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Abstract—Traditional process variation modeling is primarily focused on

design-time analysis and optimization. However, with the advances of post-

silicon techniques, accurate variation model is also highly desired in various

post-silicon applications, such as post-silicon tuning, test vector generation,

and reliability prediction. The accuracy of such post-silicon variation models

is greatly improved by incorporating test measurements from each wafer or

die. However, to limit test cost, the number of measurements must be reduced

as much as possible. This paper proposes an active learning framework

to dynamically extract post-silicon process variation models with tightened

variance from measurements. The framework is composed of two stages,

active training and model adaptation. Active training collects information

and initializes the models to be used for the forthcoming wafers. Model

adaptation stage then validates the models and optimally determines the test

configuration for partial testing to reduce the test cost. Experimental results

based on the measurements from two industrial processes show that the

proposed framework can achieve variation models with variance reduction

of ∼80% when compared with design-time variation models. Meanwhile,

the average estimation error for those untested sites is well maintained at

∼2-3% using merely ∼30% available test structures for two processes.

I. INTRODUCTION

Susceptibility to process variation has increased with the scaling of

CMOS into the nano-regime of VLSI designs [1]. The application of

new resolution enhancement techniques complicates an already complex

manufacturing process and makes it more difficult in maintaining process

uniformity [1]. As a result, efficient and accurate process variation

modeling becomes essential to ensure good yield.

Traditionally process variation modeling is targeted for design-time

use and guides engineers in the optimization of their chips before silicon

fabrication [2], [3]. Typically, such design-time process models rely

on characterizing tens to even hundreds of test wafers [4]–[8]. The

characterized model is then fed to either the statistical analysis tools

to estimate design yield [9], [10] or statistical optimization engine that

efficiently tunes thousands of devices to achieve a robust and high yield

solution [11]. However, in recent years, due to the increasingly significant

variability and the inability to measure every device on a die [12], process

variation models are also critical after chips are fabricated for multiple

post-silicon applications, such as:

• Post-silicon tuning which requires an accurate understanding of

current process to appropriately adjust tuning parameters [13], [14].

• Post-silicon timing characterization where speed binning and

critical path diagnosis require efficient process variation models to

reduce test vector sets. [12], [15].

• Post-silicon reliability analysis where accurate models can tighten

the process uncertainty to improve the chip lifetime prediction and

enables specific supply voltage adjustment for the chip to obtain a

better lifetime/performance trade-off [16].

Since there is limited research focused on extracting variation models

for post-silicon use, most post-silicon techniques still rely on design-

time variation models and do not take advantage of the availability of

test structure measurements from individual wafers and dies. This leads

to the following two drawbacks:

• Since a design-time process variation model must capture variations

across all wafers and lots, it results in a significantly more loosely
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Fig. 1. Ring oscillator (RO) frequency measurements (scaled) of 4 wafers from
2 different lots in a 65nm process: (a) and (b) are wafers from lot 1; (c) and (d)
are wafers from lot 2. The 2 lots have different global trends.

distributed or pessimistic variation model than could be obtained

based on even limited measurements from one or all the wafers

within a lot. Figure 1 shows 4 wafers from the same 65nm process

but two different lots. The wafers of lot 1 in Figure 1(a) and (b)

have similar wafer-level global trends, which are quite different

from the ones of lot 2 in (c) and (d). In other words, if we can

model the process variation of a wafer by using information from

post-fabrication measurements on the same or another wafer, the

uncertainty of the model may be significantly reduced, which helps

mitigate the unnecessary pessimism in post-silicon applications.

• The extraction of a design-time model assumes that the process

remains constant after the model has been generated using test

wafers. However, in practice, the process recipe for test wafers run at

design time may not correlate well with the one for production chips

[12]. In addition, process is continually optimized and the variation

may change over time [17]. This is only captured by periodically

running new test wafers, which is uncommon and expensive.

Instead, what is needed is a dynamic post-silicon variation model

that automatically tracks and adapts to process changes using limited

test measurements. Such a model is not only useful for post-silicon

applications but could also be used for future designs in the same process.

However, constructing such a model is not trivial. It is common

today to deploy hundreds or even thousands of test structures (e.g., ring

oscillators or resistor arrays) within a product chip or in the scribe line for

process monitoring [17]. But the overhead to measure all structures for

all dies across all wafers is clearly too high [17], [18]. It is also unclear

how to reuse measured information from earlier wafers to facilitate the

modeling on a different wafer or lot. To address these issues, we propose

a new framework where we dynamically extract a variation model from

measurements using wafers of product chips that are instrumented with

small test structures. The extracted model accounts for both systematic

and spatially-correlated patterns as well as random variations.
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Fig. 2. Flow chart of the proposed framework

Prior works in [6] and [19] also attempt to reduce the number of

measurements to monitor process but either require simulations on tens

or hundreds of wafers to achieve converged results or limit their analysis

only to the current wafer under test. In addition, they are fixed approaches

that do not dynamically adapt to process change. The proposed active

learning framework allows the process model to evolve by reusing

information from past wafers to validate and improve the model. The

flow chart in Figure 2 gives an overview of the proposed framework.

In particular, initial measurements are conducted for model training

with high measurement density which will then be reduced when the

model fidelity increases. In this manner the number of measurements

is gradually decreased over time. This allows the model to adapt and

improve with the process changes while reducing the test cost to a

minimum. The framework has the following key modeling contributions:

• Hierarchical process variation modeling. We develop a hier-

archical variation model that incorporates wafer-to-wafer, across-

wafer, reticle-to-reticle, across-reticle and independent variation

components, accounting for systematic, spatially correlated and

random variations. The variation is extracted on a reticle basis by

noting the design-process interactions in lithography steps.

• Active training. Active training initializes the active learning

models in the framework (Figure 2). This stage completely measures

the initial wafer set to achieve deterministic spatial pattern models

and quantify the uncertainty reduction ability of each test site.

• Spatially correlated variation characterization. We employ a

sparse Bayesian learning method [20] to estimate the spatially

correlated variation. Measurements from earlier wafers are used to

identify the significance of bases to speed up the estimation.

• Adaptive test configuration determination. Test configuration is

defined as a selective set of m out of n available test structures.

Each measurement may reduce the model uncertainty to a different

degree. This algorithm resolves how many and which measurements

are conducted for a desirable accuracy.

• Model validation and adjustment. For an untested wafer, we apply

several statistical tests on a selective set of reticles to justify if the

existing model needs an incremental adjustment or a complete re-

construction due to process drift.

The observation and experimental results in this paper are based on

two industrial processes with two different types of test structures and

different reticle sizes. Process 1 is a 65nm technology process and

has approximately 300 wafers with embedded ring oscillators (RO).

The test structures within each reticle are coarse-grained but there

are approximately 100 reticles within in each wafer. Process 2 is a

130nm technology process and has 5 wafers with electrical linewidth

measurement (ELM). The test structures within each reticle are fine-

grained with 23 reticles in each wafer. The generality and efficiency

of the proposed framework is validated on both processes for the

two different test structures, reticle sizes and measurement densities.

Experimental results show that the proposed framework can achieve 83%

and 78% variance reduction for two processes in comparison to design-

time models. Meanwhile, the average estimation error is well maintained

at ∼2-3% using merely ∼30% available test structures for two processes.

Compared to a recently reported approach in [19], the framework can

further reduce the test cost by more than 37% to achieve the same or

better accuracy.

II. STATISTICAL PRELIMINARIES

In this section we briefly review several statistical techniques that will

be used throughout the paper. The details can be found in [20]–[22].

A. Robust Regression

The deterministic spatial pattern can be fitted from measurements to a

given function. Least square fitting may be easily impacted by outliers or

long-tailed error distribution. Robust regression is an alternative estimator

to minimize fitting errors with the following term [21]:X
ρ(yi − xT

i β) (1)

where yi −xT
i β is the ith estimation error and ρ is a weighting function

to mitigate the impact of outliers. The details can be found in [21].

B. Statistical Tests

In the model validation step of Figure 2, we need to justify any model

before applying it to an untested wafer. Since the non-deterministic

variation for a device is typically modeled as a Gaussian random variable,

we can use the following statistical tests in our framework [21]:

• t-test checks whether the mean of a normal distribution has a value

specified in a null hypothesis. In the framework, it is used to justify

if a predictor in the polynomial model is statistically significant.

• χ2 goodness-of-fit test describes how well the given model fits a

set of observations. This test is used to check the overall fitting

goodness of an existing model, such as the fitting goodness of a

wafer-level pattern model for the raw data from another wafer.

• Kurtosis is a measure of the peakedness of the distribution. We use

this measure in our framework to justify if total variance distribution

has a fundamental change and hence requires a re-fitting.

C. Sparse Bayesian Learning

This section gives a brief review of sparse Bayesian learning (SBL),

the details of which can be found in [20], [22]. The basic idea of sparse

Bayesian learning is to solve the following under-determined system

through a Bayesian inference [20]:

t = Φw + ǫ (2)

where Φ is a m×n matrix with each column called a basis and m ≤ n,

ǫ is typically considered to be zero mean Gaussian random variables

with variance of σ2. Given a m×1 vector t and a priori knowledge that

w is sparse, SBL can find the most probable estimation of w and the

corresponding co-variance matrix. The target vector t has a multi-variate

Gaussian likelihood [20]:

p(t|w, σ2) = (2π)−m/2σ−me−‖t−Φw‖2/(2σ2)
(3)

and the prior over the parameters w is a zero mean Gaussian:

p(w|α) = (2π)−n/2
nY

i=1

α
1/2
i e−αiw2

i
/2

(4)
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Fig. 3. Wafer-level contours with systematic patterns removed for (a): RO
measurements (scaled) for a wafer in 65nm process; (b): ELM measurements
(scaled) for a wafer in 130nm process.

where α = (α1...αn)T are n independent hyper-parameters, one per

weight wi, which represents the inverse of variance for w and pushes

the solution to be sparse. The proof of using Gaussian priors to achieve

sparsity is detailed in [20]. Given α, the posterior distribution is then a

Gaussian and can be analytically written as:

p(w|t, α, σ2) = p(t|w, σ2)p(w|α)/p(t|α, σ2) = N(w|µ,Σ) (5)

with
µ = σ−2ΣΦT

t Σ = (A + σ−2ΦT Φ)−1
(6)

where A is diag(α1, ...αn).

The posterior distribution can be achieved by Expectation Maximiza-

tion method, which is equivalent to solving a type-II marginal likelihood

maximization with respect to the hyper-parameters α [20]:

Max L(α) = logp(t|α, σ2) = log

Z
p(t|w, σ2)p(w|α)dw

= −1/2[Nlog2π + log|C| + t
TC−1

t]

(7)

with C = σ2 +ΦA−1ΦT . Once the most probable αMP are found, they

can be plugged into (6) to get µMP and the covariance matrix ΣMP .

III. HIERARCHICAL MODELING AND CHARACTERIZATION OF

PROCESS VARIATION

In this section we discuss the variation modeling at different spatial

levels and the characterization of deterministic and non-deterministic

parts of the model when complete or partial testing is conducted.

A. Hierarchical Modeling of Process Variation

Traditionally the process variation of a device is considered to be a

compound effect of inter-die, intra-die spatially correlated and random

(or residual) variations [5]. Recent works investigate the origins of

process and propose that a great portion of within-die spatially correlated

variation is actually caused by deterministic across-wafer and across-

reticle spatial patterns [7], [8]. By not recognizing systematic patterns

at the reticle or wafer level, pessimism is unnecessarily increased,

attributing more variation than is actually present [7], [18]. On the

other hand, only extracting deterministic global trend but ignoring the

non-deterministic spatially correlated variations not only obscures wafer-

level trend but also leaves too much unevenly distributed across-reticle

variation to the residual. Figure 3 demonstrates the wafer-level contours

with systematic patterns removed using a similar methodology in [7], [8].

Either for RO frequency in Figure 3(a) from process 1 or ELM in Figure

3(b) from process 2, it can be observed the non-uniformity across the

wafer and certain spatially correlated patterns within the reticle. Residual

variation is supposed to be independent and evenly distributed, which is

unable to explain Figure 3. Thus, it is necessary to include spatially

correlated variations in the model.

Without loss of generality, we denote z as the measurable process

parameter of interest, which can be either a physical parameter or a

parametric quantity. We model z as a location dependent random variable

including seven distinct parts:

z(x, y) = z0 + ziw + zw(x, y) + zr(x0, y0) + zir + zar + r (8)

z0 is the nominal design specification and turns out to be a constant for

any device. ziw is the inter-wafer variation that captures the long-term

drifts in tools and process difference from wafer to wafer. zw(x, y) is

the deterministic across-wafer spatial pattern and (x, y) is the location

within a wafer. Such pattern may be caused by post-exposure bake (PEB)

temperature non-uniformity, or resist thickness variation. zr(x0, y0) is

the reticle-level spatial pattern where (x0, y0) is the location within a

reticle. This component is primarily due to design-process interactions

in the lithography steps, like lens abbreviation. Both zw(x, y) and

zr(x0, y0) are deterministic global patterns. zir is inter-reticle variation

component, which may be caused by the light source change. zar is

across-reticle spatially correlated random variation. For all the devices

within one reticle, zar can be understood as a zero mean multi-variate

Gaussian random vector. zar may be caused by the proximity effect or

coma and result in uneven within-reticle contour as in Figure 3. Finally,

r is the independent residual variation caused by local random effect,

and typically modeled as an independent Gaussian variable1. The only

assumption we hold in our model is the variation type of Gaussian, which

has been validated by many characterization works [8], [17].

The proposed framework extracts variation on a reticle basis, which

may include one or several dies. The reticle directly interacts with the

lithography steps and exhibits certain regularity from reticle to reticle.

Assume there are m1×n1 available test structures on a reticle with each

representing one random variable as defined in (8). Then an m1 × n1

matrix, denoted as Ai for the ith reticle, can be constructed, which

uniquely identifies the process variation of the reticle. According to (8),

Ai can be written as:

Ai = z0 + ziw + zir,i + Aw,i + Ar,i + Aar,i + Ri (9)

where Aw,i and Ar,i are the matrices for wafer- and reticle-level

systematic patterns observed in the ith reticle, Aar,i and Ri are the

matrices for the non-deterministic variations representing across-reticle

spatially correlated and independent residual variations, respectively. It

is noted that Ar,i is a deterministic pattern at the reticle scale and hence

the same from reticle to reticle. Thus we can rewrite Ar,i as Ar .

B. Variation Characterization at Different Spatial Scales

1) Model Identification of Systematic Spatial Patterns: Deterministic

spatial patterns are extracted by completely testing a set of reticles Ais.

To split the mixed effect of two patterns, it is essential to first extract

the pattern at lower scale, i.e. reticle-level pattern. In order to mitigate

the impact of wafer-level pattern and other variation components in (8),

we take the average of the matrices of Ais:

A =
1

l

lX
i=1

Ai = z0+ziw+
1

l

lX
i=1

(Aw,i+Ar +zir,i+Aar,i+Ri) (10)

where l is the number of reticles. By carefully analyzing the character-

istics of each component, we have the following observations:

• Any device in the wafer observes the same z0 and ziw.

• Each entry in Ri is an independent Gaussian with zero mean and

the same variance and hence can be cancelled after taking average.

• zir,i is a constant for all the devices within one reticle. Thus, any

entry in A observes the same constant 1
l

Pl
i=1 zir,i.

• For an entry at a specific location of Aar,i across different reticles,

it still follows a zero mean Gaussian. Thus, 1
l

Pl
i=1 Aar,i ≈ 0.

• The wafer-level pattern typically has symmetric characteristics, e.g.
slanted or parabolic surface [8]. By carefully choosing the reticles

symmetrically placed on a wafer, the difference among entries in
1
l

Pl
i=1 Aw,i is limited and can be approximated to a constant.

Based on those observations, (10) can be simplified to:

A ≈ Ar + const (11)
1For measurement results, r may also include the measurement white noise.
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Fig. 4. Reticle-level spatial pattern extraction for a wafer from process 2. (a):
the extracted reticle-level common pattern A; (b): smoothed result after MA; (c):
estimated model using backward elimination and robust regression; (d): relative
error of the fitted result in (c) in comparison with the original pattern in (a).

where const ≈ z0 + ziw + 1
l

Pl
i=1(Aw,i + zir,i) is a constant. Thus,

A is a compound effect of reticle-level pattern and the average of other

variation components. We name it as the reticle-level common pattern.

Given A and its corresponding reticle-level locations (X0, Y0), a two-

dimensional closed-form function can be fitted. The impact of outlier

can be mitigated by using moving average (MA) and robust regression

(section II-A) [21]. Moving average helps smooth over rapidly varying

features by moving a m0 × n0 sub-block across A and replacing the

original entry with the average of the sub-block. Figure 4 demonstrates

a reticle-level pattern extraction example including: (a) the pattern A
extracted from process 2 using 23 reticles in a wafer and (b) the change

after moving average is conducted.

Before the regression is applied, we need to determine the model to

fit. We here employ a backward elimination strategy and make the data

find the model itself. For example, if the initial model is a 2nd order full

polynomial model, the fitted model by robust regression is then:

t
A

∼ [1,x0,y0,x0y0,x2

0,y2

0] × p
T

(12)

where p = [p0, p1...p5] is the parameter vector to be fitted, t
A

,

x0 and y0 are the vectorization results of matrices A, X0 and Y0

respectively. A t-test is conducted on each parameter in p to compute

the corresponding p-value. The most statistically insignificant predictor

in [1,x0,y0,x0y0,x2

0,y2

0] is then removed to simplify the model. This

procedure is performed repeatedly till all the terms (predictors) in the

polynomial model fr(X0,Y0) is significant. Figure 4(c) illustrates the

acquired model using backward elimination and robust regression and (d)

exhibits the relative error of fitting compared with the original pattern

A in (a). It is observed approximately 2% average relative error, which

indicates the necessity of modeling reticle-level patterns.

After reticle-level pattern is extracted and removed from the raw data,

the wafer-level pattern fw(X,Y) can be extracted in a similar way from

the data at wafer-level, except that the coordinate matrices are now at

wafer-level instead of reticle-level. Figure 5 demonstrates the reticle-

level and wafer-level patterns for the wafers from two processes. The

algorithm of deterministic pattern extraction is summarized in Figure 6.

2) Non-Deterministic Variation Estimation through SBL: After the

deterministic patterns are removed from the model, the residual part is

comprised of across-reticle spatially correlated and residual variations2:

Arandom = Ai − A − Aw(x, y) ≈ Aar + Ar (13)

2In practice the model is unable to fit perfectly with the data. Aar in the residual model of

(13) is a compound effect of actual across-reticle spatially correlated variation and the residual

from fitting or modeling approximation. The fitting or modeling approximation terms can be

lumped into the mean of Aar , and captured by SBL method afterwards. For simplicity we

still use Aar here to represent this compound effect.
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Fig. 5. Deterministic spatial pattern extraction for 2 processes (scaled). (a):
reticle-level pattern and (b): wafer-level pattern (slanted) for 130nm process; (c):
reticle-level pattern and (d): wafer-level pattern (cubic) for 65nm process.

Procedure: Deterministic spatial pattern extraction

Input: the raw data matrix A and the corresponding coordinate

matrix X, Y, sub-block size [m0, n0] for MA, initial polynomial

model order n
Output: the fitted polynomial model fn(X,Y), the confidence

interval C = [lb, ub] for the fitted parameters in fn(X,Y)
1: Perform MA on A to achieve the smoothed matrix As;

2: Vectorize As, X, Y to tAs
, x and y;

3: Construct a full nth-order polynomial model fn(x, y);

4: While TRUE

5: Fit tAs
∼ fn(x, y) to achieve the parameters in p

and achieve its confidence interval C = [lb, ub];
6: Perform t-test on each parameter in p;

7: If all p-values are statistically significant

8: return fn and corresponding coefficients;

9: else;

10: find the most insignificant term and remove it

from the model fn;
11: endif;

12: end while;

Fig. 6. Algorithm for deterministic spatial pattern extraction

The non-deterministic part can be fully known only when a complete

testing is conducted. Thus, a natural question is, can we characterize the

reticle-level variation with certain accuracy when only partial testing is

conducted? We propose to handle this problem using SBL.

Assume there are n entries within each reticle. The matrices Arandom,

Aar and Ar can be vectorized to n × 1 vectors, trandom, tar and tr,

respectively. When m measurements are conducted (m ≤ n), we have:

tm = Btrandom = Btar + tr,m×1 (14)

where tm is a m×1 vector, and B is a m×n selection matrix. Any row

of B is a unit vector ei, with the ith entry equal to 1 and the other entries

equal to 0. Since independent residual variations tr cannot be estimated

but only bounded, the question turns out to be, given measurement of

tm known, how to characterize tar which are masked by tr,m×1?

We can associate (14) with SBL by applying a sparsity inducing

transform ΨT on tar [20], [23]:

w = ΨT
tar (15)

where ΨT may be an orthogonal transform matrix for either discrete

cosine transform (DCT) or discrete wavelet transform (DWT), i.e., ΦT =
Φ−1, and w is sparse or has a few entries that are more significant than

the rest. (14) can now be written as:

tm = BΨw + tr = Φw + tr (16)

where Φ = BΨ, and w is sparse with k significant entries (k usually

is much smaller than m). w and tar have a canonical one-to-one
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relationship as in (15). Thus if w is accurately estimated, we can always

recover tar from w. If the sparsity inducing transform Ψ is applied to

trandom instead of tar, i.e., tm = Btrandom = BΨw, it turns out

to be a compressive sensing problem as in [19]. Compressive sensing

is an alternative application of SBL [20], which also requires w to be

sparse and can be solved by linear regression in a point estimate manner

[19], [23]. However, including independent variation into the transform

may induce high frequency components and hence the non-sparsity in the

frequency domain, thereby limiting the efficiency of compressive sensing.

As a result we separate tar from trandom to maintain the sparsity in w.

In our framework, the SBL method in [22] is applied to (16) to predict

w through the measurements of tm. Similar as section II-C, we have:

Max L(α) = log

Z
p(tm|w, σ2)p(w|α)dw

= −1/2[Nlog2π + log|C| + t
T

mC−1
tm]

(17)

(17) can be solved by either using a variational Bayesian inference or

more directly in a constructive manner by adding/deleting the candidate

basis (column of Φ) into/from the solution model till the likelihood is

converged [20]–[22]. Then, with the estimated µMP and its covariance

matrix ΣMP in (6), the distribution of tar given tm can be written as:

tar|tm ∼ N(ΨµMP, Ω), Ω = ΨΣMP ΨT
(18)

However, to improve the efficiency of SBL in variation extraction, we

still need to determine the best test sites to be measured (or the selection

matrix B) and the order to add the bases by information collected from

the test wafers, which will be detailed in the next section.

IV. ACTIVE LEARNING FRAMEWORK FOR VARIATION EXTRACTION

The framework is composed of two major stages, active training to

learn the models and model adaptation to adjust the models (Figure 2).

In this section we will discuss the key modules in those two stages.

A. Active Training

In the active training stage, the framework learns the models by

densely measuring each test structure in a wafer (or training wafer set).

Several tasks are supposed to be conducted by learning the features of

the measurements (denoted as W ), including:

• Model identification that identifies both the wafer- and reticle-level

deterministic spatial patterns.

• Uncertainty exploration that exploits the uncertainty reduction each

measurement can contribute and scores the contribution.

• Basis significance ranking that gives an initial order of adding bases

into the solution when solving (17).

• Linking variance to prediction accuracy that sheds insight into the

control of the estimation accuracy.

Once all those models are characterized in training stage, we start to

process the forthcoming wafers with the learned models.

1) Model Identification: Most of the model identification details are

discussed in section III-B1. Here we briefly summarize the flow to extract

wafer- and reticle-level deterministic patterns in Figure 7. After the global

trends are removed from W , we denote the residual raw data as Wr ,

which enables the exploration in the next three sections.

2) Uncertainty Exploration: Any measurement may provide a certain

amount of information and hence reduce the model uncertainty. If all

the available test structures are measured, the uncertainty of a model

is exactly zero. At training stage we do not have any given variation

information. Although it is always preferred to conduct the measurements

that reduce the uncertainty to a maximum, it remains unclear how to

quantitatively evaluate the uncertainty each measurement can reduce.

Here we propose a simple yet efficient method to evaluate the

uncertainty reduction ability for any test site. Denote the raw data of

a reticle from Wr as Arandom,i. If all n test structures in the reticle

Procedure: Model identification to extract spatial patterns

Input: the raw data W of wafer 1 and the corresponding coordinate

matrix X , Y
Output: the fitted polynomial model fw(X, Y ) and fr(X0, Y0),

confidence interval Cw = [lbw, ubw] for the parameters in

fw(X, Y ) and Cr = [lbr, ubr] for fr(X0, Y0)
1: Compute the reticle-level coordinate matrix (X0, Y0);

2: Compute the averaged matrix A from all the reticles in W ;

3: Extract the reticle-level common pattern model fr(X0, Y0)
from A using the algorithm in Figure 6;

4: Compute the residual raw data with reticle-level common

pattern removed, name it Wg;
5: Extract the wafer-level spatial pattern model fw(X, Y ) from

Wg using the algorithm in Figure 6;

Fig. 7. Algorithm to identify the wafer- and reticle-level pattern models
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Fig. 8. (a): Scaled DCT transform for a reticle with deterministic patterns
removed; (b): Histogram of indices for entries in w that fall into the top three
most significant entry set. The results are collected from 100 reticles of a wafer.

are measured, the uncertainty of the model for this particular reticle is

0, i.e., U(Arandom,i)=0, where U(.) denotes the model uncertainty. On

the other hand, if there is only one test structure (jth) unmeasured, SBL

in section III-B2 can estimate its value as well as a covariance matrix

Ωj as in (18). Clearly the variance terms in Ωj is due to the unmeasured

site, i.e. the uncertainty is attributed to the jth site. Now define total

variance as a measure of uncertainty,

Definition 1: Total variance is defined as the sum of variance for each

test site, i.e., TV (j) = tr(Ωj), where tr(.) computes the sum of

diagonal entries and Ωj is the estimation covariance matrix with jth

site unmeasured.

Then the uncertainty reduction by the jth site can be approximated by:

∆U(j) = TV (j) (19)

In this manner, we can check each site in the reticle and name the

resulted vector as ∆Ui for Arandom,i. To mitigate some local effects,

we will compute ∆Ui for a representative set of l reticles (e.g., the

reticles in the middle column and middle row of the training wafer) and

then take the average of them, ∆U =
P

∆Ui/l, as a measure of the

uncertainty reduction ability. The normalized vector Su = ∆U/||∆U ||
is considered as the uncertainty score for the sites within a reticle. A

site with a higher score is always preferred to be tested first.

3) Basis Significance Ranking: SBL can solve (17) by adding/deleting

the candidate bases (columns of Φ) to/from the model and then updating

the corresponding hyper-parameters for the selected bases [20]. For an

unselected basis, its hyper-parameter is infinity, and the corresponding

entry in w is 0. In other words, the selected bases correspond to

significant entries in w. If we know those significant entries in advance,

we can simply plug the corresponding candidate basis set into the

solution model, which is beneficial for both run-time and accuracy.

Figure 8(a) illustrates the DCT transform of a reticle with global

patterns extracted. It can be seen most entries in the frequency domain

happen to be insignificant. On the other hand, the significant entries

in w are limited to a small subset even from reticle to reticle. Figure

8(b) shows the histogram of top 3 most significant entries in w, across
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Fig. 9. (a): Strong correlation of prediction accuracy and total variance (TV );
(b): Histogram of total variance across 100 reticles of a wafer for 65nm process

100 reticles within a wafer. Though there are potentially 32 entries, the

entries that are probable to be very significant are actually a small subset.

We then propose a score list Ss to rank the significance of each entry.

The basis with a higher significance score in Ss is first selected into the

solution model. In details, we first sort the significance of orthogonal

transform coefficients w from the most to the least significant for each

reticle. The rank vector, ri, for a reticle is then scaled and fed into a

continuous score function to achieve the score for the bases:

Ss,i = exp(−ps × ri/max(ri)) (20)

where ps is a customized parameter to tune the slope of the exponential

function. Then the score for basis significance is achieve by taking

average of Ss,i for all the reticles, i.e., Ss =
P

Ss,i/l.
4) Linking Variance to Prediction Accuracy: When a reticle is under

partial testing, it is essential to know how accurate the prediction may be.

However, the accuracy is unable to be known till all the measurements are

conducted. Thus, we need to find another measure to quantify the quality

of the estimation. By noting that the error is almost always positively

correlated with the model uncertainty, we propose to use total variance

(TV ) in Definition 1 for a given set of k0 measurements as a measure

of the prediction accuracy. Figure 9(a) shows trends of the average (top)

and maximum (bottom) relative prediction error with respect to TV
for 100 reticles of a wafer. Either figure exhibits a strong correlation

with TV , with a correlation coefficient of 0.79 and 0.88, respectively.

The relationship between TV and prediction accuracy is explored in the

training stage by conducting k0 measurements on each reticle according

to Su and then recording the total variance for each reticle. It is noted

that we are attempting to evaluate estimation accuracy in a qualitative
instead of quantitative way. The data collected from the training wafer

helps describe the statistical behavior of TV in this variation space given

k0 measurements. Figure 9(b) shows the histogram of total variance from

100 reticles and its log-normal fit. This histogram is used to decide the

number of measurements to be conducted, as in section IV-B2.

B. Model Adaptation

After models at different levels are constructed in training stage, the

framework starts partial testing on the other wafers (from the same lot

or different lots), which is the model adaptation stage.

1) Model Validation: It is essential to validate the models before

applying them to an untested wafer. The model validation justifies if

the deterministic pattern models fw(X, Y ) and fr(X0, Y0) requires a

complete reconstruction or just incremental adjustment. For the current

wafer under test (WUT), the validation module selects a representative

set of reticles. Then the χ2 test in section II-B is used to evaluate the

overall fitting goodness. If the overall fitting is good, a t-test is then

applied to judge if any parameter in fw(X, Y ) and fr(X0, Y0) needs

adjustment. The validation flow is summarized as follows:

• Step 1: Compute the chi-square statistics χ2 using the raw data

from the representatives set of reticles [21].

• Step 2: If χ2 is beyond the predefined tolerance bound, include

the WUT into the training set and go back to the training stage.

Otherwise, go to Step 3.

(a) (b) (c)

(d) (e) (f)
Fig. 10. Contours of 3 wafers from the same lot. (a): wafer 1 (training wafer); (b):
wafer 2; (c): wafer 3; and the extracted deterministic spatial patterns (including
both wafer- and reticle-level patterns) for (d): wafer 1; (e): wafer 2; (f): wafer 3.

• Step 3: Extract the wafer- and reticle-level patterns from the

representative reticle set using the algorithms in section IV-A1 to

achieve the comparison models fw,c(X, Y ) and fr,c(X0, Y0).

• Step 4: Check if the parameters of fw,c(X, Y ) (or fr,c(X0, Y0))

are in the confidence intervals Cw (or Cr) for the parameters of

fw(X, Y ) (or fr(X0, Y0)).

• Step 5: For those within the bounds, accept the original parameters

in fw(X, Y ) or fr(X0, Y0); for those beyond the bounds, re-fit the

parameters using the representative set of reticles.

Figure 10 demonstrates the contours of three wafers from the same lot

and how the deterministic pattern models evolve adaptively from wafer

to wafer. It can be seen the deterministic patterns of wafer 2 and wafer

3 (Figure 10(e) and (f)) are based on the training patten (Figure 10(d))

but still capture the major features of the original wafer contours.

2) Adaptive Test Configuration Determination: The most important

problem for partial test on a reticle is which and how many measurements

to conduct. The uncertain score is a global evaluation across the reticles

and not efficient enough for a particular reticle. To better understand the

across-reticle process condition, the proposed partial test has two phases,

within each, k0 and k1 measurements are conducted respectively.

Assume we have nmax available site for testing. In the first phase we

conduct k0 measurements on the reticle according to Su and apply SBL

to achieve the covariance matrix ΩSk0

3. k0 is the same as the number

used in section IV-A4 to characterize a TV histogram (or distribution

with a cumulative density function F (.)). Then the total variance (e.g.,
TVi) for the reticle is computed from ΩSk0

. The relative location of

TVi in the distribution F (.) is mapped to the number of measurements

to be conducted. In other words, we have:

k1 ∼ F (TVi) × (nmax − k0) (21)

Thus, if TVi is large, almost all the measurements will be conducted.

Meanwhile fewer measurements are required for smaller TVi.

The second phase determines where to conduct the k1 measurements.

The underlying motivation is to maximize the uncertainty reduction by

those measurements, i.e.,

Max ∆USk0
∪Sk1

− ∆USk0
(22)

However, this formulation itself is difficult to evaluate or optimize. It is

also noted that if we simply choose test sites according to Su, most

measurements may be conducted at some corner due to the spatial

correlation. It is therefore desirable to conduct measurement on sites

with higher Su as well as relatively uniform distribution. The uniformity

requirement is equivalent to the consideration of correlation among

test sites. The closely placed sites usually have higher correlation, and

hence should avoid repeated measurements. This intuition motivates a
3Those measurements are typically a very small subset Sk0

that helps understand the

process condition without much extra overhead to the framework. k0 can be determined at

training stage by sweeping several typical numbers and comparing the results.
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Procedure: Summary of the active learning framework

Input: wafers

Output: variation components decomposition, process parameter

estimation and corresponding confidence intevals
1: Perform complete testing on the training wafer and actively

learn models at different scales as in section IV-A;
2: Validate the trained models for the next untested wafer as

in section IV-B1;
3: Achieve the adjusted wafer- and reticle-level spatial pattern

models fw(X, Y ) and fr(X0, Y0);
4: Determine the test configuration for each untested reticle as

in section IV-B2;
5: Estimate the process parameter for untested devices, validate

results using cross-validation and update the models;
6: Move to the next wafer;

Fig. 11. Summary of the active learning framework

greedy search algorithm to maximize the covariance reduction instead

of variance. Given the covariance matrix ΩSk0
= [ω1, ω2...ωn] for n

test sites from phase 1 and ωi is a column in ΩSk0
,

• Step 1: set Sk1
= ∅.

• Step 2: choose the site i0, which is:

i0 = argmaxi |ωi|
T × [1]n×1 (23)

where [1]n×1 is an n × 1 all-one vector.

• Step 3: Sk1
= Sk1

S
i0. Remove the i0th column and row in ΩSk0

.

• Step 4: Go back to step 2 till k1 sites are found.

3) Prediction and Model Update: After test configuration is de-

termined, the framework moves forward to estimate the deterministic

and non-deterministic variation components for any untested site. The

deterministic components are calculated using those validated models,

given the locations of the device in the reticle and wafer. The non-

deterministic component is acquired by SBL in section III-B2. The

estimated process parameter is then the sum of those components:

zesti = fw(x, y) + fr(x0, y0) + fzar (24)

where fzar is the estimated spatially correlated variation component. The

estimation also comes with a confidence interval that is computed from

the covariance matrix Ω and the estimated σ2 as in section III-B2 [20].

To ensure the quality of the prediction, we also employ a cross-

validation stage by using another small subset Scv of measurements to

validate the results. Similar as Sk0
, Scv is determined according to the

uncertainty score Su of those unmeasured sites. If the average error of

the prediction results is unable to meet an error tolerance threshold θcv ,

more measurements will be conducted till cross validation requirement

is satisfied. It is noted that we can always adjust θcv and nmax in

section IV-B2 to make tradeoff between estimation accuracy and test

cost (number of measurements).

After the prediction results are validated, several models needs updat-

ing before the framework moves to the next wafer:

• Total variance distribution. The total variance with Sk0
measure-

ments can be collected from each reticle and included into the

original TV data set. Kurtosis statistics is applied here to monitor if

the distribution has a fundamental change. Otherwise the next wafer

will be set to a training wafer to reconstruct the TV distribution.

• Basis significance score. According to the prediction values, the

significance score for each reticle can be computed and then

combined with the original score.

• Uncertainty score. The covariance matrix for each reticle is achieved

from SBL which also sheds insight into the uncertainty reduction

ability.

C. Summary of the Active Learning Framework

Here we summarize the complete algorithm for our active learning

framework in Figure 11.

TABLE I
SIMULATION RESULTS OF THE PROPOSED FRAMEWORK ON TWO INDUSTRIAL

PROCESSES (65NM AND 130NM)

proc. #wafers ave. err. #failure #measure var. reduc. time/wafer

1 288 0.8% 0.031% 45.9% 83% 20.3 sec

2 5 1.4% 0.025% 54.2% 78% 25.7 sec
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Fig. 12. Evolvement of relative average error (bottom) and measurement ratio
(top) across the wafers and lots from process 1

V. EXPERIMENTAL RESULTS

In this section we demonstrate the efficiency and accuracy of the

proposed framework based on the industrial measurement data from two

processes in 65nm and 130nm technologies. All the experiments are

conducted on a 2.0GHz Linux machine with 32GB RAM.

Table I summarizes the performance and accuracy of the framework,

with a 2% average error tolerance in the cross-validation stage and with

all the test structures available for measurement. Column 2 shows the

total number of wafers for two processes. Column 3 is the average

relative error which is computed by:

1

Nt

X
any untested site

|estimated value − actual measurement|

actual measurement
(25)

where Nt is the number of untested structures. Our framework can

achieve 0.8% and 1.4% relative average error for two processes, respec-

tively. In column 4, we present the relative failure number to evaluate

the efficacy of the estimated confidence intervals. A failure is defined

as an untested structure whose actual process (measurement) is beyond

the estimated confidence interval. The relative failure is approximately

0.03% across all the lots. This is in good agreement with the expected

failure of 0.1% from 3σ bounds. Column 5 exhibits the ratio of the

number of measurements over the total number of available test struc-

tures. The test cost reduction is up to 50% to achieve an average error

of ∼1%. The greater saving of test cost can be achieved by loosing the

error tolerance, which will be presented shortly in this section. Column

6 is the average variance reduction of the proposed post-silicon variation

model in comparison with the traditional design-time variation models

(characterized from all the wafers). Even with half the test structures

measured, the model variance can be reduced by approximately 80% (5×
tighter) for either process, which may significantly reduce the pessimism

in post-silicon applications. The average run time per wafer is listed in

the last column and is expected to be smaller with increased number

of wafers. Figure 13 further illustrates the significantly tightened post-

silicon process variation models for 4 dies from 2 different wafers in 2

different lots. In the contrast, the design-time model is widely distributed

because the wafer/reticle specific data is not available at design-time.

Figure 12 shows the evolution of the average relative error (bottom)

and test measurement ratio (top) from wafer to wafer for all the lots of

process 1. The black dashed line denotes the transition from one lot to

another. The spikes of the measurement ratio at some of the transitions

are due to the global pattern difference between two different lots (as

shown in Figure 1). However, the framework can adapt the model to
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Fig. 13. Comparison of the post-silicon variation models for 4 dies from 2
wafers in 2 lots and traditional design-time process variation model
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Fig. 14. Histograms of average (top) and maximum (bottom) relative error for
all the reticles in a wafer
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Fig. 15. Trend of average error and scaled average variance (3σ/µ) reduction
with an increased number of measurements for (a): 65nm and (b): 130nm process

capture this difference. Across the lots, the relative average error is well

maintained at approximately 1%.

Figure 14 presents the histograms of average relative error and

maximum relative error for 100 reticles from the same wafer. Most

reticles have limited average error of approximately 1% and maximum

error smaller than 10%. Figure 15 clearly demonstrates the reduction

trend of both average error and scaled average variance (=3σ/µ) with an

increased number of measurements for both 65nm and 130nm processes.

With approximately 30% available test structures, the framework can still

achieve ∼2-3% average relative errors for two processes. The accuracy

of the proposed framework is compared in Figure 16 with another two

methods, the virtual probe method in [19] and a bilinear interpolation

method on the wafers of 130nm process. The proposed framework can

achieve a better accuracy with much fewer measurements. For the same

accuracy of approximately 2% relative error, the test cost is reduced by

37% and 75% compared with [19] and bilinear interpolation, respectively.

VI. CONCLUSIONS

This paper proposes an active learning framework to extract process

variation from measurements and reduce test cost. Several techniques are
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Fig. 16. Average relative error comparison with increased measurements for the
wafers from process 2 using the active learning framework, virtual probe method
from [19] and bilinear uniform interpolation

developed to model the variation. By reusing a priori knowledge from

earlier wafers, the partial test can be conducted on the forthcoming wafers

to achieve the required accuracy and test cost. Experimental results show

that the framework can achieve an accuracy of ∼2-3% relative error using

only ∼30% test structures for two industrial processes.
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