

II. DESIGN FLOW OF THE PROPOSED DRM SYSTEM

The proposed process variation and temperature-aware DRM frame-
work is shown in Figure 1. The framework performs two main tasks,
reliability assessment and proactive management. The first task, on-line
reliability evaluation and prediction (top half of Figure 1), is achieved
by the reliability assessment module. This module is software-based
and takes into account both process and temperature variabilities for
system reliability monitoring, as detailed in section III.

The input to the assessment module is the system profile including
temperature and supply voltage information of different functional
blocks. The raw data streams for the profile can be collected from the
circuit-level sensors. For design-stage simulation purpose, we collect
the thermal information by using Wattch [10] to monitor the power
consumption of functional blocks and then feeding to HotSpot [11]
to achieve the temperature profiles of the chip. The on-line profiling
module then processes the raw data and generates a comprehensive
architecture-block-level system profile, a typical case of which is shown
on the top left of Figure 1. The time-varying system profile helps
determine the parameters of the reliability models for the chip and is
used to capture the spatial and temporal temperature/voltage variations.
The hybrid analytical/table-look-up method used in our assessment
module can easily incorporate the variation information into analysis,
enabling efficient on-line prediction.

The second task of the proposed DRM framework is proactive
management of reliability (bottom half of Figure 1), and is achieved
by the DVFS module. This module computes the deviation between
the predicted overall lifetime reliability and target reliability. This
deviation, along with the predicted remaining workload, is then used
in the control system (PID) of the DVFS to adjust the system maxi-
mum voltage for the next time-stamp. Unlike general-purpose dynamic
management systems, DRM is a management strategy targeted at long-
term system reliability control and monitors the workload at a macro-
level of processor usage instead of a instruction-set level [2]. The
monitored workload is used to predict the remaining workload. Due
to the uniqueness of DRM, our emphasis is placed upon the long-
term temporal characteristics of workloads. By noting that most existing
workload prediction researches focus on phase-scale characteristics and
cannot be directly employed by DRM, we introduce a confidence-based
workload prediction method to exploit its long-term temporal behavior,
as described in section IV.

The maximum voltage set by the PID controller limits the possible
voltage that the system can use during high workload conditions. In the
following time, the operating voltage/frequency chosen by the DVFS
(limited by the computed maximum voltage) is fed into the processor
core (through the PLL/supply voltage interface, clock signal generator

and voltage regulator). Since DRM system does not have critical
demands on response time, either workload prediction module or DVFS
module can be implemented in software. The design details of the
DVFS module is discussed in section V. Once the supply voltage/clock
frequency for the chip is updated, the raw data of temperature/voltage
information is again collected by the sensors and sent to the profiling
module to complete the control loop.

III. PROCESS VARIATION AND TEMPERATURE-AWARE FULL-CHIP

RELIABILITY ANALYSIS

This section discusses the statistical model and implementation of the
reliability assessment module in Figure 1. As stated in section I, this
paper focuses on the process variation and temperature-aware model
for the OBD failure, while adopting the existing models in [2], [7] for
the other permanent wear-out mechanisms to comprehensively evaluate
the system reliability. Given a chip with N blocks and m devices, we
define the following notations in Table I for the remainder of the paper.

TABLE I
NOTATIONS USED IN THE FULL-CHIP RELIABILITY ANALYSIS

Notation Definition
x = [x1, . . . , xm] oxide thicknesses for m device of a chip

ai area for the ith device of the chip, i = 1...m
Aj total area for the jth block of the chip, j = 1...N
mj the number of devices within the jth block

fx,y(x, y)
joint probability density function (PDF) of x and y,
where x and y can be either vector or scalar

A. Review of Full-Chip Oxide Breakdown Reliability Analysis

The gate oxide degradation is a non-deterministic process dependent
on the oxide-thickness, transistor area, voltage, and temperature [12].
The oxide breakdown time is typically modeled as a random variable
(RV) following a Weibull probability distribution function [13]:

F (t) = 1 − R(t) = 1 − e−a( t
α

)bx

(1)

where F is the cumulative distribution function (CDF) of time-to-
breakdown t, a is the device area normalized with the minimum device
area, α and b are the scale and shape parameters of the Weibull
distribution, and x is the oxide thickness of the device [13]. Both
parameters α and b depend on temperature and voltage and can be
expressed by the closed-form models2 [13]–[15]. Then, for a given
oxide thickness, the reliability function of a device can be interpreted

as its conditional reliability function and written as R(t|x) = e−a( t
α

)bx

.
The overall reliability function for the whole chip is given by:

Rc(t) =

∫ ∞

0

. . .

∫ ∞

0

m
∏

i=1

Ri(t|xi)f(x1 . . . xm)dx1 . . . dxm (2)

where f(x1, . . . , xm) is the joint probability density function (PDF) of
the gate oxide thicknesses for m devices.

To simplify the product
∏m

i=1 Ri(t|xi), [9] proposed to use a
conditional probability Rc(t|u, v) where u and v are the sample mean
and variance of the chip-level oxide thickness distribution. Thus, (2) is
compactly expressed by:

Rc(t) =

∫ ∞

−∞

∫ ∞

−∞

Rc(t|u, v)fuv(u, v)du dv (3)

where
Rc(t|u, v) = exp(−Aeln( t

α
)bu+(ln( t

α
))2b2v/2) (4)

and fuv(u, v) is the joint PDF of u and v.

B. Incorporating Block-Level Spatial Temperature Variation

A potential problem of (3) is the underlying assumption that all the
devices across the chip share the same worst-case temperature/voltage
and hence bear the same parameters b and α for the device reliability
function R(t|xi). However, in reality, the on-chip temperature may
vary from block to block as shown in Figure 2. It is known that both
parameters b and α are heavily dependent on temperature [14], [15].
Thus, it is unfair to assume that hot-spots and inactive areas have the
same reliability model and are equally prone to the OBD failure. To
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Fig. 2. Temperature profile for an Alpha processor simulated by HotSpot [11]

overcome this problem, we need to account for temperature variations
in the reliability model.

In practice, temperature varies continuously across the chip. Tran-
sistors within a particular architecture-level block may share similar
temperature due to the similar activities and supply voltage. On the
contrary, inter-block temperature variation is much higher as functional
blocks usually perform completely different operations [3]. It is there-
fore sufficient to construct a temperature-aware reliability model at the
granularity of architecture-level blocks.

Then, given the oxide thickness, a theoretically rigorous formulation
of full-chip OBD reliability model can be described as the following:

Rc(t|x) =
m
∏

i=1

Ri(t|xi) = e
−

∑m
i=1

ai(
t

αi
)bixi

(5)

where αi and bi indicate temperature-dependent parameters for the
device-level reliability function in R(t|x). Because of the negligible
temperature difference within one block, (5) can be expressed as:

Rc(t|x) =
m
∏

i=1

Ri(t|xi) = e
−

∑N
j=1

∑mj
i=1

ai,j( t
αj

)
bjxi,j

(6)

where N is the number of architecture-level blocks.
Typically, the parameter variation of a device includes inter-chip,

intra-chip spatially correlated and random variation components [16].
Thus, for a set of devices within one particular block, they may
have different oxide thicknesses due to the variability. The frequency
distribution histogram of the oxide thicknesses for this block can then
be interpreted as a Block-level Oxide-thickness Distribution (BOD).
BOD shows how many devices in this block correspond to a particular
oxide thickness. Due to the high spatial correlation within one block,
all the devices within the block have the same inter-chip variation
component and approximately the same spatially-correlated variation
component. Thus, the difference in oxide thickness within the block is
mainly caused by random variation. BOD can therefore be considered
as the histogram of oxide thickness samples for different devices that
are independently drawn from one Gaussian random variable. As the
number of devices increases, the histogram of the oxide thickness
samples (or BOD) follows the curve of a Gaussian distribution.
Figure 3 validates the claim with the oxide thickness histograms for
two blocks (a decoder and a 32-bit multiplier) from a design similar to
Alpha 21264. It is apparent that we get distinctly Gaussian-like curves.

Now, by discretizing the BOD for a block into kj discrete intervals
assuming a truncated distribution, (6) can be represented by:

Rc(t|x) = e
−

∑N
j=1

∑kj
i=1

ai,j( t
αj

)
bjxi,j

(7)

where xi,j denotes the midpoint of the ith discrete interval of BOD for
the jth block and ai,j is the total area of all devices having thickness
xi,j . Thus, after normalizing the exponent with the total area of each
functional block, (7) can be expressed as:

Rc(t|x) = Rc(t|u,v) = exp



−
N

∑

j=1

Aj

kj
∑

i=1

pi,j(
t

αj
)bjxi,j





≈
N
∏

j=1

exp[−Aj

∫ ∞

−∞

φ(
x − uj√

vj
)(

t

αj
)bjxdx]

(8)

where pi,j = ai,j/Aj is the probability of observing an oxide-thickness
xi,j within a particular block; φ(x) is the PDF of a standard Gaussian;
uj (vj ) is the mean (variance) of the jth BOD.

2Our work employs linear models for ln(α) and b as in [13]–[15], but is not limited

by the particular forms of models.
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Fig. 3. Histograms of the oxide thicknesses for (a) a decoder and (b) a multiplier

Based on (8), the conditional reliability Rc(t|x) is compactly
expressed by Rc(t|u,v) with 2N distinct variables, where u =
(u1, u2, . . . , uN ) and v = (v1, v2, . . . , vN ) are the corresponding
mean and variance of BODs for N blocks. For the lifetime period
of interest, (8) can be further simplified using Taylor expansion:

Rc(t|u,v) ≈ 1 −
N

∑

j=1

[

1 − e
−Aj

∫

∞

−∞
φ(

x−uj√
vj

)( t
αj

)
bj x

dx

]

(9)

where the integral in the exponent is:

g(uj, vj) = e
ln( t

αj
)bjuj+(ln( t

αj
))2b2j vj/2

(10)

g(uj , vj) is used for clarity throughout the rest of the paper.

Then we can integrate the conditional reliability function in (9) over
the joint PDF fu,v(u,v) to evaluate the overall reliability:

Rc(t) =

∮ ∮

[

1 −
N

∑

j=1

(

1 − e−Ajg(uj ,vj)
)

]

fu,v(u,v)dudv (11)

Since exp[−Ajg(uj , vj)] is independent of any ui or vi that i 6= j, the
equation above is variable separable and can be compactly represented
by the summation of N double integrals:

Rc(t) = 1−N +
N

∑

j=1

∞
∫

−∞

∞
∫

−∞

e−Ajg(uj ,vj)fuj,vj
(uj , vj)dujdvj (12)

For each double integral in (12), we employ the marginalization tech-
nique in [9] to represent the joint PDF fuj,vj

(uj , vj) as the marginal

PDF product, where fuj
(uj) is a Gaussian PDF and fvj

(vj) is a chi-
square PDF for the jth BOD.

C. From Static to Dynamic Model

The spatial temperature variation-aware model in section III-B is still
a static model assuming the same temperature/voltage profiles over the
entire time-span, which cannot be applied to DRM. In practice, for
a dynamic system, both temperature and supply voltage are varying
from time to time. In this section we will investigate how to extend the
proposed model for a dynamic system.

For any time period, we can divide it into k time frames, [0,∆t],
[∆t,2∆t]... [(k − 1)∆t, k∆t]. When ∆t is small, it is reasonable to
assume that the supply voltage and temperature profile are steady within
the frame. The dynamic system reliability Rd(k∆t) at any time k∆t
is then the probability that the system does not fail within any single
frame in the period [0, k∆t]:

Rd(k∆t) =

k
∏

i=1

[1 − (Ri((i − 1)∆t) − Ri(i∆t))] (13)

where Ri(t) is the static reliability function of (12) within the time
frame [(i − 1)∆t, i∆t]. Since supply voltage and temperature profile
are steady within this time frame, the shape/scale parameters of R(t|xi)
are then uniquely determined and lead to a steady Ri(t).

Ri((i − 1)∆t) − Ri(i∆t) can be interpreted as the damage to the
system within the ith time frame and is small in practice. With Taylor
expansion, we can rewrite (13) as:

Rd(k∆t) ≈ 1 −
k

∑

i=1

[Ri((i − 1)∆t) − Ri(i∆t)] (14)



where the summation part denotes the accumulated damage during the
past k time frames. This on-line model for dynamic system reliability
estimation incorporates both temporal and spatial temperature variations
and can be incrementally evaluated, i.e., only the reliability function
within the current time frame needs computation.

D. Extended to a Fast Hybrid Analytical/Table-Look-Up Method

In this section we combine the analytical model in (12) with a table
look-up method to achieve further speed up. The pre-calculated look-up
table only needs to be computed once for a particular chip and can be
used throughout the lifetime.

Take the jth integral in (12) for example. Since uj and vj are
integration variables and eliminated afterwards, the result of the integral
is fully determined by Aj and the parameters of g(uj , vj) (ln(t/αj)
and bj as in (10)). Once the chip is designed, Aj happens to be a
constant for the jth functional block. Thus, with ln(t/α) and b acting as
indices we can construct a two-dimension look-up table to compute the
double integral for each functional block3 . Then, the system reliability
at any time t under certain temperature/voltage conditions (which
determine the values of α and b), can be easily computed using
bilinear interpolation according to the indices of ln(t/α) and b. For N
functional blocks, we have N look-up tables, with nα × nb entries in
each table, where nα(=100) and nb(=100) are the number of indices for
parameters ln(t/α) and b, respectively. Experimental results in section
VI show that the hybrid method leads to a faster speed but nearly
equivalent accuracy when compared to the analytical model in (12).

E. System Reliability for Multiple Permanent Failure Mechanisms

Similar as [2], the total chip reliability is derived by using the
contributions of each failure mechanism (OBD, EM, thermal cycling,
etc.). Due to the space limitation, we here only outline the computation
flow while the model details can be found in [2], [7]:

• Compute the failure probability of different mechanisms. The OBD
model is discussed in details in sections III-B and III-C. For
any other mechanism, we first derive its MTTF and then use
the Miner’s rule and a Weibull distribution model to convert the
percentage of lifetime to failure probability [2], [7].

• Evaluate system reliability. Once the failure rate/reliability of all
considered mechanisms are achieved, the system reliability can be
comprehensively evaluated as in [2]:

Rsys = (1 − POBD)(1 − PEM )(1 − PTC) (15)

where POBD, PEM and PTC are the failure rate due to OBD,
EM and thermal cycling, respectively. Since in our model tem-
peraure/voltage profile is known and directly used as the primary
input for calculation, this strategy naturally captures the correlation
and enables efficient on-line control of the system reliability.

IV. CONFIDENCE-BASED WORKLOAD PREDICTION

DRM is a management strategy focusing on long-term system
behavior. Existing DRM works [2], [6] perform prediction based on the
assumption that the future workload remains the same as the current
one. Such prediction may be easily disturbed by a short impulse and
thus make overly aggressive decisions. It is therefore crucial to fully
explore the long-term temporal correlation of the workloads and predict
their statistical characteristics.

We define W [n] as the normalized workload monitored at time stamp
nT , where T is the monitoring interval between two stamps. Figure 4
illustrates a 24-hour workload trace collected from an actual server.
There are two observations about the figure: (1) effect of locality, i.e.,
similar workloads are likely to be carried out in the near future; (2)
low or even zero long-term temporal correlation, mainly because the
threads executed at some time stamp can be completed within a certain
period of kT , where kT is the maximum execution time of a thread.

Based on those observations, we divide the executed workload trace
into M chunks, where W [(i − 1)p + 1], ..., W [ip], are p monitored
workload values in the ith chunk. Each chunk is then associated with a
random variable (RV), Xi, where i = 1, 2, ...M and M increases with

3All the look-up tables for different blocks share the same indices of ln(t/αj) and bj .

The difference in look-up entries between the blocks is due to the different block area Aj .

Fig. 4. a 24-hour workload trace example
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Fig. 5. (a) Correlation contour of the workload trace (b) Histogram of X and
the fitted gaussian curve for the workload trace in Figure 4 with M=86 and
p=1000 and T =1 second

time. The p workload values within the ith chunk can be interpreted as
the samples of Xi. Figure 5(a) shows the correlation contour between
Xi’s of the workload trace in Figure 4, where the diagonal line denotes
the self-correlation coefficient of 1, and any off-diagonal entry at (i, j)
denotes the cross-correlation coefficient between Xi and Xj . Clearly,
most cross-correlation coefficients are zero and in agreement with the
claim of un-correlation for long-term scale workloads. Although in
theory un-correlation does not guarantee the independence of non-
Gaussian RVs, we find that assuming independence for Xis is a
reasonable approximation in practice. We then denote the sample mean

as X = X1+X2+...+XM

M
, which approaches a Gaussian RV as M

increases. Thus, E(X) turns out to be an estimator of the mean of the

entire workload trace, i.e., E(X) = E(W ).

According to the central limit theorem, the distribution of X can be
constructed by averaging the randomly-selected samples from Xi’s (M
chunks). Figure 5(b) displays the histogram of X for the workload trace
in Figure 4, which is very close to a Gaussian curve. Once E(X) is
achieved from the histogram, we can estimate the mean of the remaining
workload, Eremain(W ) by:

Eremain(W ) =
E(X) × Tlife − Eexe(W ) × Tcurrent

Tlife − Tcurrent
(16)

where Tlife is the pre-defined lifetime, Tcurrent is the current time
stamp and Eexe(W ) is the mean of the executed workload.

A too conservative estimation may limit voltage scaling and hence
reduce the potential performance improvement, whereas an overly
aggressive prediction increases the chances of wear-out before the speci-
fied minimum operational lifetime. From the standpoint of reliability, an
aggressive prediction should be avoided in the period when prior knowl-
edge about the workload is not available or the accumulated damage is
close to the pre-defined threshold. We therefore employ a confidence-
based scheme to ensure that E(W ) is not over-aggressively predicted.

Then E(X) in (16) is replaced by a confidence-based estimator Xesti,

the confidence of which is defined as C = Pr(X ≤ Xesti) to evaluate
the degree of conservativeness of the prediction. In other words, once
the confidence of the prediction is determined, we can compute Xesti

according to the distribution of X.
Clearly, the system needs to be conservative at the early stage or

the end, and aggressive in the middle of the lifetime. Based on such
intuitions, we extend a bathtub-like failure function in [17] to two-
dimensions in Figure 6. The x-axis and y-axis denote the normalized
failure rate Fnorm = (1−Rsys)/(1−Rtarget) and normalized lifetime
Tnorm = Tcurrent/Tlife, respectively, where Rsys is the actual chip
reliability and Rtarget is the reliability target within the predefined
lifetime. The confidence is then given by:

C =

{

λβ(x0x)β−1e(x0x)β

+ C0, x ≤ 0.5

λβ(x0(1 − x))β−1e(x0(1−x))β

+ C0, x > 0.5
(17)
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Fig. 6. Bathtub-like confidence function with respect to normalized lifetime
and normalized failure rate

where λ, β, x0 and C0 are parameters from [17] and x =
max(Fnorm, Tnorm) 4. The complete algorithm for on-line confidence-
based workload prediction is summarized as follows:
Step 1: Compute the confidence C using (17);
Step 2: Compute p samples for X by averaging the randomly-selected
samples from Xi’s (M chunks);
Step 3: Construct the histogram for X;
Step 4: Fit the histogram to a Gaussian distribution;
Step 5: Compute Xesti that satisfies C = Pr(X ≤ Xesti);
Step 6: Compute Eremain(W ) using (16);

V. DESIGN FLOW OF DVFS MODULE

Due to the nonlinearity of the statistical reliability model, we suggest
a two-stage design flow of PID controller for DVFS. First, we replace
the nonlinear system with a simplified linear system and derive the char-
acteristic function. The stability condition along with the performance
constraints define the feasible domain of the PID parameters. Second,
we restore the original nonlinear system and fine-tune the parameters
within the feasible domain to maximize the performance gain.

We approximate the system by using a deterministic model for
linearization. The system reliability is then:

Rsys(t) = R0 exp(−A(t/α)(bx)) (18)

where R0 conservatively bounds the impacts of EM and thermal
cycling. For a certain reliability target Rsys,target, system lifetime can
be formulated by:

ln(t) = ln(α) + ln((− ln(Rsys,target/R0)/A)(1/bx)) (19)

The target and predicted reliability are then compared in the form of the
log of lifetime (reference signal ln(ttarget) versus ln(tpredict)). Since
ln(α) is linearly dependent on supply voltage, the sub-system described
in (19) is hence a linear system. By noting the discrete nature of the
system, the z-domain model can be given by Gs(z) = Kα/z [18].

Assume the z-domain model for the PID controller is: Gp(z) =
Kp + KI

z
z−1

+ KD
z−1

z
. The characteristic function is then a three-

order function of z that T (z) = z3 + K1z
2 + K2z + K3, where

K1=Kα(KI+KD+Kp)-1, K2=-Kα(2KD+Kp) and K3=KαKD [18].
By Vieta’s Formulas, the relationship between the roots of T (z) and
PID parameters can be explored. Instead of selecting the roots within
the unit circle to determine the parameters of PID [18], we utilize the
equations above as well as the constraints on predefined settling/rise
time and maximum overshoot to obtain the feasible domain. Similar
as [2], the feasible domain is then swept to find the parameter pair
achieving the maximum performance for the actual nonlinear system.

VI. EXPERIMENTAL RESULTS

The proposed variation-aware reliability model and DRM system
were implemented and tested on several benchmarks (C1-C6) varying
from 50K to 0.84M devices. All the process parameters for the
designs are based on a commercial 130nm technology model. The
oxide thickness variation model includes the inter-die, intra-die spatially
correlated and random variation components [16]. The defect generation
relationships for the technology node and the technology dependent
parameters of the oxide reliability function model are obtained from
[13]–[15]. The workload traces in the experiments were collected from
several servers for several months to provide realistic information about

4This function is not unique and can be replaced by other similar formulations.
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Fig. 7. Errors of the 10-faults-per-million for Monte Carlo simulation, the
proposed tempearture-aware approach, temperature-unaware approach in [9] and
conventional guard-band assuming minimum oxide thickness
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Fig. 8. DRM system behavior for a 10-year workload trace

processor utilization. The temperature profile of the system is simulated
by HotSpot [11] with Wattch to estimate the block power [10].

A. Efficacy of the Proposed Variation-Aware OBD Model

Once the post-layout design implementation and temperature profile
are given, we use the method in section III-B and III-D to compute
the OBD reliability. To validate the results, we employ the Monte
Carlo (MC) simulation of 1000 samples to compute the OBD reliability.
Table II compares our temperature-aware statistical approach (statisti-
cal) in section III-B and the hybrid analytical/table-look-up approach
(hybrid) in section III-D with MC simulation. Columns 3-6 compare
the accuracy based on lifetime estimation for 1-fault-per-million parts
and 10-faults-per-million parts. It is clear that both methods are in
good agreement with MC simulation, with errors of around 1% on
average. Columns 7-11 compare the run time for three methods. Unlike
MC simulation, both our statistical approach and hybrid approach are
able to analyze the circuit in seconds, independent of the number of
devices. The statistical approach (statistical) demonstrates around 2-3
orders of magnitude speedup for all the designs, whereas MC simulation
scales super-linearly with the number of devices. Moreover, the hybrid
approach (hybrid) shows more than five orders of magnitude speedup
over the MC simulation.

We further compare the overall reliability estimation results in Figure
7 for design C3 using MC simulation, the proposed approach in section
III-B, temperature-unaware approach from [9] and conventional guard-
band approach that assumes minimum oxide thicknesses across the chip.
The chip lifetime distribution (blue curve) is achieved by MC simulation
with 10000 sample chips of C3. One can see that for 10-faults-per-
million criterion, the temperature-unaware approach and the guard-band
have 25.1% and 54.3% errors, whereas our temperature-aware approach
can achieve an accuracy of 1.8% error and is very close to the result
by MC simulation. This clearly indicates the necessity for a process
variation and temperature-aware approach for reliability analysis.

B. Performance of DRM System

We implemented the proposed DRM on a five-stage pipeline proces-
sor similar to Alpha 21264 with 15 functional blocks. Each block is
mapped to the device-level for the reliability model in section III. The
voltage range for DVFS is 0.8-1.8V with a nominal voltage of 1.2V.



TABLE II
ACCURACY AND RUN TIME COMPARISON OF THE TEMPERATURE-AWARE STATISTICAL APPROACH IN SECTION III-B AND HYBRID

ANALYTICAL/TABLE-LOOK-UP APPROACH IN SECTION III-D WITH MONTE CARLO SIMULATION

Lifetime estimation error (%) w.r.t. MC Run time (sec.)/Speed up w.r.t. MC
Design No. of devices 1/million 10/million

statistical hybrid statistical hybrid
statistical hybrid MC

C1 50K 0.84 0.12 1.18 1.84 1.51 177× 0.020 13498× 267
C2 80K 1.50 0.68 1.28 0.30 1.59 238× 0.022 17486× 380
C3 0.1M 2.04 0.16 1.77 2.26 1.92 245× 0.019 24122× 470
C4 0.2M 2.23 0.63 1.90 1.30 1.93 363× 0.020 35206× 702
C5 0.5M 0.20 3.42 0.12 1.65 1.86 837× 0.020 77845× 1557
C6 0.84M 0.64 1.63 0.54 0.76 1.95 1183× 0.020 115325× 2307

Average 1.24 1.11 1.13 1.35 418× 47247×
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Fig. 9. DRM system behavior for a 24-hour workload trace

Figure 8 shows DRM system response for a 10-year period with a
randomized combination of workload traces collected from the servers.
The voltage is updated by PID controller on an hourly basis with
workload monitored on a second basis. The 1st sub-figure shows the
normalized failure rate of the chip, which is close to the target at
the end. The maximum voltage in the 2nd sub-figure represents the
voltage limit allowed for DVFS, not the actual operating voltage. The
3rd sub-figure is the normalized CPU utilization (workload). The 4th

sub-figure shows the peak performance improvement as a measure of
the improvement in attainable frequency (%) during periods of peak
CPU demand. The system demonstrates steady behavior for this trace
and achieves 28.7% gain on average and 36.2% gain at maximum.

We also explore a short-scale trace in Figure 9 to illustrate the details
of the DRM system, especially the interaction between the normalized
failure rate, maximum supply voltage, workload and peak performance
improvement. Figure 9 presents the DRM simulation for a 24-hour
workload trace, with voltage updated every ten minutes. It is apparent
that the degradation becomes more aggressive in the middle stage of
the trace, whereas it maintains a slow pace at the beginning and the
end. That is because the system tends to be conservative at the early
stage or the end in case of unpredicted wear-out, and hence assigns a
lower maximum voltage. The last sub-figure in Figure 9 shows peak
performance gain of the proposed DRM, which can achieve 17.5%
improvement on average and 37.6% at maximum.

Figure 10 displays the workload prediction results for the 10-year
workload trace, including the actual mean values of the whole trace
E(W ) and the remaining workload, the confidence-based workload
estimation Xesti, and its mean estimation Eremain(W ). One can see
the conservativeness of the prediction at the beginning and the end and
how the estimation values track the actual values in the middle with
certain aggressiveness. Figure 11 illustrates the reaction of the DRM
system to a sudden workload change at the 5th year, demonstrating the
system ability to control sudden changes.

VII. CONCLUSIONS

This paper presents a workload-aware dynamic reliability manage-
ment framework based on a statistical OBD reliability model. The
underlying OBD model captures the process and temperature variations
and accurately estimates the system reliability. A confidence-based
workload prediction scheme further improves the performance gain that
can be achieved. Experimental results show that the on-chip real-time
reliability monitoring and control can boost supply voltages beyond
nominal values, which may enhance system performance by 28.7%
without violating pre-defined reliability constraints.
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Fig. 10. Confidence-based workload prediction for a 10-year workload trace

4.5
 4.6
 4.7
 4.8
 4.9
 5.0
 5.1
 5.2
 5.3
 5.4
 5.5

0


0.5


1


C
P

U
  

  
  

  



u
til

iz
a

tio
n




4.5
 4.6
 4.7
 4.8
 4.9
 5.0
 5.1
 5.2
 5.3
 5.4
 5.5


1.4


1.5


1.6


1.7


1.8


M
a

x.
  

  
  

 


vo
lta

g
e

 (
V

)


4.5
 4.6
 4.7
 4.8
 4.9
 5.0
 5.1
 5.2
 5.3
 5.4
 5.5

0.45


0.5


0.55


Time (year)


N
o

rm
a

liz
e

d



fa
ilu

re
 r

a
te



Impact on the max. voltage


zoom in


Impact on the normalized failure rate


Transition point


Fig. 11. DRM response to a sudden change on workload
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