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Abstract
To exploit the benefits of throughput-optimized processors such as

GPUs, applications need to be redesigned to achieve performance and
efficiency. In this work, we present techniques to speed up statistical tim-
ing analysis on throughput processors. We draw upon advancements in
improving the efficiency of Monte Carlo based statistical static timing
analysis (MC SSTA) using techniques to reduce the sample size or smart
sampling techniques. An efficient smart sampling technique, Stratifica-
tion + Hybrid Quasi Monte Carlo (SH-QMC), is implemented on a GPU
based on NVIDIA CUDA architecture. We show that although this appli-
cation is based on MC analysis with straightforward parallelism avail-
able, achieving performance and efficiency on the GPU requires
exposing more parallelism and finding locality in computations. This is
in contrast with random sampling based algorithms which are inefficient
in terms of sample size but can keep resources utilized on a GPU. We
show that SH-QMC implemented on a Multi GPU is twice as fast as a
single STA on a CPU for benchmark circuits considered. In terms of an
efficiency metric, which measures the ability to convert a reduction in
sample size to a corresponding reduction in runtime w.r.t a random sam-
pling approach, we achieve 73.9% efficiency with the proposed
approaches compared to 4.3% for an implementation involving perform-
ing computations on smart samples in parallel. Another contribution of
the paper is a critical graph analysis technique to improve the efficiency
of Monte Carlo based SSTA, leading to 2-9X further speedup.

Categories and Subject Descriptors
J.6 [Computer Applications] Computer-Aided Design - computer-

aided design (CAD). 

General Terms
Algorithms, Verification
Keywords
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1.   Introduction
Recent years have seen the rapid scaling of throughput-optimized pro-

cessors, such as Graphics Processing Units (GPUs). Modern GPUs
deliver over 1 TeraFlops of computational power with more than 100
GB/second of memory bandwidth while conventional processors face
difficulties with frequency scaling and are increasingly incorporating
multiple cores on a chip to keep up with Moore’s law. Throughput pro-
cessors recognize two crucial aspects of machine organization which are
parallel execution and hierarchical memory organization. To increase
performance in throughput processors, applications will need to expose
parallelism while finding locality in their computations to overcome
restrictions arising from communication bandwidth bottlenecks. In this
work we show the importance of these two aspects for improving perfor-
mance and efficiency in the context of statistical timing analysis by draw-
ing inferences from the implementation on a specific GPU architecture.

Process variations have taken on increasing importance in nanometer-
scale CMOS. Rather than using simple corner models that capture worst-
case behavior at the device level (and lead to large guard bands), modern
CAD tools have moved towards a more probabilistic view of circuit tim-
ing behavior. Two primary approaches have been proposed to replace

corner models by incorporating process parameter uncertainty in timing
analysis. The first is statistical static timing analysis (SSTA), which mod-
els gate delay as a function of process parameters and propagates these
distribution functions to compute the circuit delay distribution [1-5]. We
refer to these approaches as traditional SSTA. The second approach is
Monte Carlo based SSTA (MC SSTA), which involves analyzing sam-
ples of the process variation space to obtain statistical distributions of cir-
cuit timing behavior. MC techniques are “embarrassingly parallel” and
have inherent advantages over traditional SSTA in exposing parallelism
for performance improvements in throughput processors. Hence, in this
work we focus on MC based algorithms. However, the difficulty is that
the standard MC approach of random selection of samples in the process
variation space requires too many samples for sufficient accuracy, result-
ing in high runtimes. 

An effective solution to address the high runtime cost of MC SSTA is
to use techniques to reduce the sample size. Sample size reduction is
achieved using a combination of standard techniques in statistics called
variance reduction techniques [6] and the use of circuit specific informa-
tion. These techniques have been studied in recent years for parametric
yield analysis, statistical timing, crosstalk and leakage analysis [7-13]. In
[7], the authors propose mixture importance sampling for statistical
SRAM design and analysis. However, while several approaches are
reviewed, no results are presented. In [8], the authors propose to use
Quasi Monte Carlo Analysis for yield estimation. This approach cannot
be directly extended to systems with large number of dimensions (vari-
ables) which is often the case with process variation. In [9], the authors
attempt to address this issue by reduction of problem dimension using a
Karhunen-Loeve expansion (KLE) model of spatial correlation. The pro-
posed problem formulation considers a grid-less spatial correlation
model with assumptions of continuity, positive definiteness and bounded
variance. The results report significant speed-ups in terms of sample size
reduction. One drawback of the work is that it is not clear if existing
design flows that consider a grid-based spatial correlation model can use
the properties of stochastic processes with a covariance kernel [10],
while also achieving a significantly reduced set of variables which can be
handled by QMC. In [11] the authors propose to combine QMC and LHS
to address the issue of QMC’s inability to handle high dimensionality.
[11] also proposes to use stratified sampling for additional performance
improvement. In [12] the authors present a robust theoretical framework
for the ability of QMC and LHS-based methods to speed up statistical
timing analysis. Further, they propose techniques to generate QMC sam-
ples tuned for optimal performance in SSTA. An efficient method for sta-
tistical analysis of full cheap leakage using an application of QMC is
proposed in [13]. 

In this work we draw upon these advancements in MC SSTA. How-
ever, with a reduced sample size the objective of exposing parallelism for
performance on throughput processors poses new challenges. In the case
of GPUs, the level of parallelism required in the application is much
higher than the units of parallelism to hide bottlenecks including memory
access time. In a random sampling based approach the sample size is in
the range of tens of thousands, about two orders of magnitude higher than
the units of parallelism available in the GPU hardware. Therefore, this
enables high utilization of resources on the GPU simply by performing
computations on the samples in parallel. An implementation of random
sampling MC SSTA on GPUs was explored in [14], where it is illustrated
that such an implementation is sufficient for adequate resource utiliza-
tion. However smart sampling algorithms can achieve accurate results
with a sample size that is typically in the range of 100-200 [11], which is
the same order of magnitude as the hardware parallelism available on a



GPU. This reduction in sample size cannot be translated to a correspond-
ing reduction in runtime for a GPU with such a straightforward imple-
mentation. In addition to enabling fast statistical timing analysis of chips
with millions of gates, this additional improvement opens up possibilities
for using SSTA in a design optimization loop. 

The main contribution of this work is to illustrate performance and
efficiency improvements in the context of smart sampling based MC
SSTA by recognizing the aspects of parallel execution and hierarchical
memory organization in throughput processors. This translates to the fol-
lowing key ideas leading to the implementation.  

• Expose more parallelism. In the context of smart sampling based MC
SSTA, gates in a circuit that do not depend on each other for input
data given the computations already performed can be analyzed in
parallel, leading to data parallelism or gate parallelism. We propose a
smart scheduling algorithm for allocation of gates to parallel threads
to make use of this parallelism. We show that exposing gate parallel-
ism is crucial to achieving parallel execution on GPUs in the context
of smart sampling based MC SSTA.  

• Find locality in computations. Finding locality in computations is
critical to avoid restrictions arising from communication bandwidth
bottlenecks. We lump together computations that are manageable
within the fast local memory to avoid bottlenecks from accessing
slow global memory.

We attempt to illustrate these general principles for throughput proces-
sors through an implementation of the smart sampling based MC SSTA
technique called SH-QMC (Stratified Hybrid + Quasi Monte Carlo),
which was proposed in [11], on Nvidia's CUDA-based GPU platform.
Though the implementation itself is specific to the platform, this serves
to illustrate the effectiveness of these concepts. The algorithm in [11]
achieves a significant reduction in the number of samples needed to
achieve accurate timing results while also considering a detailed process
variation model incorporating within die variation. We compare the pro-
posed implementation of SH-QMC with a straightforward sample level
parallelism approach. Average speedups over random sampling MC
SSTA improve from 11.2X to 192.5X for the two implementations of
SH-QMC on benchmark circuits ranging from 15,000 to 60,000 gates.
When the GPU system is compared with a CPU an average speedup of
153X is achieved. The average runtimes normalized to a single STA on a
CPU is 0.46, pointing to the result that smart sampling based MC SSTA
on a GPU is faster than a single STA on a CPU. 

A second contribution of this work is a critical graph analysis tech-
nique to speed up MC SSTA. Nominal STA is used to identify gates with
very low probabilities of falling on critical paths under process variation,
and are pruned from further consideration, without impacting the accu-
racy of statistical timing analysis. This enables fast evaluation of circuit
samples leading to a 6.8X runtime reduction for the benchmark circuits
considered.

The paper is organized as follows. Section 2 describes the important
relevant hardware and software features in GPUs. Section 3 briefly dis-
cusses the SH-QMC algorithm for smart sampling based MC SSTA. Sec-
tion 4 describes the implementation of MC SSTA on GPUs and proposes
techniques to achieve resource utilization when mapping SH-QMC onto
GPUs. Section 5 discusses the critical graph analysis technique. Section
6 presents results and the paper concludes in Section 7.

2.   CUDA Platform
NVIDIA CUDA (Compute Unified Device Architecture) is a general

purpose parallel computing architecture that is easily programmable and
exhibits good performance in scientific applications [15]. The CUDA
architecture is built around multiprocessors, each consisting of several
scalar processor (SP) cores. From a software perspective, threads are the
basic unit for parallel computation and the code they execute is called the
kernel. A thread block, also referred to as a block, contains a batch of
threads. Threads in the same block can efficiently share information
through shared memory and run on the same multiprocessor. Within a
block, 32 consecutive threads are grouped into a warp. All threads in a

warp follow the exact same sequence of instructions. CUDA threads
have accesses to multiple memory spaces during their execution. Global
memory has the largest size but also exhibits long access times compared
to other on-chip memory. The CUDA warp consists of two half-warps of
16 threads each. If all 16 threads of a half-warp access consecutive words
from global memory, the overhead is significantly lower than when non
consecutive words are accessed [16]. Other types of fast on-chip memory
in the targeted CUDA architecture include register memory and shared
memory. Shared memory can be shared within a block and is signifi-
cantly faster than global memory.  

3.   Smart Sampling based MC SSTA: SH-QMC
We propose to implement a smart sampling based MC SSTA approach

called SH-QMC (Stratification + Hybrid Quasi Monte Carlo) [11] on
GPUs. This algorithm significantly speeds MC based SSTA using sample
size reduction. In this technique, circuit timing criticality information is
used for intelligent selection of samples. It is shown that 100-200 sam-
ples are sufficient for accurate statistical timing analysis. The process
variation model is based on [2], which considers intra-die spatially corre-
lated variation by partitioning the die into n * n grids and assuming iden-
tical parameter variations within a grid [11]. SH-QMC uses a
combination of standard techniques and and circuit timing criticality
information to reduce sample size for MC based analysis (variance
reduction techniques). The variance reduction techniques employed are
Quasi Monte Carlo (QMC), stratified sampling, and Latin Hypercube
Sampling (LHS) [6]. These techniques are employed on variables based
on their convergence properties and the ability to handle multiple vari-
ables. A detailed analysis of the algorithm is presented by the authors in
[11]. 

4.   Monte Carlo based Statistical Static Timing Analysis on 
GPUs

This section describes techniques for efficient implementation of MC
SSTA on GPUs. In a random sampling based MC approach, samples of
the chip are generated using process variation information. These sam-
ples have no data dependence on each other and therefore are directly
amenable to parallelism. This is referred to as sample parallelism. Each
thread is dedicated to the computation of one sample (representing one
virtually fabricated die) of the circuit. Gates are visited in the topological
order in the circuit by a thread and delay computations are performed.
For the computation of process variation samples we use a Mersenne
Twister based random number generator [14]. A detailed discussion is
omitted for brevity. 

4.1  Enhanced resource utilization for implementation of SH-
QMC on GPU

Sample parallelism is sufficient to keep resources utilized on GPUs
when employing random sampling[14]. However the sample size in SH-
QMC is typically only 100-200, which is comparable to the number of
streaming processors available in GPUs. A straightforward implementa-
tion in the spirit of the approach in [14] leads to under-utilization of
resources. In this section, we describe techniques which adhere to the
two key ideas for performance and efficiency in throughtput processors
introduced in Section 1. With this improved resource utilization, per-
forming SSTA repeatedly in a design optimization loop with hundreds of
thousands of iterations becomes a possibility for moderately sized cir-
cuits. 

a. Parallelism - exposing gate parallelism
For gates with no data dependence gate delay calculations can be per-

formed in parallel. To leverage this parallelism we propose static sched-
uling of gates in the circuit using a scheduling algorithm prior to
performing statistical timing analysis. A schedule table assigns gates to
levels such that gates at a given level are assigned to parallel threads only
after computations on previous levels have been completed (Figure 1).
All threads working on gates in the same sample are grouped together
within a CUDA block. A block consists of threads that can efficiently
communicate with each other using shared memory. Threads working on



different samples of the circuit are grouped into different blocks, allow-
ing flexible use of memory and resources. For assigning gates to the
schedule table, we propose two algorithms - Algorithm 1 and Algorithm
2. The pseudocode for both algorithms is presented in Figure 2. In Algo-
rithm 1, the gates are sorted in topological order. A gate is ready to be
scheduled when all its fanin gates have been scheduled in previous levels
of the schedule table. All ready gates are assigned to levels such that the
number of gates per level does not exceed the key parameter MaxPer-
Level. Algorithm 2 performs smart scheduling of gates to reduce the total
number of computation steps. In this case gates that are ready to be
scheduled are preferentially grouped together in a level based on three
criteria:

1. Fanout count: Gates with large fanouts are assigned a higher prefer-
ence for scheduling. This allows more freedom for gate choices in 
subsequent levels where more gates are likely to have their fanin 
gates already scheduled. 

2. Global memory access: Gates with common fanin gates are grouped 
together to avoid redundant fetching of delay data from slow global 
memory. 

3. Pin count: Gates with the same or similar number of inputs are 
assigned to the same level. Gates with higher input pin counts 
involve more delay computation steps. Since all threads within a 
CUDA warp are forced to perform the same number of computations, 
all threads in a warp complete at the same time as the thread for the 
gate with the largest pincount. Therefore, grouping together gates 
with lower input counts in the same level leads to speed up.  

Given the list of ready gates, a gate g is selected for scheduling to the
next level such that a linear sum of costs based on the above three criteria
is maximized. ExtraFanin is the number of fanin gates of g that are not
already fanins for other gates in the current level. The algorithm tries to
select gates with low values of ExtraFanin to minimize the total memory
accesses from global memory required to perform computations on gates
in the current level. FaninDiff is positive if the new gate selected has
more pins than the gates in the current level. A maximum of MaxPerl-
Level gates are selected per level and the list of ready gates is updated
before gates are allocated to the next level in the schedule table. 

b. Localizing computations in shared memory
Since global memory has much higher latency and lower bandwidth

than on-chip memory, global memory accesses should be minimized.
Shared memory is a fast on-chip memory resource and therefore ideal for

storing all intermediate information. However, the shared memory size
for each multiprocessor is small (16KB in typical CUDA architectures),
which is small compared to global memory. The maximum size of shared
memory allocated to a block is no larger than 16KB, which is not suffi-
cient to store all intermediate information in practical sized circuits.
Hence global memory is used to store the delay information. To mini-
mize access of this data from global memory, we propose a technique to
localize computations such that they are manageable within the limits of
shared memory. As mentioned in Section 4.2a, the circuit is scheduled
into multiple levels in a schedule table to expose gate parallelism. We
group N levels into one entity or subcircuit, where the parameter N is a
function of the shared memory size. Before gates in the first level of the
subcircuit are scheduled, input data for this subcircuit is loaded into the
shared memory. When gates in subsequent levels require input data
already accessed or computed by gates in the previous levels within the
same subcircuit, this is accessed from the shared memory. This mini-
mizes access of data from global memory. In addition, while computa-
tions on gates in the current subcircuit are being performed, the algorithm
fetches data required for the next subcircuit (defined by the next N levels)
if not an output of the current computation. This allows overlapping of
memory access steps and arithmetic computations so that global memory
latency is effectively hidden.

Figure 3 summarizes these techniques. Computations for one circuit
sample are illustrated in the figure. The schedule table resides in global
memory. Gates in the current level of the schedule table are assigned to
different threads. Process variation samples for the gates are computed in
parallel and gate delay computations are performed. The input delay

Figure 1. Gate scheduling. Gates in a sample with no dependence are
computed in parallel. In graph shown, gates g1,g2,g3 have no
dependence and can be assigned to the same level. However,  g3 is a 2-
input gate which if assigned to the same level as g1 and g2, increases the
computational steps in the level. Therefore, g3 is assigned to the next
level alongwith gate g4. 
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Figure 2. Algorithm 1 and Algorithm 2 for gate scheduling. 

Scheduling Algorithm 1
Topologically sort gates in the circuit  
queue ReadyGate 
Level = 0 
while all gates are scheduled
{
    for all gates g not scheduled, if g is ready
            Add g to queue ReadyGate
    while ( size of Schedule[Level] < MaxPerLevel .AND. ReadyGate is not empty)
                Add to list Schedule[Level] ( ReadyGate.pop() )      
     Level ++
}
return schedule 

Scheduling Algorithm 2
Topologically sort gates in the circuit  
queue ReadyGate 
Level = 0 
while all gates are scheduled {
    for all gates g not scheduled, if g is ready
            Add g to queue ReadyGate
    faninlist = {} 
    faninM = 1 
    while size of Schedule[Level] < MaxPerLevel .AND. ReadyGate is not empty {
             Find g in ReadyGate to maximize Weight(g,faninlist,faninM)
             Add g to Schedule[Level]
             Remove g from ReadyGate, Add fanin gates of g to faninlist
             faninM = max( fanincount(g), faninM )                      
     } 
     Level ++ 
}
return Schedule 

    Weight(g,faninlist,faninM)
Fanout = fanoutcount(g)
ExtraFanin = number of fanin gates of g not in faninlist 
FaninDiff   = max( fanincount(g) - faninM, 0 )
Weight =  Fanout - CoeffMem*ExtraFanin - CoeffDelayStep*FaninDiff



information required for the computations is accessed from
current_subckt in shared memory. Here N levels in the schedule table are
grouped together. The current_subckt in shared memory consists of all
input information required by gates in N levels including the current
level. This data was previously loaded into the shared memory from
global memory. While arithmetic computations are performed one level
at a time on the set of N levels, delay information for the next set of levels
i+N to i+2*N-1 is loaded from global memory to shared memory as
illustrated. The table next_subckt stores this data in shared memory. This
allows better hiding of latency for the global memory access within each
thread. Also, access of data for N levels at a time avoids repeated
accesses from global memory. The output information from the current
delay computations are stored in the delay table in global memory and
also updated appropriately in the table next_subckt.   

5.   Critical Graph Analysis for MC SSTA
In this section we propose a technique to improve the performance of

SSTA through critical graph analysis. The basic idea is to identify critical
paths in the graph by performing heuristics. In other words, gates which
are expected to have a negligible effect in determining the worst case
arrival time of the circuit can be pruned or avoided from consideration in
subsequent analyses, leading to speedups in the overall statistical analy-
sis. In the context of variability, criticality is statistical. The challenge
here is to assign  probability values to gates/paths in the circuit based on
a measure of criticality. In [17], the authors propose an algorithm to com-
pute criticality probability of gates in the circuit. This algorithm com-
putes criticality accurately, however it can potentially add a significant
runtime overhead to the SSTA. It may be noted that the proposed critical
graph analysis technique only requires that all sufficiently critical gates
be selected for accuracy in subsequent SSTA. The exact values for criti-
cality probability are not required in the further analysis. Therefore, we
propose a simpler technique for critical graph identification. We propose
that slack information obtained from  STA performed at the nominal pro-

cess corner be used to identify the critical graph. The timing overhead for
this technique is significantly lower. 

• Nominal STA based Critical Graph Identification
This technique uses information obtained from timing analysis of the

circuit at the nominal process corner. The example in Figure 4 illustrates
the technique. Nominal STA is performed and slack information is
obtained at all gates in the circuit. Gates with significant slack, in this
case higher than a threshold value of 0.3 are excluded from consideration
when applying MC based SSTA. The reduced graph size will allow the
runtime-dominant MC STA runs to be reduced roughly linearly with cir-
cuit size. The threshold slack is defined as s% of the worst arrival time at
the nominal sample, where s is the pruning parameter. For instance, s is
30% in the above example if circuit delay is 1 unit. 

6.   Results
We implement the proposed approach on an Nvidia Tesla S1070 GPU

with a 3.16 GHz Intel Xeon-based Linux machine serving as the host.
The GPU system has 4 GPU cards totalling 960 streaming processor
cores [18]. Results in this section are based on a 65nm commercial tech-
nology library. In our implementation we only consider channel length
variation as a source of process variation for simplicity, however other
sources can be readily implemented. The inter-die, spatially correlated
intra-die and uncorrelated random components of channel length varia-
tion are considered. The overall standard deviation is 10% of nominal
channel length. Simulations are performed on four large circuits, Viterbi
Decoder 1 (VD1), Viterbi Decoder 2 (VD2), USB 2.0 Core (USB), and
an Ethernet MAC Core (ETHER), with gate counts varying from approx-
imately 15,000 to 60,000. We perform synthesis and APR on all the cir-
cuits using commercial tools.

Table 1 compares the implementation of a random sampling based MC
SSTA approach with the SH-QMC approach, both on the Tesla S1070
GPU system. The results indicate that a straightforward implementation
of SH-QMC exploiting sample level parallelism does not lead to speed-
ups corresponding to the reduced sample size w.r.t a random sampling
based approach, whereas much higher speedups are obtained using the
proposed techniques to improve resource utilization for smart sampling
techniques. The sample size used in the random sampling based approach
is 50,000. The number of samples used in the SH-QMC approach is 192
(the exact number is related to the granularity of sample size in the SH-
QMC approach based on [11]). The SH-QMC approach is implemented
in three variants: 

1) SP: Only sample level parallelism is considered. This is based on
the implementation in [14]. An active thread is dedicated to computations
on a single sample; 

2) SGP: Multiple threads perform computations on a sample by
exploiting gate parallelism; 

3) SGP+S.Mem. In this case shared memory is utilized and prefetch-
ing of data is performed.
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Figure 3. Summary of proposed approaches to improve resource
utilization. Concurrent computation on gates in the same level and use of
shared memory are illustrated. 
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Figure 4. Illustration of graph reduction. Slacks for nodes are indicated next
to corresponding gates. Gates with slacks higher than a threshold of 0.3 at
output node are removed to obtain the reduced graph in the example. 



We define the efficiency of the SH-QMC implementation as the run-
time per sample of the random sampling approach divided by the runtime
per sample for the SH-QMC approach. If the reduction in sample size for
SH-QMC w.r.t random sampling could be translated into a corresponding
reduction in runtime by the same factor then the efficiency is 100%
according to the definition. In the GPU implementation we show results
using both a single GPU card and four GPU cards in the S1070 GPU sys-
tem. For the single GPU implementation, the speedup of the implementa-
tion compared to  a random sampling approach increases from 30.5X for
sample parallelism (SP) to 172.7X for SGP+S.Mem. This demonstrates
that exposing gate parallelism and exploiting shared memory greatly
increases resource utilization in the GPU for smart sampling based MC
SSTA. The efficiency metric for the implementation increases from
11.7% for SP to 66.3% for SGP+S.Mem. When all cards in the multi-
GPU system are used, we achieve 192.5X speedup on average for
SGP+S.Mem compared to 11.2X for SP. In this case the runtime
improvement is more pronounced compared to the case of a single GPU,
since more resources are available per sample, leading to even lower
resource utilization without the proposed techniques. The efficiency met-
ric increases from 4.3% for SP to 73.9% for SGP+S.Mem for SH-QMC.
Figure 6 illustrates the trend in performance improvement versus sample
size for SP and SGP+S.Mem. As the sample size decreases the perfor-
mance improvement with resource utilization increases significantly,
underlining the synergy of these techniques with smart sampling based
MC techniques.

Table 2 compares the efficiency of SH-QMC with 192 samples on a
CPU versus a GPU system. The results are also shown for a single STA
run on the CPU. On average a 48X speedup is achieved for a single GPU
card over a quad core CPU. The average speedup is 153X when the
multi-GPU system is compared with the quad-core CPU. The runtimes
normalized to that of a single STA on a CPU are 1.26X and 0.46X,
respectively, for a single GPU and multi-GPU. Thus MC SSTA runtime
on a GPU is comparable to that of a single STA run on a CPU. 

As shown in Table 1, the runtime for SH-QMC on the Ether circuit
(57K gates) is only 600ms on a GPU even with a simple implementation
using sample parallelism. Extrapolating from this data, this means that
we can perform statistical analysis on large designs with millions of gates
with low runtime. In addition, for circuits of similar sizes, the additional

20X improvement with the proposed approaches opens up possibilities
for the use of SSTA in a design optimization setting where the anlaysis
can be performed repeatedly in a loop for better quality of results. To
illustrate the basic idea we demonstrate a simple experiment where SH-
QMC is performed in tandem with gate sizing. Here, we select gates ran-
domly for sizing, and perform SH-QMC after every sizing step. This is
repeated for 100,000 sizing steps and the runtime is reported in Figure 5.
The proposed approach for implementation of SH-QMC (SGP+S.Mem)
is compared with the sample level parallelism based implementation (SP)
for the benchmark circuits studied. For the largest circuit with 57K gates,
the runtime is reduced from 16.7 hours to 42 minutes with the proposed
approach. In a similar spirit, we compare the runtime of SH-QMC on
both CPU and GPU with STA on a CPU, in Figure 7. The analyses are
performed in a loop involving 100,000 sizing iterations for the Ether cir-
cuit (57K gates). The runtime for the cases of SH-QMC on a CPU and
STA on a CPU are 166 hours and 2.7 hours respectively, compared to 42
minutes for the proposed SH-QMC implementation on GPU.

Figure 8 illustrates the runtime improvement versus the degree of gate
parallelism when using scheduling algorithm 2 from Figure 2. The
improvement in runtime saturates around a gate parallelism of about 200.
The discontinuity in the graph at a gate parallelism of 64 is because an
additional warp is required in the block to accommodate a new thread in
this case (64 is a multiple of 32, the warp size in CUDA). Beyond this

Table 1. Comparison of runtime for SH-QMC (192 samples) vs random sampling based MC SSTA on GPU. SH-QMC is implemented with (a) sample level 
parallelism or SP (b) sample + gate parallelism or SGP. (c) SGP + efficient shared memory usage or SGP+S.Mem.  

Circuit # of Gates RS 50k (ms) SH-QMC on 1 GPU (ms)/Speedup w.r.t RS on 
1 GPU

SH-QMC on 4 GPU (ms)/Speedup w.r.t RS on 4 GPU

1 GPU 4 GPU SP SGP SGP+S.Mem SP SGP SGP+S.Mem
VD1 14503 4630 1620 155/30X 32/147X 28/164X 148/11X 15/109X 13/123X
VD2 34082 10870 3810 366/30X 70/155X 64/170X 349/11X 33/116X 30/128X
USB 32898 11360 4050 364/31X 71/160X 65/175X 344/12X 17/232X 16/256X
Ether 57327 19370 6810 634/31X 119/163X 106/182X 600/11X 29/233X 26/263X
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Table 2. Comparison of runtime for SH-QMC (192 samples) on GPU vs 
CPU. and single STA on CPU. The CPU is a 3.16GHz Intel Xeon processor.
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w.r.t quad 
core CPU

Runtime of SH-
QMC on Tesla 
GPU norm. to  

CPU STA

1 card 4 cards
VD1 20ms 1.1s 28ms/39X 13ms/85X 1.4 0.65
VD2 50ms 2.9s 64ms/45X 30ms/97X 1.28 0.6
USB 50ms 3.2s 65ms/49X 16ms/200X 1.3 0.32
Ether 100ms 6.0s 106ms/57X 26ms/231X 1.06 0.26



point, each block requires more registers (for the new warp) and the num-
ber of registers required per multiprocessor exceeds the capacity. There-
fore, the number of blocks that can be active per multiprocessor is
reduced. This leads to the runtime overhead.

We evaluate the accuracy of the critical graph identification approach
in  Table 3. The second column shows the percentage of gates pruned
from consideration after critical graph analysis. We perform experiments
on 80,000 samples where the possible error arising from critical graph
analysis is computed at each sample. The third column shows the per-
centage of samples which incur absolutely no error. The error in compu-
tation of the 99th percentile of the circuit delay distribution (using 80,000
samples) is shown in the fourth column. We see that across all the bench-
marks studied, more than 98.6% of samples incur absolutely no error.
Also, the error in computation of the 99th percentile of worst arrival time
is negligible. Table 4 illustrates the results from graph reduction for the
benchmarks studied. The point on the sizing curve such that the hardware
intensity (defined as the magnitude of the ratio of percentage change in
power to percentage change in timing constraint) is 1 is selected for anal-
ysis in the table. On average a 6.8X speedup is achieved through the new
pruning approach on the GPU implementation of SH-QMC, which is
orthogonal to the speedups described above.

7.   Conclusions
We present an implementation of smart sampling based MC SSTA on

a GPU system. We show that a straightforward implementation of smart
sampling that exposes only sample parallelism under-utilizes resources in
the GPU, in contrast to random sampling based MC SSTA approaches
where this type of parallelism is sufficient. We propose several tech-
niques to achieve high resource utilization for the case of smart sampling

based MC SSTA, particularly gate parallelism and enhanced use of
shared memory. While sample parallelism leads to only 11.2X speedups
using 192 samples compared to random sampling with 50,000 samples,
our techniques lead to 192.5X speedups for the same comparison. In
terms of an efficiency metric, the proposed techniques achieve an effi-
ciency of 73.9% for smart sampling MC SSTA compared to a modest
4.3% for sample parallelism. Most significantly, MC SSTA runtime on a
multi-GPU is shown to be over twice as fast as a single STA run on a
CPU. This work also proposes a critical graph analysis technique to fur-
ther speedup MC SSTA, achieving a 2-9X speedup on several bench-
marks.
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Table 3. Quality of results for the critical graph analysis technique.  
Circuit % gates 

pruned
% of sam-

ples with
zero error

Error in 
99th percen-

tile AT
VD1 65.4 99.74 0.018
VD2 43.2 99.60 0.015
USB 81.7 98.60 0.080
Ether 89.3 98.82 0.045
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Figure 7. SH-QMC with 192 samples on GPU is compared with SH-QMC
on CPU and STA on CPU, on a logarithmic scale, for Ethernet circuit
with 57327 gates. SH-QMC on multi-GPU is faster than STA on CPU. 

Table 4. Runtime improvement from graph reduction combined with the 
proposed technique.  

Circuit # of Gates % gates 
pruned

S.G.P+
S.Mem

(ms)

S.G.P.+
S.Mem+

G.Red
(ms)

Speedup 
due to 
graph 

reduction
VD1 14503 65.4 13.1 4.5 2.9
VD2 34082 43.2 29.7 16.9 1.8
USB 32898 81.7 15.8 2.9 5.5
Ether 57327 89.3 25.9 2.7 9.4
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Figure 8. Speedup of SH-QMC algorithm implemented on multi-GPU for a
USB circuit (14,503 gates) with smart scheduling algorithm Algorithm 2.
X axis indicates the maximum number of gates computed in parallel. A
discontinuity in resource requirements above a parallelism of 64 leads to
the discontinuity in the graph. 


