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Abstract—In this paper, we propose a stratification+hybrid
quasi Monte Carlo (SH-QMC) approach to improve the efficiency
of Monte Carlo-based statistical static timing analysis (SSTA)
using sample size reduction. Sample size reduction techniques
proposed in the literature exhibit a tradeoff between accuracy of
the Monte Carlo estimate with fewer samples and their ability
to handle large number of variables in multidimensional space.
This paper proposes to target several such techniques to different
sets of process variation variables by using information about the
importance of these variables to the circuit delay, and the capabil-
ity of the techniques to handle multiple dimensions. Simulations
on benchmark circuits up to 90 K gates show that the proposed
method requires up to 224 samples for varying levels of process
variation to achieve accurate timing estimates. Results also show
that when SH-QMC is performed with multiple parallel threads
on a quad-core processor, the approach is faster than traditional
SSTA with comparable accuracy. When the proposed SH-QMC
technique is supplemented with a graph pruning method the
runtime is further reduced by 46–48% on average. The technique
is also extended to include an incremental approach to recompute
a percentile delay metric after engineering change order.

Index Terms—Algorithms, computer-aided design (CAD),
Monte Carlo, statistical timing, variance reduction, verification.

I. Introduction

P ROCESS PARAMETER variations have taken on increas-
ing importance in nanometer-scale CMOS. Rather than

using simple corner models that capture worst-case behavior
at the device level (and lead to large guard bands), modern
computer-aided design tools are moving toward a more prob-
abilistic view of circuit timing behavior. In replacing corner
models, there are two primary approaches that incorporate
process parameter uncertainty in timing analysis. The first is to
perform statistical static timing analysis (SSTA) by modeling
gate delay as a function of process parameters and propa-
gating these distribution functions to compute the distribution
of circuit delay [1], [2]. We refer to these approaches as
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traditional SSTA. In traditional SSTA it has proven challenging
to efficiently model skewness in the arrival time distribution
which results from non-linearity of the gate delays and the
maximum function. References [1]–[11] attempted to address
these issues.

The second approach is Monte Carlo based SSTA, which
involves selection of samples of the process variation space to
obtain statistical distributions of circuit timing behavior. The
application of Monte Carlo (MC) for statistical timing was
discussed in Scheffer [12], where it was shown that Monte
Carlo based SSTA is accurate even in scenarios with high
dimensionality and non-standard distributions in the process
variation space, where traditional SSTA has difficulties. How-
ever, there are two main difficulties with this approach. First,
the standard MC approach of random selection of samples
in the process variation space requires too many samples for
sufficient accuracy, resulting in high runtime cost. Second,
there is no work to show the applicability of MC based SSTA
for incremental statistical timing analysis. In this paper, we
address both concerns.

Standard techniques to reduce the sample size for MC based
approaches exist in statistics literature and are called variance
reduction techniques. The application of these techniques for
parametric yield estimation has been analyzed in the literature
[13]–[17], [19]–[23]. In [13], a Latin hypercube approach
for parametric yield estimation is proposed. In [14], mixture
importance sampling for statistical SRAM design and analysis
is proposed. The approach in [15] uses the control variates
technique in conjunction with importance sampling for timing
yield estimation. However, while several approaches are re-
viewed, no results are presented. In [16], the authors proposed
to use quasi Monte Carlo analysis for yield estimation. This
approach cannot be directly extended to systems with large
number of dimensions (variables) which is often the case
with process variation. In [17], the authors addressed this
issue by reducing the problem dimension using a Karhunen–
Loeve expansion model of spatial correlation. The proposed
problem formulation considers a grid-less spatial correlation
model with assumptions of continuity, positive definiteness,
and bounded variance. The results show significant speedups
in terms of sample size reduction. One drawback, however,
is that it is not clear if existing design flows that employ a
grid-based spatial correlation model can use the properties of
stochastic processes with a covariance kernel [18] while also
achieving a significantly reduced set of variables that can be
handled by quasi Monte Carlo (QMC). Our earlier work in
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[12] proposes to combine QMC and LHS to address the issue
of QMC’s inability to handle high dimensionality. In [20], the
authors presented a robust theoretical framework incorporating
QMC and LHS-based methods to speed up statistical timing
analysis. Further, they proposed techniques to generate QMC
samples tuned for optimal performance in SSTA. Other tech-
niques proposed recently focus on SRAM designs and rare
event analyses. The authors in [22] proposed to reduce the
evaluation of timing statistics in the complex, but structured
SRAM designs to a single chain of component circuits. A
spherical importance sampling method is then employed to
evaluate the simplified model. In [23], a Markov chain Monte
Carlo technique is proposed for accurate estimation of the right
hand tail of delay distribution. The technique is shown to be
effective for rare event analyses. There have also been attempts
to parallelize Monte Carlo based methods for SSTA [24], [25].

Engineering change order (ECO) and synthesis tools require
incremental timing analysis techniques for fast recomputation
of circuit delay with small changes in the design. To meet
time to market, designers need tools capable of performing
fast incremental timing analysis, and such tools need to
incorporate process variations. While incremental techniques
for traditional SSTA exist in the literature [1], the lack of
such techniques has been a major drawback for MC based
approaches to SSTA. We address the specific problem of
recomputing a percentile delay metric after incremental circuit
sizing. To the best of our knowledge, this paper is the first to
address incremental timing analysis in MC based SSTA.

This paper has several main contributions. First, we intro-
duce an approach for variance reduction in MC-based SSTA,
stratified sampling+hybrid quasi Monte Carlo (SH-QMC). In
SH-QMC, we propose to use circuit timing criticality infor-
mation for sample size reduction. We use information about
the criticality of variables to the circuit delay to order them.
For the most critical variables, we then employ techniques
that achieve high accuracy with few samples using previously
known mathematically derived sequences known as low dis-
crepancy sequences (LDSs). For the less critical variables,
we use techniques that are effective for problems of higher
dimensionality. The proposed approach is implemented and
tested on benchmark circuits with sizes up to 90 000 gates. In
general SH-QMC requires fewer than 224 samples to achieve
target accuracy on the benchmarks studied for varying levels
of process variation. Our results also show that the number of
samples required does not increase with the number of gates in
the circuit. Additionally, when SH-QMC is implemented with
multiple threads on a quad core processor, it is faster than
traditional SSTA for comparable accuracy. We also observe
that the performance of SH-QMC scales better than traditional
SSTA with circuit size.

Second, we propose a technique to recompute a percentile
delay metric after incremental circuit sizing, where individ-
ual gates are resized. In this technique, we use information
local to the resized gate to prune out most of the samples,
leaving only a few samples to be reevaluated. Our results for
the incremental computation of the 95th percentile and 99th
percentile delays of benchmark circuits show that on average
only 1.4% and 0.7% of original samples need to be evaluated

for exact recomputation, even after sample size reduction using
SH-QMC.

This paper includes significant additions to our related work
in [19]. Different techniques for ordering critical variables
for mapping to LDSs are evaluated, and the relationship
between the number of critical variables mapped to LDSs and
accuracy is analyzed. We also propose a novel graph reduction
technique to additionally improve the performance of MC-
based SSTA. A learning-based graph reduction approach is
introduced, where a small set of SH-QMC samples is used
to identify the critical nodes in the graph. This enables fast
evaluation of the remaining samples and enables up to 73%
additional reduction in runtime.

This paper is organized as follows. Section II discusses
the applicability of existing variance reduction approaches in
statistics to the statistical timing analysis domain. Section III
presents our work on variance reduction for MC-based SSTA
and proposes a graph pruning method to improve the efficiency
of SH-QMC. Section IV proposes an approach to incremen-
tal statistical timing analysis. We present detailed results in
Section V and conclude in Section VI.

II. Variance Reduction Approaches for

Statistical Timing

MC-based statistical timing involves selecting samples of
the process variation space to obtain statistical distributions
of circuit delay. This is mapped to the standard mathematical
problem of MC, which is to estimate the integral of a function,
using samples in its domain. There are standard techniques for
variance reduction of MC, which include quasi Monte Carlo
techniques, Latin hypercube sampling, stratified sampling,
importance sampling, and control variates. In this section,
we briefly discuss their applicability to the statistical timing
analysis framework.

A. Quasi Monte Carlo

The standard MC method addresses the problem of approx-
imating the integral of a function f (x) over the s-dimensional
hypercube Cs = (0, 1)s, where x represents a point in an
s-dimensional space. The MC estimate of the integral f is
given by the arithmetic mean of fi, which are values of the
function f (x) evaluated at n samples distributed throughout the
hypercube. The Koksma–Hlawka inequality relates the error
bound of a method to numerically estimate an integral using a
sequence of samples, to a mathematical measure of uniformity
for the distribution of the points, called “discrepancy” [27]
This inequality suggests that we should use a sequence with
the smallest possible discrepancy to evaluate the function
in order to achieve the smallest possible error bound. Such
sequences constructed to reduce discrepancy are called LDSs.
Quasi Monte Carlo techniques are characterized by their use of
LDSs to generate samples. LDSs are deterministic sequences,
in other words there is no randomness in their generation.
Intuitively, these sequences are well dispersed through the do-
main of the function, minimizing any gaps and/or clustering of
points. Fig. 1 illustrates that quasi random sequences generate
samples with lower discrepancy compared to pseudo random
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Fig. 1. Quasi random and pseudo random sequences.

sequences (sequences with properties similar to “truly” ran-
dom sequences). Sobol [29] and Faure and Niederreiter [16]
are LDSs that have been studied extensively. In this paper,
we consider Sobol sequences, which are known to be simple
to construct and more resistant to the pattern dependency
issue (mentioned below), compared to the other sequences.
Interested readers can refer to [29] for a construction of the
Sobol sequence, and [30] for an implementation.

In the context of statistical timing analysis, quasi Monte
Carlo techniques have been studied in [16]. The author noted
that LDSs are imperfect and as the number of dimensions
in the problem increases, there is degraded uniformity. This
effect is especially significant among the higher coordinates of
LDSs, which show undesirable patterns as opposed to the low
discrepancy pattern in Fig. 1. This phenomenon is referred to
as pattern dependency. The author suggested that in timing
analysis the lower coordinates of Sobol sequences, which
have no significant pattern dependences, be assigned to the
important variables in the sampling procedure. Therefore, a
concept of criticality of variables in timing analysis needs to
be defined, which can be used to sort the variables in the order
of their decreasing importance. The coordinates of the Sobol
sequence can then be assigned to variables in this order. We
present a technique for ordering the variables based on their
criticality to circuit delay in the statistical timing framework.

A related point is that Sobol sequences are not accurate
beyond a certain number of dimensions. Hence, in this paper,
we use quasi Monte Carlo techniques in conjunction with
stratified sampling and Latin hypercube sampling (LHS). The
next two subsections provide a brief overview of stratified
sampling and LHS.

B. Stratified Sampling

Stratified sampling is a technique to partition the sample
space into mutually exclusive strata, and then sample using
any of the known variance reduction techniques within each
[28]. The stratification method in this paper is illustrated for
a 2-D example in Fig. 2, where random variable X is divided
into four equal probability bins (X is equally likely to fall
in any of the four bins), whereas random variable Y is not
binned. This method is adopted when X is critical to the
function value to be estimated, whereas Y is not. In this way,
the 2-D space is partitioned into four strata as shown in the
figure. Throughout the work, we use “bin” to refer to regions
in individual variables, and “strata” to refer to partitions in
the nD space, where n is the dimensionality. In general in

Fig. 2. Stratification of a 2-D space. Variable X is divided into four bins,
thus dividing the sample space into four strata.

multidimensional space, one or more variables are binned,
and the permutations of bins across variables define strata. In
the case of timing analysis, the timing behavior of the circuit
is more sensitive to the critical variables by selection and
these variables are binned. Therefore within strata the timing
behavior exhibits lower variation and is easier to estimate. The
technique leads to accuracy with few samples, however cannot
be used over very large dimensions since the number of strata
increases exponentially.

C. Latin Hypercube Sampling

Latin hypercube sampling is a technique in variance reduc-
tion which deals with multidimensional systems [31]. This
technique tries to sample each variable involved uniformly by
dividing the variable into equal probability bins. The samples
from bins in variables are combined across dimensions to
obtain faster convergence than random sampling. This is in
contrast with taking all permutations of the bins across vari-
ables to define strata, and then sampling within each stratum
as in stratified sampling described above. This means that LHS
can deal with large dimensions, however with a moderate rate
of convergence compared to full stratification.

The LHS procedure is illustrated in Fig. 3. Each random
variable is divided into equal probability bins. One sample
is generated within each bin. Such samples are combined
across variables to obtain Latin hypercube samples. This is
the procedure to obtain k samples, where k is the number of
bins per variable. To obtain mk number of samples, we repeat
the LHS procedure m times.

Two other techniques that have been studied for application
to integrated circuit yield estimation are importance sampling
and control variates. In general, these methods require more
detailed information about the circuit. For literature in statistics
about the method, refer to [28]. More work is required to
establish the effectiveness of these approaches for use in the
modern integrated circuit design process.

III. Smart Sampling Based on Timing Criticality

In this section, we first describe our process variation model
and then go on to discuss our smart sampling approach.
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Fig. 3. Latin hypercube sampling. (a) Divide each variable in eight equal probability bins and sample in bins. (b) Combine randomly to form eight triplets.

A. Process Variation Model

Our process variation model is based on [2] which takes
into account within-die (WID) spatially correlated variation
by partitioning the die into n * n grids and assuming identical
parameter variations within a grid. Therefore, each source
of variation is represented by a set of random variables for
all grids. For example, transistor gate length variation is
represented by a set of random variables for all grids and the
set is of multivariate normal distribution with a covariance
matrix RLg. Principal component analysis is performed on
these correlated random variables to obtain a set of principal
components. Similarly, principal components are obtained for
other sources of variation. Let pi: i = 1, ..., m be the principal
components of all global sources of variation. In addition to
these global sources of variation, we have an independent
random variable �r to account for random variation at the gate
level. The delay for a gate is expressed as a linear combination
of principal components of pi and �r

l = d0 + k1 × p1 + . . . + km × pm + km+1 × �r (1)

where d0 is the gate delay mean, ki: i = 1, ..., m are the
coefficients for the principal components. pi and �r are in-
dependent unit normal random variables after suitably scaling
their coefficients.

B. Stratification+Hybrid Quasi Monte Carlo (SH-QMC)

In our smart sampling approach SH-QMC, we propose to
use circuit timing criticality information to reduce the sample
size for MC-based statistical timing analysis. In the previous
subsection, we have defined the variables representing process
parameter variation. In our proposed approach, we order
these variables based on their criticality to the circuit delay
using a timing criticality parameter Pcrit defined in the next
subsection. We then apply QMC, stratified sampling and LHS
to variables based on their convergence property and the
ability to handle multiple variables (dimensions) as illustrated
in Fig. 4 The topmost critical variables guide the stratified
sampling approach, which leads to faster convergence. Only
the top two to five variables are used to guide stratification
since the number of strata increases exponentially with the
number of variables as explained in Section II-B. QMC is
then employed on the topmost to moderately critical variables

Fig. 4. Ordering variables using timing criticality.

for its fast convergence properties. However, QMC can exhibit
pattern dependencies with large number of variables, so only
a limited number of variables are sampled using QMC. On the
non-critical variables we use Latin hypercube sampling, which
is applicable for large number of variables, but has slower
convergence to an accurate result.

The method is illustrated in Fig. 5 using a 5-variable exam-
ple. As mentioned before, variables are ordered as critical,
moderately critical and non-critical. The two most critical
variables r1 and r2 are divided into four bins each [Fig. 5(a)].
A stratum is defined as a set of points in the 5-D space
restricted to one bin each in r1 and r2, but unrestricted in r3,
r4, and r5. The total number of strata is 16, arising from 4 by
4 permutations of the bins. Fig. 5(b) illustrates one particular
stratum which we use to explain the remaining steps. In this
stratum, points are restricted to bin 2 in r1 and bin 3 in r2.
As shown in Fig. 5(c), QMC method based on Sobol sequence
is used to sample r1, r2, and r3 in the stratum and LHS is
applied to r4 and r5. Note that since we are only sampling
within the stratum, samples of r1 and r2 are restricted to the
respective bins. QMC generates triplets as shown in the figure.
For performing LHS, r4 and r5 are divided into eight bins each
and one value is selected from each bin as in Fig. 5(c). Eight
LHS pairs are generated by randomly picking from r4 and r5
in one step of LHS. Two LHS pairs are shown in Fig. 5(d).
Next, the LHS pairs are combined with the QMC triplets to
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Fig. 5. Stratified Latin hypercube sampling. (a) Ordering variables based on timing criticality. (b) One of 16 strata in the sample space. (c) QMC triplets
and LHS pairs. (d) These are combined to obtain final samples.

generate our final samples. The procedure is repeated: LHS
pairs are generated again in r4 and r5, and QMC triplets are
generated in the other three variables. These are then combined
as before. After generating the samples in this stratum, we
move to the next stratum and repeat our steps. In this manner,
we generate samples in all 16 strata.

As mentioned in quasi Monte Carlo, among the variables on
which QMC is employed, the lower coordinates of LDSs are
assigned to the more critical variables. The order of criticality
here is again decided using the parameter Pcrit.

We investigated the impact of the number of critical
variables mapped to LDS sequences (employed in QMC
sampling) on the accuracy of SH-QMC. Fig. 6 shows the 95th
percentile of the error distribution (expressed in percentage)
in estimating the σ of the arrival time distribution of the
benchmark circuits studied (compared to a golden Monte
Carlo analysis with 40k samples) with respect to the number
of critical variables sampled using QMC. Results are shown
for all the benchmark circuits studied. Based on this error
metric, it can be inferred that the technique provides estimates
of circuit timing variance within ∼ 5% when 20 or more
of the most critical variables are sampled using QMC. This
analysis is used to guide the choice of the number of critical
variables mapped to LDS sequences in our technique.

C. Variable Ranking Based on Timing Criticality

As mentioned in Section III-B, process variation variables
are ordered based on their importance or criticality to circuit
timing behavior. This information enables application of QMC,
LHS, and stratified sampling based on the importance of the
variables. For example, QMC methods have fast convergence
but can only handle limited number of variables, so the
top few variables are sampled using this method. Therefore,
the ordering of variables based on criticality has a direct
impact on accuracy of the smart sampling technique. This
section compares two different heuristics to order principal
components. These techniques are as follows.

1) Nominal ordering. This heuristic uses information from
STA performed at the nominal process corner to or-

Fig. 6. Error in estimating ρ versus number of variables that are assigned
quasi Monte Carlo samples.

der variables based on a timing criticality metric Pcrit.
Intuitively, this metric prefers variables or principal
components that have a higher correlation with process
parameter variation in grids having more pronounced
impact on overall circuit criticality behavior. The im-
portance of grids in turn is heuristically computed as
the sum of near-critical gates falling in the grid. A
gate is near-critical if it has a slack of less than s%
of worst-case arrival time, where “s” is a parameter.
The computation of Pcrit is performed as follows. As
mentioned, each grid is assigned a weight equal to the
number of gates falling in any of the potential critical
paths. Let W(i) be the weight of the ith grid. The weight
of the jth principal component is given by

wj = �l(W(i) × kij) (2)

where kij is the coefficient of the jth principal compo-
nent in the ith grid variation. Variables are then sorted
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TABLE I

Comparison of Error for NominalOrdering and

Learning-Based Ordering Techniques to Rank Variables Based on

Timing Criticality

Circuit SH-QMC Nominal Learning-Based
Sample Size Ordering (%) Ordering (%)

VD1 112 4.4 4.7
VD2 112 4.1 3.7
USB 128 4.6 3.8
Ether 160 4.7 4.5
VGA 112 4.9 5.1

The error shown is the 95th percentile relative error in estimating σ of
the circuit delay (in %).

based on Pcrit. A higher value of Pcrit corresponds to
higher criticality for the variable. This expression for
weight computation is restricted to the case of a single
process parameter. For multiple process parameters, a
more advanced expression is required as discussed at
the end of this section.

2) Learning-based ordering. This technique builds upon the
nominal ordering technique described above. Variables
are initially ordered based on the nominal ordering
technique. After a subset of samples S generated in the
proposed SH-QMC technique are evaluated using STA,
the information available is used to improve the variable
ordering. The subset selection is similar to the approach
presented in Section III-D, where it is discussed in
more detail. At each sample in S, a variable ordering
is obtained using the heuristic used in nominal order-
ing, except that near-critical gates are identified using
slacks obtained at the particular sample instead of the
nominal process corner. For each principal component
the weights across all the samples in S are added to
obtain the final weights. Principal components are sorted
according to the weights to obtain the final variable
ordering.

Whereas nominal ordering uses information at the nominal
process corner, learning-based ordering uses information at
multiple samples in the process variation space. In Table I,
we compare the two techniques based on the accuracy of
the SH-QMC analysis compared to a golden of Monte Carlo
analysis of 40 000 randomly generated samples. As will be
described in more detail in Section V, the error metric is
the 95th percentile of the error in estimating σ of the worst
arrival time. The first column shows the error for SH-QMC
using nominal ordering and the second column shows the error
for the case of learning-based ordering. The results indicate
that the two techniques are comparable in accuracy for the
benchmark circuits considered. Since nominal ordering is a
simpler heuristic, this technique is used in our implementation.

For the case of multiple process parameters (each of
which is resolved into principal components for die-to-die
and within-die variation), the weight for the ith grid used
in computation of the weight for principal component j is
a function of the corresponding process parameter l. This
weight is defined as the sum of sensitivities of gate delays in

grid i to variation in the process parameter l at the nominal
process corner, such that the gates have slack less than s%
of worst-case arrival time. The sensitivity value is obtained
from the statistical characterization library for the gate type.
The expression for computing the weight Wl(i) for grid i is
therefore modified to

wl(i) =
∑

g

∂dg

∂l
(3)

where g represents gates in grid i with slack less than s%
of worst-case arrival time, dg is the delay of gate g. This
expression is substituted in (2) to replace W(i) to obtain
principal component weight wj .

D. Critical Graph Analysis for MC SSTA

In this section, we propose a technique to improve the
performance of smart sampling based SSTA through critical
graph analysis. The basic idea is to identify critical paths in the
graph through heuristic techniques. Gates which are expected
to have a negligible effect in determining the worst case arrival
time of the circuit are pruned or avoided from consideration
in subsequent analyses. If the number of such gates is high,
this leads to speedups in the overall statistical analysis. In the
context of variability, criticality is statistical. The challenge
here is to assign probability values to gates/paths in the circuit
based on a measure of criticality. In [32], the authors proposed
an algorithm to compute criticality probability of gates in the
circuit. This algorithm computes criticality accurately, however
it can potentially add a significant runtime overhead to the
SSTA. It may be noted that the proposed critical graph analysis
technique only requires that all sufficiently critical gates be
selected for accuracy in subsequent SSTA. The exact values for
criticality probability are not required in the further analysis.
Therefore, we propose simpler techniques for critical graph
identification. We propose that slack information obtained
from a learning-based approach involving evaluation of a
subset of the SH-QMC samples, be used to identify the critical
graph. The timing overhead for the technique is significantly
lower.

We first discuss a nominal STA-based critical graph iden-
tification approach to illustrate the graph reduction concept,
before we explain the proposed learning-based approach.

1) Nominal STA-Based Critical Graph Identification: This
technique uses information obtained from timing analysis of
the circuit at the nominal process corner. The example in
Fig. 7 illustrates the technique. Nominal STA is performed and
slack information is obtained at all gates in the circuit. Gates
with significant slack, higher than a threshold value of 0.3
units in this example, are excluded from consideration when
applying MC based SSTA. The reduced graph size will allow
the runtime-dominant MC STA runs to be reduced roughly
linearly with circuit size. The threshold slack is defined as
sT % of the worst arrival time at the nominal sample, where
sT is the pruning parameter.

2) Learning-Based Critical Graph Identification: A subset
of SH-QMC samples or training samples are evaluated to
extract more information about the statistical behavior of the
circuit. This information is used to obtain bounds on the
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Fig. 7. Illustration of graph reduction. Slacks for nodes are indicated above
corresponding gates. Gates with slack higher than 0.3 units at their output
node are removed to obtain the reduced graph in this example.

probability distribution of timing slack at each node. When
enough information is gathered to label a certain node as
having negligible probability of lying on a critical path for any
sample, the node is pruned or eliminated from consideration
for remaining SH-QMC samples.

As described in Section III-B, SH-QMC combines stratified
sampling, QMC sampling, and LHS. First, the sample space
is partitioned into strata. Next, QMC and LHS are applied
in combination within each stratum. The subset of SH-QMC
samples, to be evaluated for the training, is selected such that
each LHS bin has exactly one value for the corresponding
variable. For example, suppose the LHS technique used di-
vides each variable into five bins and there are four strata in
the process variation space. Then the subset has 20 samples;
five samples corresponding to the bin size for LHS within
each stratum. Samples in this subset are evaluated, the overall
idea being to ensure uniform coverage of process space. Note
that QMC has no granularity unlike LHS and does not affect
the training set size. At every circuit node we thus have a
slack distribution obtained from the subset. A low percentile
of the slack distribution is the metric considered for pruning
each gate. A gate is pruned if the value is positive, in other
words the probability of the gate having close to zero slack
is very low in any process variation sample. Determining the
optimal percentile point of slack distribution for pruning is a
challenge; lower percentile points are expected to be accurate
but limit runtime improvements.

The learning-based technique can be augmented by per-
forming the nominal STA based critical graph identification
approach, before the training samples are evaluated. This
reduces the runtime for the training or learning-based critical
graph identification step. Note that the nominal STA does not
add to the runtime cost, as it is a step in the existing flow for
variable ranking, discussed in Section III-C.

We refer to a pruning approach which employs only the
learning-based critical graph identification approach as a
single-stage pruning approach. In a two-stage pruning ap-
proach, this is augmented with nominal STA based critical
graph identification. Their comparative merits are discussed
in Section VI.

IV. Incremental Evaluation of a Percentile

Delay

ECO and synthesis tools require efficient incremental timing
analysis techniques for fast recomputation of circuit delay
with small changes in the design, while also accounting for
process variation. In MC based SSTA there is a lack of
incremental capability to date. In this section, we present an
approach for the incremental evaluation of a specific percentile
delay of a circuit with a small change in circuit sizing. We
illustrate the approach for the case of single gate sizing in this
paper. However, the approach can be extended to the case of
simultaneous multiple gate sizing. The key intuition is that if
the samples for SH-QMC on circuit C are reused for C′ (C
with gate g sized), then most samples need not be reevaluated
to recompute the xth percentile delay; only those samples that
have a circuit arrival time “close” enough to the xth percentile
delay of C need to be reevaluated. An upperbound on change
in circuit arrival time of a sample from C to C’ can be
determined from a local bound computation involving only
a few gates connected to the gate g being resized. This bound
can be used to prune out a majority of the samples, leaving us
with a few that need to be reevaluated. Further speedup can
be achieved with established techniques for incremental STA
on the samples selected for reevaluation.

A. Algorithm

We perform timing analysis on an original circuit C using
our SH-QMC approach and store the samples for the process
variation space and the corresponding circuit arrival time in
memory. Our approach for the recomputation of a specific
percentile delay using the stored samples is illustrated in
Fig. 8. For each sample, a bound on change in circuit arrival
time from C to C′ (C with gate g sized) is obtained as
explained in Section IV-B. Each sample has a positive bound
and negative bound for either direction of change. The samples
are sorted in the order of increasing circuit arrival time for
C. In Fig. 8(a), the samples are represented by points on
the circuit arrival time distribution curve. They are visited
in the decreasing order of arrival time starting from the xth
percentile value tx. A sample k is selected for reevaluation if
its arrival time for circuit C and the positive bound for k add
up to exceed tx. For example, in Fig. 8(a), sample i is pruned
out since its positive bound is not large enough to cross tx.
However, sample i − 1 is reevaluated as it has a large enough
upper bound to cross tx. As illustrated in Fig. 8(b), the arrival
time for i−1 is recomputed. Sample i−1 is updated with this
value of arrival time which shifts tx to the right. Next sample
i−2 is reevaluated, however the arrival time value obtained is
less than tx, so tx does not change. Sample i−2 is also updated
with the recomputed arrival time value. After considering all
samples to the left of tx, we visit the samples to the right. The
criterion for reevaluating a sample here is that its arrival time
for C and the negative bound for the sample should add up
to less than tx. After this step, we repeat the procedure and
visit samples to the left of the updated tx. Samples reevaluated
earlier are not visited again. The termination criterion is that
there are no samples to the left or right of tx which satisfy



VEETIL et al.: FAST STATISTICAL STATIC TIMING ANALYSIS USING SMART MONTE CARLO TECHNIQUES 859

Fig. 8. (a) Samples are visited in decreasing order of circuit arrival time,
starting from the xth percentile (tx). Samples with delta crossing tx are
selected, others pruned. (b) Recomputation of circuit arrival time is performed
at the selected sample and tx is updated.

the criterion for reevaluation. The final value of tx is the xth
percentile delay of C′.

The justification for reuse of samples is that our metric to
guide SH-QMC Pcrit (Section III-C) is measured at the grid
level in our process variation model, so within reasonable
ECO changes the timing criticality of the circuit does not
change to significantly alter our metric Pcrit. In particular, we
are only concerned about the relative ordering of variables
based on Pcrit. Therefore with single gate sizing, the samples
are still accurate. For cases where there is significant design
change, SH-QMC is performed again to generate new samples
and the critical graph analysis step is repeated. As mentioned
the samples for C are stored in memory. Our results on the
benchmarks studied demonstrate that the number gof samples
for SH-QMC that gives sufficient accuracy is 224 for the
largest circuits. Therefore, we need to store 224 samples for
each gate. Section III-A defines the variables to model process
variation, which are the principal components for all sources
of variation and an independent random component at the gate
level. Now, it is enough to store samples for these components,
as the device parameters can be retrieved using the values
of components. Storing samples for the principal components
incurs negligible memory overhead. In the case of the inde-
pendent random component, instead of storing all samples of
the component for all the gates, we store the initial “seed”
value for the pseudorandom number generator. Note that for
STA, gate delays are propagated in the topological order. This
offset in the topological order along with the “seed” value

is provided to the pseudorandom number generator which
reproduces the random numbers while incremental analysis
is performed. Additionally, for incremental propagation in the
fanout cone of gates affected by sizing gate g, arrival time
and slew values for each gate in the original circuit need to
be stored for each sample. For large circuits with millions
of gates, there are scalability challenges associated with such
memory requirements.

B. Computing Circuit Arrival Time Bound for Samples

We compute the maximum possible increase and decrease in
the circuit arrival time for each sample of circuit C using local
gate delay change information when gate g is sized. Define
sets Fi(g) of fanin gates of g, FoFi(g) of fanouts of gates in
Fi(g) and Fo(g) of fanout gates of g. We select subpaths that
are candidates for obtaining the bounds in circuit arrival time
and evaluate the change in delay of these subpaths when g is
sized. Every subpath starting from an input pin of a gate in
Fi(g) and ending in an output pin of a gate in either Fo(g) or
FoFi(g) is a candidate for this evaluation. Some such subpaths
could have more than one gate in Fi(g). We assume that delay
change is significant only in the gates in the three sets defined
above, therefore only these gates affect the change in subpath
delay. Now, we obtain bounds for circuit arrival time change
for a sample S as follows. Let P(g) be the set of all candidate
subpaths. tS (p) and t′S(p) are delays for subpath p in sample S

before and after sizing gate g, respectively. Then the negative
and positive bounds are given by

delta neg(g, S) = nin{ts′(p) − ts(p)∀p ∈ P(g), 0} (4)

delta pos(g, S) = nax{ts′(p) − ts(p)∀p ∈ p(g), 0}. (5)

In other words, we find the maximum and minimum values
of the change in delay of candidate subpaths. As gate delay
change is assumed to be significant only in the local subcircuit
[set of gates belonging to Fi(g), Fo(g), and FoFi(g)], the com-
putational overhead is low. In our algorithm in Section IV-A,
we only need either of delta−neg or delta−pos for most
samples. A delta−neg or delta−pos computation for a sam-
ple involves gate delay computation and propagation in the
local subcircuit twice, one each before and after gate sizing.
Therefore, the cost of arrival time bound computation across
all the samples for the percentile delay recomputation is
approximately twice that of performing Monte Carlo analysis
on the local subcircuit with smart samples. The runtime for
this is negligible compared to that of a single STA run for
most practical circuits.

V. Results

Our simulation results are based on the error in estimating
statistical moments of arrival time distribution for a given
method with respect to the moments from a golden of 40 000
Monte Carlo runs. Consider for example a given trial MC1 of
size 100 samples. This gives a circuit arrival time distribution.
From this, moments μ1 and σ1 (mean arrival time and standard
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deviation in arrival time) are obtained and error (magnitude of
deviation from the golden) calculated for both. From repeated
trials (each of 100 samples in this example), we obtain two
distributions for error. The nature of the error distributions
show the efficiency of the technique. For example, as we
increase the number of samples from 100 to 200 in the above
example and repeat the experiments, the error distribution is
expected to become tighter and closer to zero. In particular,
the 95th percentile of the error is closer to zero and we use
this value as a criterion to compare different techniques. The
minimum number of samples required by a technique such
that the 95th percentile of error distribution is less than 5%
for both mean arrival time and standard deviation of arrival
time is our performance metric for the technique.

The number of grids in the spatial correlation model for
individual circuits is varied linearly with post-placement area
starting from 2 × 2 for the smallest circuit to 16 × 16
for the largest circuit. This corresponds to a grid area of
approximately 40 μm×40 μm for all the circuits. We compare
the proposed SH-QMC approach with random sampling and
LHS based techniques. Simulations are performed on five
large benchmark circuits. These are Viterbi Decoder 1 (VD1),
Viterbi Decoder 2 (VD2), USB2.0 Core (USB), Ethernet
MAC Core (ETHER), and VGA Controller Core (VGA), with
gate counts varying from approximately 15 000 to 90 000.
We perform synthesis and APR on all the circuits using
commercial tools.

A. SH-QMC

The results are based on a 65 nm industrial technology
library. In our implementation we consider channel length,
oxide thickness, and threshold voltage variations as sources of
process variability. The inter-die, spatially correlated within-
die, and uncorrelated random components of channel length
variation are considered. The relative amounts of process
parameter variation among die-to-die, spatially correlated, and
random sources have been studied in the literature [33]–
[35]. We study the performance of the SH-QMC technique
for three different process variation models as indicated in
Table II. The number of samples required to achieve 95th
percentile confidence in estimating mean and standard de-
viation of arrival time with less than 5% error is reported.
Variation model A considers only channel length variation (no
variation in oxide thickness and threshold voltage). An overall
standard deviation of 5% is considered. The overall variation
is equally divided among die-to-die, spatially correlated WID
and random WID components in this model. In variation
model B, all three sources (channel length, oxide thickness,
and threshold voltage) are considered. The contribution among
D2D, spatially correlated WID, and random WID components
is the same as in model A for channel length and oxide
thickness. The standard deviation for oxide thickness here is
1.3% [36]. The threshold voltage variation is modeled based
on [34] where a Pelgram model is used to compute the
random component of threshold voltage variation. Variation
model C increases the contribution of D2D components of
channel length and oxide thickness to 50% while dividing
the random and spatially correlated WID components equally.

TABLE II

Comparison of Sample Counts to Achieve Target Accuracy

Using the SH-QMC Method for Different Models of Process

Variation

Circuit No. of SH-QMC Count
Gates Process Process Process

Variation Variation Variation
Model A Model B Model C

VD1 14 503 160 160 112
VD2 34 082 160 128 112
USB 32 898 176 176 128
ETHER 57 327 192 208 160
VGA 90 831 224 176 112

The average number of samples required to achieve target
accuracy using SH-QMC are 182, 170, and 125, respectively,
for process variation models A, B, and C. Sample counts
for A and B are comparable, indicating that adding more
process parameters does not cause any significant increase
in number of samples. Fewer than 224 samples are required
to achieve target accuracy in each case. Further, there is no
notable increase in sample size with respect to size of the
benchmark circuits from results obtained. Results presented
in the rest of this paper are based on process variation model
C unless otherwise stated. Section III-C mentions that critical
paths are identified within a slack of s% for computing timing
criticality Pcrit. To investigate the sensitivity of the results to
the parameter s it is varied from 1–5%. Results indicate there is
no change in the number of samples required to meet the stated
accuracy objective, indicating that the proposed technique is
stable with respect to this parameter. Table III shows the
sample counts for ISCAS 85 benchmark circuits [40] and the
additional benchmark circuits to achieve target accuracy using
process variation model C. Additionally, the sample counts
required to achieve a more stringent measure of accuracy are
shown. This error metric is such that the 99th percentile of
the absolute error distribution does not exceed 3%. Results
indicate that fewer than 208 and 288 samples are required
across the benchmark circuits to achieve the target accuracy
in terms of the two error metrics.

Table IV compares the runtime of SH-QMC and an analyt-
ical SSTA model as proposed in [3], referred to as traditional
SSTA in the remaining discussion. A grid-based spatial corre-
lation model for process variation is assumed as described in
Section III-A. A canonical expression for arrival time at any
gate is maintained during the timing analysis, expressed as the
sum of principal components representing spatial correlation
and an additional variable for the within-die uncorrelated
component. Sum operations are performed by adding the
coefficients of each variable, except the random component
for which the root of the squared sum of coefficients is
computed. Max operation is approximated by matching the
mean, variance and correlation of the max of random vari-
ables, as discussed in [37], while maintaining the canonical
expression for the max. For both mean and standard deviation
of arrival time the error for SH-QMC in the table is the average
absolute deviation from their values in the golden model; for
traditional SSTA this is the error with respect to the golden.
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TABLE III

Sample Counts to Achieve Target Accuracy Using the SH-QMC

Method for ISCAS 85 Benchmark Circuits [40] and Five

Additional Benchmark Circuits

Circuit No. of Gates SH-QMC
95p.c < 5% 99p.c. < 3%

c432 256 160 272
c499 544 176 288
c880 500 208 288
c1908 603 112 192
c2670 780 192 240
c3540 1163 176 256
c5315 1692 208 288
c6288 3834 208 272
c7552 2152 208 288
VD1 14 503 112 224
VD2 34 082 112 208
USB 32 898 128 176
ETHER 57 327 160 240
VGA 90 831 112 240

Process variation model C is used to generate results. The sample counts
to achieve (a) <5% for the 95th percentile, and (b) <3% for the 99th
percentile of the error distribution are shown.

The golden model is MC with 40 000 random samples. One
drawback of Monte Carlo techniques in general is that every
time an experiment is performed, the error with respect to
golden is different. This means that the error in one particular
MC experiment is sometimes higher than the average value
mentioned. However, the 95th percentile of the absolute error
distribution is still less than 5% for all the circuits in the
table. This translates to an error of 3–7 ps in absolute time
for different circuits. This is less than 0.4 F04 delay for this
process technology [38], which is a reasonable target for the
error. All our simulations were performed on an AMD 2.4 GHz
Quad-Core processor operating in a Linux environment. For
SH-QMC, we perform two different experiments; in one we
run parallel processes on the Quad-Core machine, and in the
other we run a single process on the machine. The system call
fork is used to create child processes for the parallelization.
The pipe system call is used for communication between
each child process and the parent process. The parallelism in
evaluation of samples, which are independent computations,
is utilized in the implementation. Such a straightforward
source of parallelism is not available in traditional/analytical
SSTA based methods. We consider circuits with more than
10 000 gates for meaningful runtime comparisons. SH-QMC
with multi-threading performs better than traditional SSTA in
runtime. Also, further speedup in SH-QMC can be achieved
in a straightforward manner using parallel processing on more
than one processor. Fig. 10 compares the performance of
traditional SSTA with SH-QMC for the VGA circuit as a
function of number of grids in the process variation model. The
number of samples at each data point in SH-QMC is selected
such that the target accuracy metric is achieved in each case,
as discussed earlier. The plot illustrates that SH-QMC scales
better than traditional SSTA with respect to the grid com-
plexity. The runtime for traditional SSTA approaches scales
with the number of principal components which model spatial

Fig. 9. Arrival time distribution of SH-QMC (128 samples) and traditional
SSTA with respect to golden (40 000 MC) for USB benchmark.

Fig. 10. Performance comparison of traditional SSTA with multithreaded
SH-QMC for VGA circuit (90 831 gates) as a function of number of grids in
the process variation model.

correlation effects, as discussed in Section III-A. On the other
hand, for a circuit of the same complexity, the runtime for SH-
QMC is proportional to the number of samples required for
accurate analysis. As shown in Table II, the number of samples
to achieve target accuracy does not increase significantly with
increasing circuit size and grid complexity. This explains why
SH-QMC scales more favorably than traditional SSTA with
respect to grid complexity. Fig. 9 compares the probability
distribution curve of arrival time of the USB circuit for SH-
QMC (128 samples) and a traditional SSTA approach, with
respect to the golden. Our technique captures the mean arrival
time (marked with vertical lines) and the overall shape of the
distribution better than the traditional SSTA approach.

We present results for estimation of the 99th quantile of
the circuit arrival time using SH-QMC analysis in Fig. 11.
Results are presented for five large benchmark circuits. The
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TABLE IV

Runtime Comparison of SHQMC With SSTA

Circuit No. Mean AT σ AT Error SSTA Run SH-QMC
Gates Error (%) (%) Runtime (s) Runtime (s)

SSTA SH-QMC SSTA SH-QMC Multithread Single-thread
VD1 14 503 0.4 0.06 0.35 1.9 2.4 1.25 3.9
VD2 34 082 0.5 0.06 1.63 1.6 14.0 4.1 13.0
USB 32 898 0.9 0.05 3.3 1.9 15.7 4.3 13.6
ETHER 57 327 0.9 0.08 4.65 1.9 27.3 10.0 32.3
VGA 90 831 0.3 0.04 0.95 2.1 53.5 14.1 44.2

AT = circuit delay.

Fig. 11. Error in estimation of the 99th quantile of circuit delay distribution.
Repeated trials of SH-QMC yield to a distribution of the 99th quantile value.
95th quantile of the absolute error distribution is reported. Accurate results
are obtained with a small number of samples as illustrated.

error metric plotted here is the 95th percentile of the absolute
error distribution compared to a golden Monte Carlo run with
40 000 samples. It is shown that high levels of accuracy are
obtained (<3% error) with fewer than 50 samples across the
benchmark circuits.

B. Critical Graph Identification Approach

As explained in Section III-D the pruning criterion for a
gate is that a low percentile of the gate slack distribution be
non-negative. The cutoff percentile is determined in terms of
a pruning parameter k; if m− ks of the gate slack distribution
is non-negative, then the gate is pruned. For example, if k
is 4 and the gate slack distribution is normal, the gate is
pruned if its 0.004th percentile is non-negative. All results
presented are based on a single-threaded implementation.
Figs. 12 and 13 plot the error in estimation of the circuit
delay s and runtime, while varying k for the pruning approach.
As k increases the pruning criterion becomes more restrictive,
leading to higher accuracy while degrading runtime gains. Two
approaches one-stage and two-stage pruning are compared in
the plots. In the two-stage pruning approach, the nominal STA
based critical graph identification technique is used initially;
after the training samples are analyzed, the learning-based
technique is applied to further prune non-critical gates for

the rest of the samples. In the one-stage approach only the
learning-based approach is used (meaning the training samples
are analyzed using the full circuit with no initial pruning).

The error metric is the 95th percentile error in estimating the
standard deviation in arrival time compared to a golden Monte
Carlo analysis with 40 000 samples. The error is compared to
the SH-QMC approach without graph pruning in Fig. 12. For
pruning parameter k exceeding 4, the errors are comparable for
both single-stage and two-stage pruning approaches relative
to the case without graph pruning. The runtimes of both
pruning approaches in Fig. 13 are better than the case of no
pruning since non-critical gates have been efficiently pruned
from consideration after evaluating a few samples. Two-stage
pruning is faster than single-stage pruning since highly non-
critical gates are removed before the training samples are
evaluated in the two-stage approach. In general, the errors of
both single and two-stage approaches are comparable to the
case of no pruning for all the benchmark circuits for pruning
parameter k exceeding 4. Table V compares the three SH-
QMC based approaches. The pruning parameter k is set at 4
where the errors of all three approaches are comparable for the
benchmark circuits. Single-stage pruning reduces runtime by
46% and two-stage pruning by 48% on average. The learning-
based critical graph analysis approach is also amenable to
parallelism. Consider an SH-QMC sample size of 224. In
the learning stage, 16 of the 224 samples are analyzed. For
a small number of parallel machines/cores (up to 16 in this
case), parallelism in the training sample evaluation stage is not
affected since sufficient sample parallelism is available in this
stage. Also, the sample evaluation steps (including training
sample evaluation as well as evaluation of the remaining
samples) dominate the overall runtime cost as indicated in
Table VI. The parallel implementation is also not affected by
an increase in circuit size or number of principal component
variables based on similar arguments.

We demonstrate the accuracy of the critical graph identifica-
tion approach in Fig. 14 for benchmark VD2 using a two-stage
pruning approach with k = 4. After the pruning step is per-
formed, 80k samples are generated and circuit delay computed
at each sample for the critical graph. The error for each sample
is then obtained in comparison to analysis of the full graph
(without pruning). This error is plotted in the x-axis. The y-
axis shows the number of samples (80 k total) with a given
range of error. 99.6% of samples incur no error due to critical
graph analysis. Our experiments show that a similar level of
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TABLE V

Comparison of Three SH-QMC-Based Approaches With No

Pruning, 1 Stage Pruning, and 2 Stage Pruning on Benchmark

Circuits

Circuit No. of
Gates

No Pruning Single Stage Two Stage

Runtime (s) % Gates Runtime (s) % Gates Runtime (s)
Pruned Pruned

VD1 14 503 3.9 65.3 2 2 67.3 2.1
VD2 34 082 13.0 39.4 10.1 40.7 10.0
USB 32 898 13.6 70.3 6.9 76.1 6.2
ETHER 57 327 32.3 97.1 8.9 97.3 8.8
VGA 90 831 44.2 63.5 25.2 66.0 24.2

Fig. 12. Comparison of the 95th percentile error in σ for single-stage and
two-stage pruning for the VD1 benchmark circuit.

TABLE VI

Memory Usage and Runtime Profile for SH-QMC With Critical

Graph Identification

Circuit No. of Memory Runtime (%)
Gates Usage (MB)

Sample
Generation

Evaluation of
Training
Samples

Evaluation of
Samples on
Critical Graph

VD1 14 503 10.4 4.3 12.2 83.5
VD2 34 082 17.8 2 2 8.7 89.1
USB 32 898 18.3 3.1 13.9 83.0
ETHER 57 327 27.7 3.3 25.0 71.7
VGA 90 831 38.9 1.6 13.7 84.8

accuracy is obtained in all benchmark circuits evaluated. 67%
of the remaining samples have error less than 0.15%.

Table VI shows the runtime profile of SH-QMC with 1-stage
critical graph identification for benchmark circuits studied. The
memory usage for each circuit is also shown. The sample
generation step costs less than 4.3% for all the benchmark
circuits. On average, 14.7% of the time is spent in the learning
phase where the critical graph is identified. Note that this time
does not add to the overhead (compared to when gate pruning
is not performed), as the samples evaluated are a subset of

Fig. 13. Comparison of runtime versus pruning parameter for single-stage
and two-stage pruning for the VD1 benchmark circuit.

Fig. 14. Plot illustrating accuracy of the critical graph identification ap-
proach. 99.6% of the 80k total samples incur no error due to critical graph
analysis relative to the non-pruned circuit STA. 67% of the remaining samples
have error less than 0.15%.

the full set of SH-QMC samples; only the remaining samples
require evaluation in the subsequent phase.

C. Incremental Evaluation of Fixed Percentile Delay

Table VII presents results for the incremental evaluation of
the 95th percentile and 99th percentile delay after a gate size
change using our approach in Section IV. These experiments
are based on process variation model A, where only channel
length variation is considered. In our experiments, we selected
100 gates at random for a given circuit. Each gate was sized
up individually and the percentile delays recomputed. Our
simulations show that on average only 1.4% and 0.7% of
samples need to be reevaluated for exact recomputation of the
95th percentile and 99th percentile delays after performing
SH-QMC.
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TABLE VII

Performance of Incremental Evaluation of 95th and 99th Percentile

No. of Avg. Incremental Evaluations Avg. Incremental Evaluations Per
Circuit Gates Per Gate Gate/Sample Size (%)

95th percentile 99th percentile 95th percentile 99th percentile
AT AT AT AT

VD1 14 503 1.515 0.51 1.89 0.64
VD2 34 082 0.54 0.515 0.68 0.64
USB 32 898 1.625 0.57 2.03 0.71
ETHER 57 327 0.96 0.535 1.20 0.67
VGA 90 831 0.84 0.505 1.05 0.63

VI. Conclusion

This paper presented a SH-QMC approach to improve the
efficiency of MC based statistical static timing analysis. The
proposed approach uses easily computable timing criticality
information, and requires fewer than 224 samples to achieve
target accuracy with varying amounts of process variation and
across all the benchmark circuits studied. With multithreading
on a quad-core processor for SH-QMC, the approach is faster
than traditional SSTA for comparable accuracy. Also, further
speedup of SH-QMC is straightforward using parallel pro-
cessing across machines. In addition, SH-QMC scales better
than traditional SSTA with circuit size. We also proposed an
extension to SH-QMC that employs graph pruning based on
information obtained from sample evaluation. This further re-
duces runtime by 46–48% on average. Finally, an incremental
approach to recompute a percentile delay metric after ECO is
also presented. The results show that on average only 1.4%
and 0.7% of original samples need to be evaluated for exact
recomputation of the 95th percentile and 99th percentile delays
after ECO.

The proposed SH-QMC approach has some limitations
which need to be addressed in future work, in order to enable
its adoption in a design optimization setting. In the proposed
approach, if the designer performs a series of changes resulting
in a significant change to the critical path of the design,
full recomputation of samples is required. To minimize the
number of recomputations, one could explore possibilities for
incremental regeneration of samples and incremental critical
graph analysis, with respect to change in timing criticality of
the circuit graph or in the ordering of principal components.
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