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ABSTRACT 
Increase in variability in the nanometer era has contributed to 

pessimistic guardbands for conventional circuit design techniques 

that optimize at worst-case process corners. Smart deterministic 

approaches have been proposed that employ statistical timing 

analysis to reduce pessimism in the guardbands while retaining 

the deterministic nature of the algorithms. Other statistical 

optimization techniques focus on algorithms to maximize 

robustness of design while being aware of variability. It is not 

clear how much improvement can be gained using the latter set of 

approaches over more simple deterministic approaches. This work 

presents a new lower bound to evaluate these statistical 

optimization techniques, drawing inspiration from recent 

advances in sampling based SSTA. We prove that the presented 

lower bound gives the minimum possible area that can be 

achieved for a design while meeting a particular timing yield, 

which is the percentage of die that meeting a specified timing 

constraint. We then compare several statistical design 

optimization approaches, including one proposed in this paper 

called SLOP, against the computed lower bound. We show that 

even the simplest statistical optimization approaches produce area 

results which are, on average, within 9.6% of the lower bound 

while the best ones performed only marginally better, reaching 

within 3.7% of the bound. This demonstrates that the proposed 

bound is a close bound. In addition, it also shows that the existing 

optimization methods have nearly exhausted the obtainable 

improvement from being statistically aware and mostly provide 

trade-offs in runtime speed.  

General Terms 

Algorithms, Performance, Design.  

Keywords 
Statistical Optimization, Monte Carlo, Gate Sizing.  

1. INTRODUCTION 

Process parameter variations have taken on increasing importance 

in nanometer-scale CMOS due to the approaching of fundamental 

manufacturing limitations [1].  Rather than using simple corner 

models that capture worst-case behavior at the device level (and 

lead to large guardbands) , modern CAD tools have moved 

towards a more probabilistic view of circuit timing behavior. This 

is demonstrated by recent research on analysis and optimization of 

designs in the face of variability. In timing analysis, there are two 

primary approaches to incorporating process parameter 

uncertainty. The first is to perform statistical static timing analysis 

(SSTA) by modeling gate delays as distributions that are functions 

of underlying process parameters.  These distribution functions 

are then distributed through the circuit graph to compute the 

overall circuit delay distribution [2-3].  We refer to these 

approaches as traditional SSTA. The second approach is Monte 

Carlo based SSTA, which involves selection of samples of the 

process variation space to directly obtain statistical distributions 

of circuit timing behavior. The application of Monte Carlo for 

statistical timing analysis was discussed in [4], where it was 

shown that MC SSTA is accurate even in scenarios with high 

dimensionality in the process variation space, where traditional 

SSTA has difficulties. The difficulty with a straightforward 

implementation of MC SSTA is the large sample size required to 

achieve good accuracy. Recent research has focused on 

techniques to reduce sample size for MC SSTA, drawing upon 

similar experiences in statistics and computational finance [5-7].  

At the same time, recent research has paid significant attention to 

statistical design techniques, where the focus is on optimizing 

designs to increase their robustness under variability while 

minimizing any increase in cost (e.g., area or power). 

Optimization at worst-case corners leads to pessimism and large 

guardbands. Therefore, smart deterministic algorithms were 

introduced where the key observation is that the pessimism 

incurred by worst-case corner approaches is mainly due to an 

inability to set appropriate guardbands (i.e., timing constraints) for 

optimization in a deterministic setting, rather than the quality of 

the algorithm itself [8-11].  Therefore, it is sufficient to augment a 

deterministic algorithm with statistical analysis to minimize 

pessimism in the timing constraint used for optimization. The 

authors in [12] summarize these approaches and propose a 

technique to capture WID variation effects without explicitly 

modeling them in the optimization procedure. Here, a circuit-level 

guardband for the target timing constraint is used to capture WID 

(within-die) variation effects. A conventional transistor sizing 

algorithm similar to [13] which captures only D2D effects, is then 

used to minimize cost to meet this guardbanded target. The 

appropriate guardband is found by sweeping its value and 

repeating the conventional optimization followed by SSTA at 

each point, until timing yield is met. 

Other techniques have focused on explicitly capturing statistical 

sensitivities at the device/gate level or introducing spatial 

correlation-aware margins at the device level to reduce the 

pessimism found in worst-case corner optimization [14-16]. The 
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authors in [14] propose a yield optimization technique using a 

gradient-based non-linear optimizer. An efficient heuristic is 

proposed to compute yield gradient.  In [15], the robust statistical 

optimization problem is formulated as a second order conic 

program (SOCP). A linear relationship between delay and 

parameters affecting variability is assumed. A piecewise linear 

gate delay model as a function of gate size is constructed to enable 

the problem formulation as an SOCP. In robust geometric 

programming (RGP) [16], a worst-case corner approach is used to 

incorporate process variation effects. A Geometric Programming 

model is used to capture the delay of gates as an analytical 

function of design parameters and parameters representing 

parasitic effects. The effect of variations is included by adding 

appropriate margins to the delay constraints at the output pin of 

each logic gate.  

These algorithms provide reasonable solutions to the problem at 

hand, which is to arrive at a design that meets performance 

requirements with sufficient confidence given process variability.  

However it is not clear the scope of improvement possible by 

using statistical optimization approaches rather than smart 

deterministic algorithms such as [12]. Given the additional 

runtime costs of the fully statistical approaches, it would benefit 

designers and future researchers to know the potential 

improvements available to statistical techniques. 

The major contribution of this work is a lower bound computation 

method to compare the Quality of Results (QoR) of statistical 

design techniques under process variations. This method takes its 

inspiration from recent developments in statistical timing analysis 

where a sample-level view of the process variation space is taken 

[5-7].  We show that the lowest cost for any design to meet a 

specified timing yield objective is bounded by a theoretical limit. 

This limit is related to the exact solution obtained if different 

samples in the process variation space were to be optimized 

deterministically. Given a set of samples in the variation space, 

the optimal design to meet a deterministic timing T while fixing 

the process parameters at each sample can be obtained using an 

exact optimization technique. We show that for a large enough 

sample size, the xth percentile of the cost (area, power) of the 

designs obtained by optimizing each individual sample to meet 

timing constraint T is a lower bound for any design that meets T 

with a specified timing yield of x%.  

Second, in the same spirit as the lower bound computation, we 

propose a statistical design technique that draws upon a sample 

level perspective of the variation space - Sample Level 

Optimization in Parallel (SLOP).  As the name indicates, different 

samples in the process variation space are optimized in parallel 

using two phases. In the first phase, a straightforward 

deterministic optimization is performed for each sample.  These 

results are then fine tuned in the second phase by shifting the 

focus of the algorithm to the optimization of an intelligently 

selected high percentile sample taken from phase one, such that 

the timing yield is met. Among the solutions thus obtained at each 

sample, the lowest cost solution is selected. The technique is 

highly amenable to parallelism on multi-core machines and GPUs.   

We compare the results obtained from SLOP and two other 

techniques proposed in literature, Burns [12], and Robust 

Geometric Programming or RGP [16], against the lower bound 

computed using the proposed technique. We show that the 

solutions obtained from SLOP and RGP are close to the 

theoretical limit for the cost. Further improvements possible to 

solutions computed by the Burns, SLOP and RGP methods are at 

most 9.6%, 7.5% and 3.7% respectively, on average for the 

benchmark circuits studied. The improvement in quality of 

solution for SLOP and RGP comes at the cost of an average of 

7.4× and 41.5× increase in runtime, respectively compared to the 

Burns approach. Therefore, we conclude that smart deterministic 

approaches are sufficiently accurate while incurring low runtime 

cost.  At the same time both Burns and SLOP also offer 

possibilities for massive parallelization on GPUs and 

multiprocessor systems.  

The rest of the paper is organized as follows. Section 2 discusses 

previous work on exact optimization of a design at a fixed process 

corner. Section 3 explains the proposed technique to obtain a 

theoretical limit for the cost of a design to meet a given timing 

yield. Section 4 describes the proposed Sample Level 

Optimization in Parallel (SLOP) approach. Section 5 presents 

results and conclusions are presented in Section 6.  

2. EXACT DETERMINISTIC 

OPTIMIZATION  
Given the growing parallelism available in modern CPUs and 

GPUs, there is interest in using sample-based approaches to 

perform statistical timing and power analysis and optimization [5-

7, 24].  When examining specific samples in the process variation 

space these approaches rely on finding the optimal solution for 

that given sample (die). This section discusses the existing 

literature on exact optimization of a design at a given point in 

process space.  It is theoretically possible to obtain cost lower 

bounds at a process corner using branch and bound or simulated 

annealing techniques.  However, in practice, these techniques 

exhibit very high runtimes.  Other techniques to obtain the 

optimal design at a process corner make assumptions regarding 

the gate delay model. In [17], the authors propose an approach for 

exact transistor sizing. The method involves two phases. In the 

first phase, called the D-phase, incremental changes in delay are 

assigned to each node of the circuit graph. This is formulated as 

the dual of a min cost network flow problem and is solved 

exactly. In the second phase, or the W-phase, feasible transistor 

sizes are calculated to incorporate the node delay changes 

assigned in the previous phase with minimal increase in cost. This 

phase assumes that the transistor delay is expressible as a sum of 

simple monotonic functionals. A simple monotonic function 

applied to this case has the property that it is monotonically 

decreasing in one transistor parameter and montonically 

increasing in all other transistor parameters. Reference [18] 

discusses a Geometric Programming approach to solve circuit 

design optimization problems. Geometric Programming (GP) 

models can address a wide variety of integrated circuit design 

problems [18]. Also, commercial solvers are available that can 

handle large-scale GPs efficiently [19].  Therefore, we focus on a 

GP-based approach to obtain the cost lower bound for a design.  

In a GP model, the objective function and the constraint functions 

are expressed as a general class of functions called posynomial 

functions. A posynomial function is a sum of monomials.  

A GP can be expressed in the following form  

 minimize f0(x)  

 subject to :  
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 1)( ≤xfi   i=1,…,m 

 1)( =xgi  i=1,…,p 

Here fi(x) are posynomial functions, gi(x) are monomial functions, 

and xi are optimization variables.  

Generalized Geometric Programs (GGPs) [18] extend the 

formulation to a more general class of functions called 

generalized posynomials. A generalized posynomial is any 

function that is expressible using the operations of summation, 

multiplication, positive (fractional) powers, and maximum of 

posynomials.  Examples of generalized posynomials are 

illustrated below: 

 21 )()()( 211
aa

xfxfxh =  0, 21 >aa  

 ))(),(max()( 21 xfxhxh =   

where f1(x), f2(x) are posynomials and h1(x), h(x) are generalized 

posynomials. 

The formulation of an optimization problem as a GGP requires 

modeling the objective and constraint functions as generalized 

posynomials. Techniques to approximate practical functions using 

generalized posynomials are discussed in [18]. In this work, we 

employ a Max-Monomial fitting approach for this purpose. A 

max-monomial function has the form  

 )(max)(
,...,1

xfxh k
Kk =

=  (1)  

 

where fk(x), k=1,…,K are monomials. A heuristic algorithm for 

finding the max-monomial approximation to a data set for a fixed 

K is provided in [18]. The algorithm selects a subset of the data 

for each monomial where the monomial is the maximum 

compared to the other monomials. The monomial fit for this 

subset of data is then improved using a simple least squares linear 

fit after performing logarithmic operations on both sides.  

With the max-monomial representation for delay, the optimization 

problem at a process corner can be formulated as a GGP:  

 minimize ∑
=

N

i

ix

1

  

 s.t.:  

 iji,j AT    d  +  AT ≤  

 ),p,s,h(x   d ,jiji, iji r
r

=  
Eijej ∈∀ ),(:  

 T     ATi ≤   

where (.)h is a max-monomial function. xi is the size of the gate at 

node i, sj is the slew at node j and pi,j represents the parasitic 

values at nodes i and j. ir
r

is the vector of process parameter values 

at the sample for the gate at node i. E is the set of edges in the 

circuit graph. T is the specified timing constraint, ATi is the arrival 

time at node i, and di,j is the delay of edge e(j,i).  

3. LOWER BOUND FOR DESIGN WITH 

STATISTICAL TIMING YIELD 

CONSTRAINT  
This section describes a new technique to obtain a lower bound 

for the typical case cost of a design while meeting a statistical 

timing constraint T with yield x. The lower bound is computed 

using results from independent exact optimization of samples in 

the process variation space.  The exact optimization technique 

used at each sample was described in Section 2.  We consider the 

distribution of costs obtained by exact optimization of each 

sample in a sample set that is sufficiently large and adequately 

captures the distribution of process parameters.  We show that the 

cost of any design that meets the constraint T with timing yield x 

is higher than the xth percentile of the cost distribution.  

Figure 1 illustrates the approach for a sample set S = {s1, s2, s3, 

s4}. Each of the samples in S are optimized to meet a timing 

constraint T with resulting (provably minimal) costs A1, A2, A3, A4, 

respectively.  D is any design that meets the timing constraint T 

with respect to the sample set S with a yield of x=75% and area 

A(D). Note that D meets the constraint T at samples s1, s2 and s3. 

Therefore, A(D) must be higher than A1, A2 and A3. However, the 

same cannot be said of A4. Since the 75th percentile of the 

distribution Ai, i = 1...4 is at least equal to max(A1, A2,A3), A(D) 

must be at least equal to the 75th percentile of distribution Ai with 

respect to set S. For a sample set S that captures the process 

parameter distribution accurately, this means that the area of any 

design D that meets constraint T with timing yield x is lower 

bounded by this value, subject to an error related to estimation of 

timing yield using the sample set. A more rigorous approach 

564



considering this error is presented below. 

 

Let S be a set of samples in the process variation space. 

)(TAi denotes the lowest typical case cost for a design to meet 

timing constraint T at sample Ssi ∈ . Let )(TAx
S  denote the xth 

percentile of the distribution )(TAi with respect to sample set S 

for constraint T. n(S) denotes the number of elements in S. )(Dt x
S  

is the xth percentile of the worst circuit delay for design D w.r.t. 

sample set S.  

    Theorem 1. Given a design D, the following is true: 

 TDt x
S ≤)( ⇒ )()( DATAx

S <
  

In other words, )(TAx
S  is a lower bound for the typical case cost 

of a design to meet T for the xth percentile of the worst arrival time 

distribution with respect to sample set S. 

     Proof: Let A(D) denote the nominal cost of design D. If D 

meets the timing constraint T w.r.t sample Ssi ∈ , then  

 )()( DATiA ≤  (2)  

Let D satisfy T for the xth percentile of the worst arrival time 

distribution with respect to sample set S or TDt x
S ≤)( .  In other 

words ,  D meets timing constraint T for at least x% of the 

samples in S. It follows from (2) that  

 

 : S C ⊂∃ )()( DATiA ≤ Csi ∈∀  

100
*)()(

x
SnCn ≥  

 

 

 i.e., )()( DATiA ≤ holds for at least x% of the samples in S.  

This in turn imposes the following constraint on the xth percentile 

of the distribution )(TAi  with respect to sample set S.  

 )()( DATAx
S ≤  (3)  

 
Theorem 2. Let Sn be a set of n samples in the process parameter 

space such that ε<− )'()'( DtDt xx
Sn

 for any design D’ in the 

design space, where tx(D’) is the xth percentile worst circuit delay 

of D’. For a given design D which 

satisfies TDt
x

≤)( , )()( DATAx
Sn

≤+ ε  

    Proof:   

Given  ε<− )()( DtDt xx
Sn

  

 TDt
x

≤)( ⇒ ε+< TDt
x
Sn

)(  
 

 )()( DATA
x
Sn

≤+∴ ε
 

(Theorem 1) 

Note that the proof for Theorem 1 assumes 
100

*)(
x

Sn is an 

integer. This assumption can be removed easily. The proof is 

omitted for brevity.  

Theorem 2 suggests a technique to obtain the lower bound on the 

cost of a design to meet a statistical timing yield constraint. This 

is summarized below for the case of x% timing yield at T.  

Algorithm 1  

 Generate set of samples Sn in the variation space according to 

the process parameter distribution. Estimate error  bound ε for 

computation of the xth percentile of worst circuit delay using 

set Sn.  

 Obtain cost )( ε+TAi  for the design optimized to minimize 

typical case cost while meeting constraint T at each 

corner/sample ni Ss ∈ .  

 
Obtain the xth percentile of the cost distribution )( ε+TAx

Sn
.  

 

(a) Optimal area (exact) vs. timing 

constraint at samples in set S. 

T 

A
re

a 

T 

A1 

T 

A2 

T 

A3 

T 

A4 

sample s2 

sample s4 sample s3 

Design D 
A(D) ≥ A1 

A(D) ≥ A2 

A(D) ≥ A3 

A(D) ≥ max(A1,A2,A3) 

 

 
Worst Arrival Time 

s2 

s1 

s3 

s4 

Figure 1. Illustration of Theorem 1. Ai represents the 

optimal cost solution at sample si. Design D meets 

timing constraint T for the 75th percentile of the 

given sample set. The cost of this design is A(D) and 

exceeds Ai, i=1,…,3 as D meets the timing constraint 

at samples si, i=1,…,3. Therefore, A(D) exceeds the 

75th percentile of the distribution Ai, i=1,…,4 for the 

given sample set. 

sample s1  

(b) Design D 
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Note that as the sample size n→∞, ε →0 and a closer lower bound 

is obtained. Also, smart sampling techniques have been proposed 

in literature to obtain moments and percentile values of the circuit 

delay distribution with a low sample size, and the error incurred in 

estimation of the moments and percentile values using some of 

these techniques have been discussed [5-7]. These techniques can 

be used to perform efficient computation of the lower bound with 

few samples. 

4. SAMPLE LEVEL OPTIMIZATION IN 

PARALLEL (SLOP) 
This section proposes a Sample Level Optimization in Parallel 

(SLOP) technique for statistical circuit optimization. The 

optimization problem addressed here is to find the minimum cost 

solution for a design to meet a given timing constraint at the xth 

percentile of its worst case circuit delay distribution considering 

process variations. SLOP takes a sample level view of the process 

variation space. First, samples are generated that are essentially 

virtually fabricated dies. Within each virtual die, the process 

parameters are fixed and deterministic optimization is then 

performed. The optimization steps are based on a greedy strategy 

such as in [13] where gates in the critical path are selected and 

sized iteratively. The selection criterion is based on a metric that 

estimates the gain in circuit speed for a unit upsizing of the gate. 

Each virtual die can be optimized in parallel. Once the 

optimization steps are complete, the design with the best cost 

among the solutions from different virtual dies is selected.   

Figure 2  illustrates the approach. SLOP consists of two phases, S-

phase and HPS-phase. Note that SLOP progresses for each 

sample in parallel, and hence operates on a single virtual die. 

• S-phase or Sample Phase. In this phase, a virtual die is 

optimized using a greedy strategy to meet the timing 

constraint T.  The result is a set of gate sizes that will meet 

the performance constraint for this specific point in the 

process variation space (i.e., sample). 

• HPS-phase or High Percentile Sample Phase. SSTA is 

performed on the design returned from the first phase and the 

xth percentile sample is selected. It is not surprising that the 

design from the S-phase will not satisfy the timing constraint 

T for the entire process variation space.  This phase seeks to 

zoom in on the portion of the process variation space that 

poses the greatest difficulties for the design from the S-

phase, and re-optimize.  Monte Carlo Sampling based SSTA 

is employed to select the xth percentile sample.  Analytical 

SSTA techniques cannot be used here as they do not provide 

information at the sample/virtual die level as required by 

SLOP. We use a smart sampling based SSTA approach 

proposed in [5] called SH-QMC for this purpose. SH-QMC 

provides good accuracy in computing a high percentile of the 

worst arrival time with a small numbers of samples (100-

200). The selected sample is then optimized to meet the 

constraint T using a similar greedy approach as in the S-

phase. The results from different optimization runs (i.e., the 

parallel virtual die) are compared and the design meeting T 

for the xth percentile worst case delay with minimum cost is 

chosen as the final solution. 

5. RESULTS 
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Simulation results in this paper are based on a 65nm industrial 

technology library. The implementation considers channel length, 

oxide thickness, and threshold voltage variations as process 

parameters. Inter-die, spatially correlated intra-die and 

uncorrelated random components of variation are considered for 

each parameter. The relative amounts of process parameter 

variation among die-to-die, spatially correlated, and random 

sources have been reported in the literature [20-22]. An increase 

in systematic die-to-die component of variation accompanied by 

an increase in random WID variation has been reported in [20] for 

a 45nm technology compared to 90nm. Systematic component of 

frequency variation is estimated at 52% in [21] for a 65nm 

technology node. In our implementation, the standard deviation in 

channel length variation is 5%. The standard deviation for oxide 

thickness is 1.3%. The contribution of D2D components of 

channel length and oxide thickness are fixed at 50% while 

dividing the random and spatially correlated WID components 

equally.  The threshold voltage variation is modeled based on 

[22], where a Pelgrom model is used to compute the random 

component of threshold voltage variation. The number of grids in 

the spatial correlation model for individual circuits is varied 

linearly with post-placement area starting from 2 × 2 for the 

smallest circuit to 16 × 16 for the largest circuit. This corresponds 

to a grid area of approximately 40µm × 40µm for all the circuits. 

Simulations are performed on ISCAS85 benchmark circuits [23] 

and three additional large benchmark circuits: Viterbi Decoder 1 

(VD1), Viterbi Decoder 2 (VD2), and USB 2.0 Core (USB) with 

gate counts ranging from approximately 15,000 to 35,000. We 

perform synthesis and APR on all the benchmarks using 

commercial tools. Simulations were performed on a 16-core 

2.0GHz AMD machine with 32GB RAM.  

Table 1 shows the lower bound in area for benchmark circuits to 

meet a specified timing constraint with a timing yield of 99%. As 

noted in Section 2 the lower bound computation is constrained by 

the ability to obtain a perfect model of gate delay as a function of 

gate size, parasitics, and process variation effects. Hence, we 

model gate delays in the standard cell library with the approach 

described in Section 2 that uses the max-monomial fitting 

algorithm. We use 11 monomial terms in our implementation. 

Further increases in the number of monomials are limited by the 

physical memory constraints on the server system for the largest 

benchmark circuits studied. For the purpose of lower bound 

computation, we use this gate delay model in the results for the 

various approaches considered.  This enables us to make 

conclusions about the robustness of each of these techniques in 

comparison with the exact lower bound.  Timing constraints were 

set such that the hardware intensity of each benchmark circuit is 

1.0.  The hardware intensity of a design is defined as the 

magnitude of the ratio of percentage change in cost to percentage 

change in timing constraint. The solutions obtained from three 

different approaches – Burns [12], Robust Geometric 

Programming (RGP) and the proposed SLOP technique are  

T 

HPS(i) 

Circuit delay, sample i  

A
re

a 

Step 2: S-phase deterministic optimization to 

meet T at sample i Step 1: Pick sample i 

Figure 2. SLOP overview: Each virtual die i is optimized in parallel. The optimization consists of an S-Phase and an HPS-

Phase. In the S-Phase, the virtual die is optimized to meet the timing constraint T using a greedy approach. In the 

subsequent HPS-Phase, the xth percentile sample of the design i optimized in S Phase, called HPS(i), is selected. If T is 

already met at HPS(i), optimization terminates. Else, the design is optimized further, this time with sample HPS(i)  

constrained to meet a timing T. The best among parallel solutions is selected.  

Step 4: HPS-phase deterministic optimization to meet T 

at sample HPS(i) 

T 

i 

Circuit delay, sample HPS(i)  

A
re

a 

Step 3: SSTA at design from S-phase T 

Proceed to Step 2      

for sample i+1 
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Table 1. Comparison of Burns, RGP and SLOP approaches against the lower bound for area at benchmark circuits. RGP is implemented on 

a CPU. Burns and SLOP are implemented on a CPU with a GPU co-processor, to utilize the parallelism available in the algorithms. 

compared to the lower bound. The runtime values reported for 

Burns and SLOP are for implementation on a CPU using a GPU 

as a co-processor to exploit the parallelism available in these 

algorithms. The GPU is an Nvidia Tesla S1080 system with 4 

cards. On average 12.8× and 6.4× improvements are obtained 

through such parallelism compared to a purely CPU-based 

implementation for Burns and SLOP, respectively. RGP is 

implemented on a CPU since no straightforward source of 

parallelism is available in the algorithm. 

Table 1 indicates that the area of solutions obtained by Burns, 

RGP and SLOP are on average 9.6%, 3.7% and 7.5% higher, 

respectively, than the lower bound. This shows that the sub-

optimality in the results obtained from these methods are low 

compared to the absolute best solution possible. Figure 3 shows 

sizing curves for the different optimization approaches as well as 

the lower bound computed using the proposed technique. The 

figure illustrates that the room for further improvement of results 

beyond smart deterministic approaches is low.  

6. CONCLUSION 
This paper proposes a lower bound computation method to 

evaluate statistical design optimization techniques. Using this 

bound, we evaluated several current design optimization methods. 

We found that worst-corner based deterministic approaches result 

in a pessimistic design with an average area 20% greater than the 

theoretical lower bound clearly motivating the need for 

statistically informed methods. Among these, we compared a 

smart deterministic approach (Burns) and a  

robust statistical optimization technique (RGP), as well as a 

method proposed in this paper call SLOP that uses sample level 

view of the process variation space. Results show that all 

statistically aware techniques have areas within 10% of the lower 

bound, on average. More statistically aware techniques (SLOP, 

RGP) do achieve lower areas; however the additional 

improvement is only 5.9% on average for RGP and are within 

3.7% of the lower bound, with additional runtime cost of 41.5X 

compared to Burns. SLOP has higher area compared to RGP by 

3.8% on average, however is faster than RGP by 5.6X. Overall, 

the lower bound shows that all statistical methods produce results 

that are provably close to the theoretical minimum and trade-off 

additional run time for approaching this minimum to within a 

couple percent. 
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