
1

A Reliable Routing Architecture and Algorithm for NoCs

Andrew DeOrio, Student Member, IEEE, David Fick, Student Member, IEEE, Valeria Bertacco, Member, IEEE,

Dennis Sylvester, Fellow, IEEE, David Blaauw, Senior Member, IEEE, Jin Hu, Student Member, IEEE and

Gregory Chen Member, IEEE

Abstract—Aggressive transistor scaling continues to drive in-
creasingly complex digital designs. The large number of tran-
sistors available today enables the development of chip multi-
processors that include many cores on one die communicating
through an on-chip interconnect. As the number of cores in-
creases, scalable communication platforms, such as networks-on-
chip (NoCs), have become more popular. However, as the sole
communication medium, these interconnects are a single point
of failure, so that any permanent fault in the NoC can cause the
entire system to fail. Compounding the problem, transistors have
become increasingly susceptible to wear-out related failures as
their critical dimensions shrink. As a result, the on-chip network
has become a critically exposed unit that must be protected.

To this end, we present Vicis, a fault-tolerant architecture and
companion routing protocol that is robust to a large number of
permanent failures, allowing communication to continue in the
face of permanent transistor failures. Vicis makes use of a two-
level approach. First, it attempts to work around errors within
a router by leveraging reconfigurable architectural components.
Second, when faults within a router disable a link’s connectivity,
or even an entire router, Vicis reroutes around the faulty
node or link with a novel, distributed routing algorithm for
meshes and tori. Tolerating permanent faults in both the router
components and the reliability hardware itself, Vicis enables
graceful performance degradation of networks-on-chip.1

I. INTRODUCTION

Continuously shrinking transistor dimensions enable ever-

increasing density on modern microchips: each new technol-

ogy node facilitates additional cores in chip multi-processors.

For example, the Intel SCC [36] contains 48 cores, the Tilera

Tile64 has 64 cores [2] and the experimental Intel Polaris

chip incorporates 80 cores [59]. However, bus communica-

tion and crossbar interconnects have not scaled efficiently:

high core counts necessitate efficient, scalable interconnects

capable of providing communication among the processor

cores. Networks-on-chip alleviate this problem with fast, scal-

able communication provided by small, distributed, packet-

switched routers [11].

Network-on-chip routers communicate via a common inter-

connect, connecting processor cores, memory controllers, etc.

At each node (usually a core or memory), a network interface

controller (NIC) connects the core to the local router, and

converts messages from the core into data packets of varying

size for the network. These packets are further divided into

flits, the smallest unit of data traveling in the network, which

dictates the width of a link connecting two routers. Routers

1Earlier versions of this work appeared in [15] and [16]. Included in
this paper are the following additional contributions: 1) a study on FIFO
unit reliability, 2) extended experimental results on larger networks and with
additional workloads, including PARSEC benchmarks, 3) additional results
and in-depth presentation of the fault model, and 4) discussion of limitations.

then direct traffic within the network, moving flits from source

to destination according to the information encoded in each

packet, usually located in the header (first flit) of the packet.

In particular, in wormhole routing [40], a single packet’s flits

may be spread across multiple routers as they traverse the

network, until all the constituent flits are collected at the

destination. Compared to bus-based systems, network-on-chip

designs have the advantage of allowing many messages in

flight simultaneously, thus providing efficient communication

among many nodes.

While NoCs provide a scalable, distributed communication

solution, they are also a single point of failure in a chip

multi-processor (CMP). Unlike the cores in a CMP, which are

uniform, distributed, and therefore inherently redundant, there

is only one communication medium in the chip, constituting

a weakness in the presence of faults. Unreliable silicon sub-

strates, brought on by aggressively scaled transistors, threaten

the reliability of on-chip communication infrastructures, where

a single transistor failure in the NoC could cause the entire

chip to fail [38]. The possibility of frequent failures in the

field is soon expected to become a reality [5], [55], leading to

system failure [6], [18] or even causing security flaws [43].

Transistor failures can be caused by a variety of wear-out

mechanisms in highly scaled technology nodes. As transistor

dimensions approach the atomic scale, oxide breakdown [56]

becomes a concern, since the gate oxide tends to become

less effective over time. Moreover, negative bias temperature

instability (NBTI) [1] is of special concern in PMOS devices,

where increased threshold voltage is observed over time.

Additionally, thin wires are susceptible to electromigration

[19], because conductor material is gradually worn away

during chip operation until an open circuit occurs. Since these

mechanisms occur over time, traditional burn-in procedures

and manufacturing tests are ineffective in detecting them.

Fault Model. With the reality of decreasing transistor reliabil-

ity and increasing failures, our goal is to mitigate permanent

faults, those that affect the hardware for the remaining life

of the chip. Thus, our fault model uses stuck-at failures at the

hardware level to portray these permanent faults. Vicis’ goal is

ensure that all permanent faults in router datapath, and control

logic are handled. Furthermore, any hardware additions may

be susceptible to the same faults that they aim to address:

faults may occur in the reliability hardware itself.

Robust, architectural solutions are needed to mitigate the

problem of permanent faults. When an error occurs in the

field, a typical reliability solution will leverage a detection

mechanism to identify the problem and notify the system

of the failure (Figure 1). Detection can be achieved, for in-

stance, with error correcting codes (ECC) [34] or custom NoC

2

Detection RecoveryDiagnosis
Reconfig�

uration

notifies the

system that a fault

has occurred

determines

the location

of the fault

modifies the

NoC to work

around the fault

recoups lost data

and resumes

normal operation

Vicis’ focus

Fig. 1. Steps in fault tolerance and Vicis’ focus. Vicis provides a novel
diagnosis solution to determine the location of a permanent fault. It then
leverages this information to reconfigure the system and overcome the failure.

testing mechanisms [24], [26]. Next, the system undergoes

diagnosis to determine the fault location. It can then enter a

reconfiguration phase, isolating the failure or working around

it. Finally, recovery can take place, recouping lost data with

mechanisms such as checkpointing [46], [54]. Following a

completed recovery, normal system operation can resume. In

this paper, we focus on the diagnosis and reconfiguration

phases, which are critical for a high-performance and fault-

tolerant system, and we rely on solutions proposed in the

literature, such as those cited, for detection and recovery.

Contributions. In this work, we present Vicis, a reliable

solution for networks-on-chip with mesh and torus topologies.

Vicis leverages a reconfigurable router architecture and routing

algorithm. Our solution takes advantage of the redundancy

inherent in on-chip networks through a two-level approach.

First, it reconfigures individual routers with a novel and

flexible NoC router architecture. Second, when errors cannot

be contained within a single router, Vicis invokes a novel

rerouting solution that modifies the communication paths to

bypass the failed node.

As a distributed in-hardware solution, Vicis has the advan-

tage of being able to tolerate many faults, including failures

in the reliability components. For systems built on unreliable

silicon substrates, Vicis enables graceful performance degra-

dation when transistors inevitably fail.

II. RELATED WORK

Two main approaches for reliable networks-on-chip have

been proposed in the literature: one attacking the problem with

resilient routing algorithms, and the other with architectural

solutions. While many available reliable routing algorithms

suggest fault-free communication is a solved problem, many

incur significant restrictions, such as limiting the number and

location of faults.

Restricted number of faults. Reliable routing algorithms

are capable of routing data packets around failures. However,

some limit the number of faults that they can tolerate. For

instance, an early work in this area is [12]’s reliable router,

which can handle a single node or link failure anywhere in the

network. [14] can handle (n − 1) faults in an n-dimensional

mesh and [21] tolerates up to five faults using additional

virtual channels. The work in [33] can potentially sustain

several faults: the authors provide a backup path around each

failed router. As faults accumulate, backup paths form a ring

topology. However, the solution fails when additional faults

affect the ring network.

Restricted location of faults. Other routing algorithms are

able to accommodate more faults, but restrict their location to

specific types of “fault regions”. A fault region is a subnetwork

of a restricted shape that contains faults, and oftentimes

correctly functioning nodes must be disabled to satisfy the

constraints of the region. The shape of fault regions may be

convex [9], [60], or rectangular [58], and sometimes it is also

restricted from including the network boundary [57]. Other

solutions require fault regions that are polygons [29], +, L or

T shapes [7], or contain no holes [17], [48]. Finally, faults may

be limited to datapath components, excluding control logic

[35], or to links and crossbars [30]

Unrestricted faults. A number of on-chip proposals tackle

the problem of unconstrained faults. uLBDR [49] handles

routing for any 2D-mesh topology without the need for routing

tables. It adds logic to each input port, which facilitate

routing around faulty links. However, this approach requires

virtual cut-though routing, requiring the entire packet to be

buffered at each router. Other solutions address permanent

faults by flooding the network to overcome lost network

connections, which incurs high performance overhead [45],

[51]. Stochastic approaches [4], [53] provide tolerance to

permanent and transient faults by means of a probabilistic

broadcast mechanism. Immunet [47] routes packets adaptively

towards their destinations, based on buffer availability. If

necessary, packets switch to a reserved, escape, virtual channel

that guarantees that they will reach their destination and avoid

faulty links. This channel is aware of the fault locations and

routes deterministically in a ring through every node. Upon

reconfiguration, a new ring that connects all surviving nodes

is formed with a single broadcast, and all in-transit packets

drain out via this ring, before updating the routing tables.

While the ring guarantees delivery, it dramatically increases

latency, since it must remain active during normal operation

to ensure deadlock freedom. Additionally, the design requires

three routing tables per router, resulting in high area overhead.

Centralized off-chip solutions. Off-chip networks, such as

clusters, were the first to address the reliability challenge of

unconstrained faults. These resilient routing algorithms can

be applied to any irregular topology, and include up*/down*

(introduced in Autonet) [52], segment-based routing [37], FX

routing [50], L-turn [32], and smart-routing [8]. With these

approaches, a central node which runs the reconfiguration

algorithm in software. First, the surviving topology is commu-

nicated to this central location, which can then use this global

knowledge of the functional links to compute new routing

tables. Finally, the new routing tables are communicated back

to each node. While these centralized reconfiguration algo-

rithms can perform powerful optimizations, communicating

the global view of the surviving topology to a central node

requires expensive, dedicated hardware. By contrast, on-chip

solutions must be designed to meet tight on-chip area budgets.

Reliable router architectures. On chip networks have a

tight area and power budget, necessitating simple router struc-

tures. Architectural approaches to reliable router architectures

include triple modular redundancy (TMR) based approaches,

such as the BulletProof router [10]. However, in general, N -

modular redundancy (NMR) approaches are expensive, as they

3

routing

table

crossbar

FIFO

p
o
rt s

w
a
p
p
e
r

distributed

algorithm

engine

decoder
ECC

configuration

table

BIST controller

bypass bus
crossbar ctrl

Fig. 2. Vicis router architecture. A Vicis-enhanced router includes ECC
units, a crossbar bypass bus, a port-swapper, BIST units for diagnosis, a
distributed algorithm engine (green/gray) and flexible FIFOs (hashed), in
addition to baseline components.

require at least N times the silicon area. Another strategy

explores the trade-offs of various levels of redundancy [41].

Other work investigates the reliability of single components,

for example a reliability-enhanced crossbar [23]. Reconfigu-

ration is approached by [22] for pipelines, by [31] for link

failures and by [28] with modular design. Protection against

transient errors has been explored in [42].

III. ROUTER ARCHITECTURE

Vicis takes a two-part approach to maintain correct execu-

tion in a network-on-chip. When a fault is detected, the system

goes offline for a Vicis-directed diagnosis and reconfiguration.

It first attempts to contain permanent failures within the

router, leveraging the inherent structural redundancy in the

architecture to work around errors. If the failure cannot be

contained within the router, Vicis reconfigures the network

around failed nodes and links.

Reconfiguration at the router level is used to contain faults

within the router, so that they are not perceivable at the

network level as failed links or routers. Figure 2 presents

a high-level schematic of a baseline router (in white) with

Vicis enhancements (shaded). The baseline router includes

input ports and FIFO (first in first out) buffers, decoders, a

crossbar, a routing table and output ports. Vicis augments this

design with a crossbar-bypass bus to protect against crossbar

failures, and with error correcting codes (ECC) to protect

datapath elements. Additionally, Vicis can reconfigure the

FIFO buffers, the largest router components, to be resilient to

a few internal faults. Our port-swapping solution allows Vicis

to minimize link failures by reorganizing input ports. Finally,

Vicis includes built-in self test (BIST) units to diagnose faulty

router components and orchestrate reconfiguration. A com-

plete reconfiguration process requires approximately 152,000

cycles, corresponding to only a few hundred microseconds

on a 1 GHz chip. This latency does not appreciably impact

application runtime for rarely occurring permanent faults (less

than once a day).

router A router B

s
w

a
p

ECC/DEC

ECC/DEC

path between ECC units

XB
bbus

XB
bbusbbus

Fig. 3. Faults mitigated by ECC. Datapath faults can be corrected by ECC
as long as no more than one fault is encountered between two flit-level ECC
units. The bypass bus and port swapper provide alternate paths between routers
to reduce the number of faults that the ECC units observe. The example in the
picture shows six available paths: through crossbar or bypass bus in router A,
and through one of three possible FIFOs in router B (the port swapper selects
which buffer to use).

A. Crossbar Bypass Bus

In the baseline router, a faulty crossbar would render the

entire router inoperable. To address this issue, Vicis adds a

crossbar bypass bus, as shown in Figure 2, an alternative path

for data that may have to traverse a faulty crossbar path. The

crossbar controller is configured to direct traffic to either the

crossbar or the bypass bus on a packet basis. If multiple flits

simultaneously require the bypass bus, one flit is chosen to

proceed first, while the others must wait to use it in subsequent

clock cycles. In this manner, the crossbar bypass bus may

overcome any number of faults in the crossbar. This spare path

provided by the bypass bus allows Vicis to maintain correct

operation, even when multiple faults appear in the crossbar.

However, in the case of a single fault, the ECC unit is sufficient

to overcome the failure.

B. Error Correcting Codes (ECC)

Faults along the datapath can cause data corruption and

packet mis-routing. Protecting the datapath with error cor-

recting codes (ECC) enables each component to tolerate a

small number of faults while maintaining correct functionality.

Previous works have explored the trade-off between energy

and reliability by using fine grained error correcting codes

[25]. While these studies found that end-to-end ECC was more

power efficient than flit-level ECC, they require that packets

reach their intended destinations. Errors in header flits that

could cause packet mis-routing can only be overcome by flit-

level ECC: consequently, Vicis uses flit-level ECC, with an

encoder and decoder at the exit of each FIFO. The code adds

an additional 6 bits to each 32-bit flit in order to enable 1-

bit error correction. Any single fault that manifests along an

ECC-guarded datapath section can be corrected when the flit

goes through an ECC unit, located in each router at the output

of the FIFO buffers. In order to take full advantage of ECC,

the BIST unit tracks the location of every datapath fault and,

if at all possible, it reconfigures the router to ensure that every

distinct path between two ECC units contains at most one fault.

If this cannot be accomplished, the router is deemed faulty.

Six paths are possible between two ECC units, depending on

the selection of the bypass bus or crossbar (two options) and

the configuration of the port swapper (up to three options).

Figure 3 illustrates these paths. The port swapper provides

three options for the network adapter connection and two

4

options for the other links, but it does not provide all possible

swap possibilities. When traversing the network, a flit initially

reaches the head of a FIFO in its starting router, goes through

an ECC unit for encoding, travels through the crossbar or

bypass bus, the link to its next router, the input port swapper

and finally reaches its next FIFO. At each unit along the path,

faults are diagnosed and cataloged by two BIST units. If two

faults accumulate in a same path, the bypass bus and port

swapper provide alternative setups to either avoid one of the

faults or move one of the them to a different datapath.

For example, consider three faults: one in the crossbar,

another in a link, and a third in the default FIFO for the flit

in flight. Since the ECC implementation in Vicis can only

correct one of these faults, the crossbar bypass bus and input

port swapper must mitigate the remaining two. The bypass bus

will be used to avoid the crossbar fault, potentially resulting

in a loss of performance. The input port swapper will be used

to swap in a fault-free input port to the datapath, moving the

single-fault input port to another physical link that does not

have any other faults. Thus, full functionality is maintained,

even with three faults manifesting in the same datapath.

C. Flexible FIFOs

Analysis of a baseline router design informed the selection

of our reliable architectural features. Assuming a distribution

of faults proportional to the router component area, the largest

components — those with the most transistors — are the most

susceptible to faults. Thus, we strove to provide additional

protection to large components. As shown in Table I, the

FIFOs comprise the vast majority of the router, 94% of the

baseline router area with 32-flit FIFOs. By comparison, 8-

flit FIFOs comprise 80% of the router’s area. These results

were obtained with a 5-port single-cycle router with a routing

table sized for a 3x3 network, synthesized with a 45nm target

library. Without any reliability feature, a single fault could

cause the entire unit to fail. We thus set out to protect this

essential component with a flexible design that can overcome

many faults.

FIFOs are comprised of a set of identical registers, and

are generally implemented with pointers to determine which

register is the head and which is tail. When an item is added

to the FIFO, the head pointer is incremented; when an item is

removed, the tail pointer is decremented. Thus, the registers

router component area (percent)

FIFO size
8-flit 16-flit 32-flit

crossbar 10.5% 6.0% 3.0%

decoder 3.0% 1.5% 1.0%

FIFO buffers 80.0% 89.0% 94.0%

output logic 3.5% 2.0% 1.0%

routing table 3.0% 1.5% 1.0%

total baseline router
100% 100% 100%

14,495µm2 26,173µm2 49,676µm2

TABLE I
AREA OF THE BASELINE ROUTER BY COMPONENT, FOR DIFFERENT FIFO
BUFFER SIZES. THE FIFOS COMPRISE 80-94% OF THE BASELINE ROUTER

AREA, AND THUS ARE ESPECIALLY SUSCEPTIBLE TO FAULTS.

baseline FIFO fails

X
X

flexible FIFO reconfigures

to bypass fault

tail head tail head

Fig. 4. Flexible FIFO design. A flexible FIFO enables Vicis routers to
continue operating correctly when using a partially faulty FIFO. While a
normal FIFO can fail with a single error, a flexible FIFO reconfigures around
the faulty entry.

are accessed in order, with the first item in being the first item

out. The use of identical registers provides an opportunity for

a flexible design, with the goal of allowing healthy registers to

continue working while skipping faulty ones. Figure 4 shows

an example of flexible FIFO operation. The “X” in the figure

indicates a FIFO register that experienced a fault. In a baseline

FIFO, the head and tail pointers will at some point try to

make use of this position, causing the entire FIFO to fail. With

this flexible FIFO design, the faulty register can be skipped

using pointer redirection, and enabling the FIFO to continue

operation with one less register.

To reconfigure the access to registers in a FIFO, the head

and tail pointers are indexed through a redirection table

mapping sequential FIFO positions to reconfigurable FIFO po-

sitions. This allows some positions to be skipped, as illustrated

in Figure 5. Effectively, this is similar to incrementing (or

decrementing) the head (or tail) counter multiple times before

accessing the next functional register, thereby skipping over

failed registers. The redirection table is indexed by the head

and tail pointers, and provides the index to a functional FIFO

entry as output. Additionally, the last entry in the table controls

the pointer reset signal, thus allowing the system to adapt to the

use of smaller FIFOs as the number of faults increases. With

this flexible design, a fault in the FIFO causes only a single

register position to fail, maintaining the router’s functionality

as long as at least one functional register remains.

D. Hard Fault Diagnosis

In order to reconfigure the system, each router must know

which of its components contain faults. Furthermore, the use

of ECC requires that Vicis knows precisely how many faults

are in each part of the datapath. We note that both permanent

faults, as well as electrical faults can be diagnosed by Vicis,

providing that diagnosis can occur on a faster clock compared

head

ptr

tail

ptr

FIFO buffer

reset

headtail

X

redirection

table

Fig. 5. Flexible FIFO buffer logic. The FIFO registers are indexed by the
head and tail pointers (counters) through a redirection table, allowing faulty
positions to be skipped, and adjusting for fewer FIFO registers.

5

to normal operation. Control logic is tested with pattern-based

testing and datapath faults are counted using datapath testing,

as discussed below.

The reconfiguration process begins when one router broad-

casts an error status bit through the network, although not

necessarily its location, via an extra wire in each link (we

assume that a fault detection solution is in place, as dis-

cussed in Section I). The initialized BIST unit then performs

a distributed synchronization algorithm with other routers’

BIST units, ensuring that each BIST in the network runs all

remaining routines in lock-step. After synchronization, each

component of each router is diagnosed for faults. The diagno-

sis step does not rely on information from previous diagnostic

phases, or from the detection mechanism, thus all permanent

faults are diagnosed (or re-diagnosed), regardless of whether

they are responsible for triggering this reconfiguration event, or

not. Once all components and routers have been tested, faulty

components are disabled and normal operation resumes. Since

the BIST units are operational only during reconfiguration,

they are power-gated off during normal operation for wear-

out protection.

Each functional unit is surrounded by wrapper logic, al-

lowing the BIST to assume control during fault diagnosis.

The wrapper simply consists of multiplexers for each input,

allowing the unit to switch between normal unit inputs and

testing inputs from the BIST. A schematic of this structure

is shown in Figure 6. Since faults may also manifest in the

wrappers themselves, Vicis leverages interlocked testing to

simultaneously test both the hardware unit, and the wrapper

itself. That is, rather than testing the output directly from the

module, the BIST unit tests the output after the wrapper mux

(as it is indicated by the test flow arrows in Figure 6). This

allows the BIST to test both the hardware unit as well as the

wrapper logic simultaneously.

The information from a complete BIST run is stored in a

configuration table, which contains two bits for each datapath

component: crossbar, inter-router link, input port swapper,

and FIFO. Each of these units are represented by two bits

to indicate fault free, one fault, and two or more faults.

Additionally, a redirection table stores flexible FIFO mapping

information (described in Section III-C), which is written

directly by the BIST. Fault information is later used by the

swapping algorithm. The status of non-datapath (i.e. control)

router

wrapperwrapper

BIST Controller

... ...
component component

test flow test flow

Fig. 6. Router unit wrappers. Wrapper muxes allow the BIST controller to
access each unit. Testing paths are interlocked through two muxes to enable
simultaneous testing of the wrapper and the unit under test.

units is encoded with one bit indicating functional or faulty.

This is determined by a signature match or mismatch. In

both cases, Vicis is concerned with the fault status of the

component, rather than the exact fault location within the

component.

1) Datapath Testing: The datapath test determines the

number and location of errors in a router’s datapath and in

the routing table. Units in the datapath need an exact count

of faults for each unit so that the maximum number of errors

is not exceeded on any path between two ECC units. The test

sends patterns consisting of all 1’s or all 0’s, looking for bit-

flip faults. A custom-designed bit-flip count unit determines if

the datapath has zero, one, or more bit flips, obviating the need

for multiplexers to inspect each bit individually. Each of the 5

FIFO units in a router reuse the same test, limiting BIST unit

overhead. Datapath testing requires about 1,000 total cycles.

2) Pattern-Based Testing: Pattern-based tests are used to

test the router’s control logic. Vicis uses a linear feedback

shift register (LFSR) to generate a number of unique patterns,

and a multiple input signature register (MISR) to generate

a signature. Each unit type tested with pattern-based testing

receives the same sequence of patterns from the LFSR, but

each has its own distinct signature. Identical units, such as

the decoders, have the same signature. A signature mismatch

will flag the corresponding unit as broken. Implementation of

the pattern-based test is lightweight due to the simplicity of

the LFSR and MISR structures. Pattern-based testing requires

approximately 150,000 cycles, and runs 25,000 patterns: this

is the dominating factor in overall BIST diagnostic runtime.

E. Input Port Swapping

During the initial evaluation of Vicis, we noticed that often a

few faults would disable multiple network links or disconnect

important processor nodes. To prevent this, we developed

input port swapping to consolidate several faults into a single

link failure, and to provide additional priority for maintaining

connected processors. In order to safely route through the

network, the routing algorithm (described in Section IV)

requires functional bidirectional links. Each link is comprised

of two input ports and two output ports, all four of which

must be fully functional for the link to be operational. If one

of these ports fails, port swapping may be used to maximize

functional bidirectional links.

Each input port is comprised of a FIFO buffer and a decode

unit, identical for each direction of traffic (see Figure 2). Vicis’

FIFO

X

FIFO

FIFO

X
X

adapter

north

west

south

east

port swapper

Fig. 7. Port swapping unit. The port swapper allows the FIFOs to be
connected to different physical links. The local adapter is equipped with more
options to maximize the number of cores connected to the faults network.

6

input port swapper is used to modify which physical links are

connected to each input port. For instance, Figure 7 illustrates

an example where a fault on the South port and a second fault

in the adapter FIFO are consolidated, allowing the adapter link

to use the former South FIFO. While it would be possible to

include an additional output port swapper at the output ports,

their small area and consequent low probability of faults did

not warrant the area overhead of an additional swapper. On the

other hand, the input ports constitute the majority of the total

router area, as discussed in Section III-C and Table I, and

therefore are most susceptible to faults. Thus, adding input

port swappers provides Vicis with the ability to consolidate

the impact of several faults into one, or a few, links.

An example of input port swapper operation is shown in

Figure 8. The left side of the figure illustrates five routers in

a star configuration: the router in the center has a failed input

port and the one on the right has a failed output port. Since

these two failed ports are on different links, both links would

be considered failed and unusable. However, we note that one

of the failed ports is an input port, so the connected physical

channel can be changed using input port swapping. The port

swapping algorithm reconfigures the system to connect the two

failed ports, as shown on the right side of Figure 8. Thus, in

this example Vicis takes advantage of the inherent redundancy

of the router to increase the number of functional links for the

center router from two to three.

In our implementation of the input port swapper, the link to

the local network adapter can be connected to three different

input ports, while the other links are able to connect to only

two possible input ports. The port swapping algorithm is

implemented as a greedy algorithm, taking into account the

failure status of connected input ports and FIFOs. Additionally,

it considers the number of bit failures along the datapath, so as

to avoid connecting paths whose bit-errors exceed that which

can be corrected by ECC (see Section III-B). Additionally, it

prioritizes the local network adapter link, making sure that it

is always connected, if at all possible.

Pseudocode for the port-swapping algorithm is shown in

Figure 9. The algorithm first eliminates connections that

contain control faults and more than one datapath fault. It

then connects input ports that have only one viable option.

Finally, it selects the highest priority input port among those

connected to the FIFO.

X

X

XX

router

output port
input port

two

functional

links

three

functional

links

Input Port Swap

Fig. 8. Port swapping example. Routers connected to the network are
hashed in the Figure. On the left, an input port failure on the center router
and an output port failure affect two different links. By swapping the failed
input port to the link connected to the failed output port, Vicis increases the
number of functional links from two to three.

1. eliminate connections with control faults

2. eliminate connections with >1 datapath fault

3. foreach FIFO:

4. selected direction = NULL

5. foreach direction connected to this FIFO:

6. if direction can only connect to this FIFO:

7. selected direction = this direction

8. exit loop

9. if selected direction == NULL

10. selected direction = top priority

Fig. 9. Port-swapping algorithm pseudocode. The port swapping algorithm
first disables connections with control faults and too many datapath faults. It
then enables connections for which there is only one option. Finally, the
algorithm selects the top priority connection among those available.

After the connection is selected, the port swapping algo-

rithm writes the new port configuration to the router configu-

ration table, a set of registers that keeps track of the current

link status. This configuration serves to inform the rerouting

algorithm as to which links are functional, enabling it to carry

the network reconfiguration forward.

IV. RELIABLE ROUTING ALGORITHM

Following reconfiguration within the router, a Vicis-

equipped network leverages our reliable and deterministic

routing algorithm to work around failed links and failed

nodes due to permanent faults. The Vicis routing algorithm

reconfigures network routing tables in an offline process based

on a basic routing step, which is repeated several times for

each network destination. The basic routing step uses local

information from neighboring routers to determine connectiv-

ity, and applies a set of rules to avoid deadlock (deadlocks

occur less than 1 in 10,000 topologies). These rules (disabled

turns or links) are selectively relaxed in a preceding check-

ing phase to maximize the connectivity of a faulty network

topology. In order to mitigate rare deadlock situations, Vicis

can be paired with a deadlock detection mechanism [44]. Once

diagnosis is complete, our light-weight routing reconfiguration

requires fewer than 1,000 cycles to reconfigure the network.

By comparison, Immunet [47] requires approximately 10,000

– 20,000 cycles.

The Vicis routing algorithm is able to tolerate many faults

in any link or router, over 1 fault in 2,000 gates in our

experiments. Virtual channels are not required, can be used

to provide additional performance if available. The algorithm

is implemented as a small hardware module included with

each router and runs in distributed lock-step.

After router reconfiguration is completed, as discussed in

the previous section, transistor-level faults now appear to the

routing algorithm as link-level failures. Routers that have

become entirely non-functional are represented by nodes with

all faulty links. In order to correctly determine routing paths,

each router must first discover which of its adjacent links are

faulty. Then it works in a distributed fashion with its neighbors

to collectively reconfigure their routing tables based on this

information. The distributed algorithm uses a basic routing

step that follows a set of rules specific to meshes or tori.

7

1: synchronize_routers()

2: rules = baseline_rules;

3: for each router

4: for each rule

5: rules = rule_check(rule, rules, router)

6: for each dest

7: basic_routing_step(dest, rules)

Fig. 10. Routing algorithm pseudocode. The algorithm first determines a
set of rules that maximizes connectivity while avoiding deadlock using the
rule_check() function (Figure 11). Once rules have been established for
the specific topology, Vicis uses the basic_routing_step() (Figure 12)
to determine a path to each destination.

A. Basic Routing Step

Figure 10 shows an overview of the routing algorithm. First,

all routers in the network are synchronized (line 1) and a set

of baseline rules (disable turns or links) is established (line 2):

the algorithm then proceeds in lock step, first determining a

set of rules to maximize the connectivity of a faulty network

topology (lines 3–5) while avoiding deadlock most of the time.

Then, each destination is routed using a basic routing step

(lines 6–7) that determines routing paths and uses the rules to

avoid deadlock.

Before destinations can be routed, Vicis determines the

rules that must be enforced to avoid deadlock. It begins with

a set of baseline rules specific to meshes and to tori, and

then relaxes some of them to maximize connectivity in a

faulty topology. In the Vicis routing algorithm, rules take the

form of disabled turns through a single router. Turns are used

to avoid deadlock, and are specified as a pair of neighbors

〈neighbor1, neighbor2〉 where a data packet would execute a

routing turn when going from neighbor1, through the router

under consideration, and then to neighbor2. In the case of

torus topologies, rules may also be specified as disabled links

for the router under analysis. A link is completely specified

by the pair of routers that it connects. Rules are intended to

avoid deadlock; we have implemented two sets of baseline

rules, one specific for 2-D meshes (Section IV-C) and another

for tori (IV-D). While in a fully functional topology the

complete set of baseline rules is necessary to avoid deadlock,

a faulty one may benefit from relaxing some rules to maintain

connectivity to partially connected nodes or portions of the

network. Vicis addresses this problem by identifying rules

that obstruct network connectivity and selectively removing

them. Figure 11 shows this procedure, which is applied to each

destination in turn: each router executes the rule_check()

function in order, checking each turn or link. Routes that

obstruct network connectivity are those where no path exists

between two routers due to a rule (line 3). The connectivity

between two routers is determined by the path_exists()

function, which tests the connectivity between two neighbors

of a router. This test is true if the middle router performing the

test has a functional link to both of the neighbors in question. If

a path does not exist, rule_check() removes the offending

rule (line 4).

The basic routing step outlined in Figure 12 updates the

routing tables in a local router for a specified destination

(dest). All routers in the network execute the same basic

routing step algorithm concurrently and synchronously to route

1: rule_check(rule, rules, router) {

2: (neighbor1, neighbor2) = elementsOf(rule)

3: if (not path_exists(neighbor1, neighbor2))

4: rules -= rule

5: return rules

6: }

Fig. 11. Pseudocode for rule checking. Some forbidden turns are enabled
during the rule-checking phase in order to maximize network connectivity in
partially faulty topologies.

one destination at a time. First, each router performs a routing

table update (starting on line 2), waiting until routing infor-

mation for the current destination becomes available (line 3).

If the basic routing step is routing to the local router (SELF),

then the routing table is updated for the current destination

(lines 4–5). Otherwise, the router waits to receive a flag

from one of its neighbors, indicating that the corresponding

neighbor is aware of a route to the destination (line 7). Often,

multiple neighbors will offer a route, in which case only

one is selected, based on the previously determined rules of

the topology and written to the routing table (lines 8–11).

When a destination entry is written to the routing table, the

corresponding entry is validated, and the direction to that

destination is specified. If no route to the destination has been

discovered after a timeout, as may be the case in topologies

containing many faults, the corresponding routing table entry

is invalidated (lines 12–15).

In the transmission portion of the basic routing step (Figure

12, lines 17–21), all routers whose destination entry is valid

will send a flag to all of their adjacent routers, while other

routers are silent. Once a destination entry is routed in one

router, that router broadcasts it to its neighbors using a

flag, thus allowing the neighbors to discover a path to the

destination. Flags are transmitted among routers using the

1: basic_routing_step(dest, rules) {

2: // routing table update

3: while (dest not routed) {

4: if (dest == SELF) {

5: rtable_write(dest, SELF)

6: } else {

7: if (flag_received_from(neighbors))

8: neighbor =

9: select_neighbor(neighbors, rules)

10: rtable_write(dest, neighbor)

11: }

12: if (timeout) {

13: rtable_write(dest, INVALID)

14: break

15: }

16:

17: // flag transmission

18: while (not timeout) {

19: for each neighbor

20: transmit_flag(neighbor)

21: }

22: }

Fig. 12. Basic routing step pseudocode. The basic routing step is invoked
once for each destination, and the algorithm runs on each router concurrently.
It updates the local routing table based on connectivity to neighboring routers,
communicated through flags, while rules are used to avoid deadlock. Once
the local routing table has been written, the router informs its neighbors of
the new routing path through flags.

8

X X X XX X

destination currently routing routed routing complete

Fig. 13. Basic routing step example. In the basic routing step, each router updates its routing table for one destination. Each panel in the figure shows one
iteration of the basic routing step when routing to the top left router. The destination router is shaded, nodes being currently routed are hashed and nodes that
have completed routing are cross-hatched. Turns are disabled according to the specific topology rules in order to avoid deadlock, and are indicated byL-shapes.

physical links connecting them, since normal data traffic is

not in flight at this time.

Figure 13 illustrates an example of basic routing step oper-

ation for one destination (shaded node) in a 3x3 mesh network

with a single fault, indicated by an “X.” The destination

routes itself (first panel), and the subsequently transmitted flags

allow the next two nodes to route to the same destination

(cross-hatched nodes in the second panel). In the third panel,

two more nodes are routed, but a third node connected via

a disabled turn is not routed, because of the baseline rules

for mesh topologies. This process continues in the following

panels, with more nodes being routed. Routing is completed

in the final panel, noting that the final node (hashed) routes to

the East since the turn to the West is disabled.

For a network with N routers, the basic routing step must

be repeated N−1 times for each destination to cover the worst

case scenario, where the routers are connected as a long chain

due to faults. At the completion of this process, if a router

still has an invalid entry for the destination under analysis,

then that destination is unreachable from that router.

B. Rules for the Basic Routing Step

During the basic routing step, routers must follow a set

of rules to avoid enabling routing paths that could create

deadlock loops. The rules consist of a list of disallowed turns

or links. A turn through a router 〈neighbor1, neighbor2〉,
can be disallowed by having the router in the elbow of the

turn properly configuring its routing table, so that no data

packet is routed through the turn. To implement this, during

the basic routing step, if the local router has updated its routing

table with rtable write(dest, neighbor2), then it would not

transmit a flag to neighbor1.
Rules are enforced at each router, depending on both the

topology of the network and the configuration of the faults. For

example, a router that knows that a link must be disabled due

to faulty hardware will refrain from transmitting flags through

that link. In the following discussion, we use the basic routing

step to evaluate which rules are necessary to avoid deadlock.

Each router will start with a set of baseline rules, removing

or adjusting them based on the set of faulty links.

C. 2D-Mesh Routing

A common network topology for large scale chip multipro-

cessors is the 2D mesh, due to its simple physical implemen-

tation. Loops may form naturally when routing in a mesh with

faults, so Vicis uses rules to prevent them. In the presence of

faults, these rules must be adjusted to maximize connectivity.

In fault-free mesh networks, loops can be avoided by

prioritizing turns: each router has four ports, North, South,

East and West. When faced with multiple options for routing

a single packet, a router prioritizes among these four links

in the given order, resulting in deadlock-free routing. This is

shown in the first row of Figure 14, where the arrows on the

left indicate the traffic patterns and the dashed lines on the

right show utilized turns and paths. As shown in the second

row of the figure, even a single fault in the network may cause

a deadlock loop to form. In this case, the same set of packets

are transmitted, but they must use different paths (second row,

left). The addition of a turn rule (third row) shows the same

set of packets once again, but this time routed deadlock-free

through a turn rule in the bottom left corner of the network.

Glass and Ni [20] proposed a technique to prevent deadlock

situations by disallowing pairs of turns. One turn must be

disallowed for the clockwise direction, and another one for

the counter-clockwise direction. The bottom row of Figure

14 shows the application of this technique to avoid deadlock.

In our experience, the best results are obtained when disal-

lowed turns are symmetric pairs, for example North→East and

East→North. This helps in grouping faults, limiting the impact

of a single failure. In our solution, we choose to disallow the

North→East and East→North turns.

deadlock

loop

X

disabled

turn

X

no

deadlock

no

deadlock

X

X

Fig. 14. Disabled turn example. The left-hand panel shows routing for the
same set of packets under three different conditions: first, a fault-free mesh
is routed free of deadlock. The utilized routing paths are shown on the right.
The second row shows how a single fault can cause deadlock with the same
set of packets, now routed differently due to the fault. Finally, the bottom row
shows a turn disabled by Vicis avoids deadlock.

9

Selectively Removing 2D-Mesh Rules: Strict adherence to the

disallowed turn rule may produce an inconsistent network,

meaning that when a router can reach another, the correspond-

ing return path could be disabled. For instance, on the left side

of Figure 15, a single faulty horizontal link on the North edge

of the network prevents six of the routers from obtaining a

valid path to the top left router. All of the routers on the West

edge of the network can reach this router by simply directing

traffic to the North; however, since the East→North turn is

disallowed, these routers never transmit a flag toward the East,

cutting off the rest of the routers.

In order to contain partitioning in faulty networks, Vicis

must identify routers where the turn rules should be re-

enabled. This is performed during the rule checking procedure

described in Figure 11. We check one turn at a time, so the

minimal number of rules are removed in sequence.

D. 2D-Torus Routing

Torus routing presents unique challenges for the basic

routing step, and requires a more complex set of baseline rules

than meshes.

2D-Torus Rules: Torus networks may form loops around the

outside of the network, in addition to the loops that may

form in a mesh. Vicis addresses this by leveraging additional

rules besides those used for mesh networks. First, it disallows

wrap-around links along the top edge of the network, and

then it disallows one horizontal link in each row of the

network. While the horizontal links prevent a loop from

forming in the same row, the vertical link rules along the

top edge prevent a zigzagging pattern from looping around

the network. Additionally, this prevents loops that would form

in the same column. We choose a staggered pattern for the

disabled horizontal links in order maintain the performance

provided by the torus topology.

Both the vertical link rules and the horizontal link rules need

to be checked. First, a horizontal broadcast, where knowledge

of broken links propagates horizontally, lifts any horizontal

link rules. Since this broadcast starts at the ends of each broken

link it is guaranteed to reach every router in the row.

Vertical link rules can be checked in a similar fashion to the

turn rules. The router on one end of the link enforces the rule.

Vicis applies the basic routing step to the router at the other

end of the link and checks if the first router can be reached. If

not, the link is needed for connectivity and the rule is removed.

Turn Rule Consistency: A deadlock path in the network can

result from removing a turn rule. However, keeping the rule

destination
unable to

reach

destination

due to rules

X

X

X

X
rule

removed

Fig. 15. Removing rules. In the presence of faults, disallowed turns can lead
to disconnected networks (left). This occurs because the routers on the Western
edge have the East→North turn disabled to avoid deadlock. Therefore, we
remove the turn rule at the West router, restoring network connectivity (right).

can create an inconsistent network, meaning that when a

router can reach another, the corresponding backward path

may be disabled and a different return path is instead available.

Inconsistent networks may also cause deadlock situations

because the outgoing and return paths together may form a

cycle. This can be caused by competing paths that traverse

around the outside of the network. Vicis resolves this issue by

ensuring that paths traversing the outside of the torus network

also use the same return path. With this mechanism, Vicis

maintains a consistent network and avoids deadlock.

V. LIMITATIONS

While Vicis is able to maintain a functional NoC structure

by reconfiguring the router architecture and the network topol-

ogy, there are some limitations in its approach. First, it focuses

on diagnosis and reconfiguration, and thus does not provide

full system recovery. However, it is amenable to cooperation

with a number of recovery mechanisms, such as packet re-

transmission [39], specialized architectural solutions [13] or

checkpointing [54].

Second, while most of the hardware added by Vicis does not

affect the critical path, some components do. Specifically, the

port swapper and flit-level ECC units are on the critical path of

our single-cycle router: from the output of one router’s FIFO

buffers to the input of its neighbor’s. Additionally, while the

BIST logic runs offline, the wrappers that allow the BIST to

isolate components for testing lie on the critical path between

components.

Finally, Vicis’ routing algorithm is subject to pathological

cases that may prevent deadlock-free routing. These infrequent

cases arise in networks with many faults, and are the result of

pathological situations in rule checking by the Vicis routing

algorithm. The algorithm uses rules, a set of disabled turns or

links, to avoid deadlock. These rules are selectively removed to

maximize network connectivity in topologies with many faults,

as described in Section IV-A. In the majority of situations,

this technique enables a greater number of nodes to remain

connected to the network. For instance, rare situations arise

when faults in a network topology partition the network into

disjoint subnetworks connected by a single turn that has been

enabled during the rule checking process. Figure 16 shows

an example of such a situation. The left panel shows the

network before the rule removal: the configuration of faults

has created two disjoint subnetworks separated by a disabled

turn. Rule checking causes this turn to be enabled, resulting in

the topology on the right. The dashed line shows the deadlock

loop now formed, passing through the connecting router twice.

To evaluate the impact of pathological cases on various

topologies, we examined 4x4, 8x8 and 12x12 meshes and

tori with many faults. First, we injected faults at random

locations, obtaining one million distinct faulty topologies, and

then allowed the network to reconfigure. We then inspected

the final routing configuration for deadlocks. Figure 17 shows

the results of this study: as shown in the chart, all network

configurations exhibit deadlock in less than 1 in 10,000

topologies, when one tenth of the links are faulty. Smaller

4x4 networks were free of deadlock 100% of the time for 2D-

meshes, and deadlock for 1 in 10 million cases in 2D-tori,

10

rule

removed

deadlock

loop

X X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

disconnected

sub�network

Fig. 16. Pathological case for large networks with many faults. A deadlock
loop sometimes forms by passing through a router twice.

regardless of the number of faulty links. We noticed that in

larger networks, the probability of a routing configuration that

allows deadlock increases as the number of faults increases

beyond one tenth of the links.

Finally, the design of Vicis leads to a number of interesting

possibilities for future work. While Vicis implements a simple

parity error correction, other codes are possible. The impact

of various ECC encodings on overall system error-tolerance

would highlight the trade-offs of performance and correctness.

Additionally, some of the techniques applied by Vicis to

mitigate permanent faults may also be effective for transient

errors, another possible direction for future investigation.

VI. EXPERIMENTAL RESULTS

We evaluated Vicis and the routing algorithm using two

models: a slower, but more accurate gate-level hardware

description model and a faster architectural model. Simulations

were conducted by injecting faults within the system on two

different sets of workloads: uniform random traffic and the

PARSEC benchmarks [3].

The hardware model was implemented in Verilog HDL,

and includes both a 3x3 torus topology and a 3x3 mesh. In

both cases, Vicis’ reliability enhancements were added to the

baseline router. The baseline design is a single cycle, five-port

router with one link to a local network adapter, and four links

to its neighboring routers. Each router’s input is connected

to a 32-flit FIFO, which passes through 32-bit data flits. The

router was synthesized, and automatically placed and routed to

99.4

99.5

99.6

99.7

99.8

99.9

100

0 10 20 30 40

D
e

a
d

lo
ck

-f
re

e
 t

o
p

o
lo

g
ie

s
(%

)

Broken links (%)

4x4 mesh, torus

8x8 mesh

8x8 torus
12x12 torus12x12 mesh

Fig. 17. Deadlock-free topologies with increasing faults. All topologies
were found to be free of deadlock at least 99.99% of the time with up to 10%
of the links broken.

obtain our final simulated netlist. This highly-accurate model

was used for simulations, as well to inform the fault model to

be used for the architectural simulations.

The architectural model was a custom, cycle-accurate sim-

ulator written in C++ with a configuration similar to that of

the hardware model. The fast architectural model made it

possible to evaluate larger topologies, including an 8x8 mesh

and an 8x8 torus. This model also enabled higher testing

scalability, making it possible to run longer random tests,

and enabling the system to handle the PARSEC benchmarks.

The FIFO buffers in the architectural model accommodated

16 flits. Additionally, a statistical model to generate faulty

network topologies (described in Section VI-A) was generated,

informed by the simulation results of the hardware models.

Test packets were generated at each network-adapter by a

random traffic generator which injected traffic to and from

all network locations with uniform random probability. Packet

length varied from 1 to 10 flits with a uniform random distri-

bution. Additionally, to evaluate correctness, packets injected

at each network adapter were checked for arrival at the correct

destination with the correct data.

A. Fault Model

Our fault model was designed to reflect the accumulation

of permanent transistor faults that occur during the lifetime

of a chip. We generated a fault model for our architectural

simulator by evaluating the impact of faults at the gate-level

and projecting it to the architectural level as link failures.

To this end, we injected stuck-at faults at the gate outputs

of our reliability-enhanced hardware model in randomly se-

lected locations. Faults were injected in both baseline router

components, as well as the additional reliability components.

The BIST was an exception, since it can be power-gated

during normal operation, and thus is much less susceptible to

permanent faults. The hardware model was synthesized, placed

and routed prior to fault injection. The random selection of

faulty gates was weighted by gate area. This is consistent with

the breakdown patterns observed experimentally by Keane, et

al. in [27]. While this model works well for gate-level analysis,

it must be abstracted for high-level architectural evaluations.

Our architectural simulator must be informed of the location

of faulty links. Thus, we must map gate-level faults to link-

level faults. To this end, we leveraged the fault impact analysis

in our gate-level model to form a probabilistic link fault

model. We first ran simulations on the HDL design of our

Vicis router after injecting faults, and allowed the hardware to

reconfigure. With 100,000 distinct RTL simulation results, we

built a model mapping gate-level errors to link-level errors.

Figure 18 shows the distribution of faults, mapping gate-level

router faults to link failures on our 5-port router. Links failures

could range from 0, indicating no faults, to 5, indicating that

all links were faulty. For example, with 8 faults in a router,

all links will be broken with probability 0.2; 1 link will be

functional with probability 0.25, etc. This model was used

in the architectural simulations to enable fast simulation with

industrial benchmarks and longer traces.

11

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24

P
ro

b
a

b
il

it
y

 o
f

w
o

rk
in

g
 l

in
k

s

Number of gate-level router faults

0 working links

1 working link

5 working

links

(all)

Fig. 18. Fault model. The graph shows the distribution of faults among the
five router links as a function of gate-level faults. Vicis leveraged 100,000
low-level HDL simulations to form a statistical fault model used by our high-
level architectural simulator. The figure shows the mapping of gate-level router
faults in the low-level simulations to link failures used in high-level simulation.

B. Fault Tolerance

We first compared the fault tolerance of a network com-

prised of Vicis routers to a comparable network implementing

triple modular redundancy (TMR). TMR provides probabilistic

reliability: since the voter takes the most common signal of

the three replicated units, it is possible for only two faults

to cause the system to fail. In the worst case, a single fault

could cause system failure if it occurred in a clock tree or

another non-replicable cell. Unlike BulletProof [10] and other

prior work that relies on maintaining total functionality, Vicis

is able to tolerate many simultaneous faults, including ones

that render entire routers useless, since it is able to route

around them. Thus, Vicis can maintain near 100% reliability

even for a high number of faults, trading off performance

for correctness. A key difference between TMR and Vicis

is performance. TMR maintains constant, 100% performance

until any component loses one of its redundant versions, after

which the entire system fails. On the other hand, Vicis enables

gracefully degrading performance as faults accumulate.

In our next study on the gate-level model, we tested again

a gate-level 3x3 torus network, considering eleven different

situations with varying simultaneous faults: 1, 10, 20, 30, 40,

50, 60, 70, 80, 90, and 100. The case of 100 faults corresponds

to approximately one fault for every 2,000 gates. For each

number of simultaneous faults, we considered 1,200 different

random faulty topologies. Then, we analyzed each router in the

topology, considered how many fault it sustained, whether it

was still functional and had a functional local network adapter,

and what reliability features it was utilizing. The results are

shown in Figure 19. We note from Figure 19 that the input

port swapper is very successful at keeping cores connected

to the network. As reported in the figure, only a very small

fraction of the functioning routers do not have a functional

local adapter, as indicated by the closeness of the two curves.

The swapper had a high utilization, being used nearly 24% of

the time for routers with seven faults.

When considering the utilization of the bypass bus, it

was much less often invoked. At seven faults, the crossbar

bypass bus was used less than 6% of the time. Two reasons

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

N
o

rm
a

li
ze

d
 u

ti
li

za
ti

o
n

Number of gate-level faults in one router

Bypass bus used

Functional router

Port swapper used

Adapter connected

Router disabled

Fig. 19. Utilization of reliability features with increasing router faults.

The plot reports the probability of a functional (as well as of a disconnected)
router over an increasing number of faults and whether the local network
adapter is still functional. Additionally, we indicate which reliability features
were used to enable a router to remain functional.

0

1

2

3

4

5

6

7

8

9

10

0

0.2

0.4

0.6

0.8

1

1.2

1 10 20 30 40 50 60 70 80 90 100

A
v

a
il

a
b

le
 r

o
u

te
rs

N
o

rm
a

li
ze

d
 n

e
tw

o
rk

 t
h

ro
u

g
h

p
u

t

Number of gate-level faults in network

5th-95th percentile throughput

Median throughput

Available routers

Fig. 20. Network performance as faults increase with a 3x3 torus
network. Normalized network throughput is shown as the number of faults
increases. Throughput is normalized to the bandwidth of the available network
adapter links. The shaded region show the 5th-95th percentiles, while the line
represents the median.

contributed to this: first, the crossbar is relatively small –

less than five percent of the total area of the router and thus

suffered a smaller incidence of failures. Secondly, the crossbar

is protected by both the input port swapper and the ECC

mechanism.

C. Performance in the Presence of Faults

We examined the effect of faults on network performance.

Figure 20 shows that network performance gracefully degrades

as the number of faults in a gate-level 3x3 torus network

increases. The black line (marked with squares) shows the

number of connected cores. At 90 faults, with more than 10

faults per router on average, we found that over 50% of the

system’s cores were still available. The figure also shows the

normalized network throughput (marked with triangles). For

the first 30-40 faults, median network throughput decreases

due to link failures, forcing packets to take longer paths.

Beyond 40 faults however, performance begins to increase as

a result of the smaller networks formed due to partitioning.

This is due to routers becoming disconnected, decreasing the

size of the remaining network. Shading indicates the 5th-95th

percentile range of normalized throughput.

12

0

20

40

60

80

100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

A
v

e
ra

g
e

 l
a

te
n

cy

Traffic injection rate

0 faults

100 faults

200 faults

Fig. 21. Packet latency as traffic density increases in an 8x8 torus network.
The chart reports results for 0, 100 and 200 faults.

We then examined network latency under different traffic

densities using uniform random traffic. For this study, we used

the C++ network model and measured the average latency

of packets traversing an 8x8 2D-torus network as the density

of randomly generated traffic increased. In Figure 21, density

is reported as a fraction of the total injection bandwidth of

the system, which is fixed and proportional to the number of

routers in the network. For low traffic densities, the latency

remains under 20 cycles, however, as the density increases,

network saturation occurs, resulting in a latency wall. When

subjected to faults, the latency wall is reached at lower traffic

densities, as indicated in the graph. We noted, however, that

the latency wall for 200 faults is actually farther out than that

of 100 faults. This is due to a significantly smaller network

size at 200 faults due to network partitioning.

For evaluation of Vicis’ performance with more realistic

workloads, we also evaluated our solution with the set of

PARSEC benchmarks [3]. In this experiment (Figure 22), we

configured our C++ simulator to an 8x8 torus network and

mapped gate-level faults to network link faults as described in

Section VI-A. Each data point represents 1,000 random fault-

injected topologies with different random seeds. Traffic was

injected using traces obtained from an architectural simulation:

100,000 packets were injected. We noticed that similar trends

appear as in our previous experiment with random traffic:

latency increases as faults increase, up to 100 faults. Beyond

100 faults, the latency begins to decrease, as the remain-

ing functional portion of the network shrinks. The resulting

smaller effective network is due to the increasing number of

routers completely disabled by faults.

Finally, we investigated the effectiveness of flexible FIFOs.

In these experiments, we simulated an 8x8 torus network with

the C++ model. A portion of the failures proportional to the

area of the FIFOs were injected directly into the FIFOs, result-

ing in effectively smaller FIFO buffers after reconfiguration.

We then ran simulations injecting 100,000 packets of uniform

random traffic. 1,000 different faulty topologies were used for

each datapoint. Figure 23 shows the average latency curves

for the faulty topologies with 100 injected faults. The no-fault

case is also shown for reference. First, the chart shows that

with no injected faults, the flexible FIFO provides exactly the

same performance as the baseline FIFO. As we did earlier, we

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180 200

A
v

e
ra

g
e

 l
a

te
n

cy

Number of gate-level faults in network

blackscholes

bodytrack

dedup

ferret

freqmine

streamcluster

swaptions

vips

x264

average

Fig. 22. Packet latency with PARSEC benchmarks in an 8x8 torus
network. The average is shown by the heavy dotted line, showing network
latency increasing as faults increase up to 100. Beyond 100 faults, latency
decreases due to decreasing functional network size.

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
v

e
ra

g
e

 l
a

te
n

cy

Injection rate

0 faults, baseline FIFO

0 faults, flexible FIFO

100 faults,

baseline FIFO

100 faults,

flexible FIFO

Fig. 23. Impact of flexible FIFO design on Vicis’ performance in an
8x8 torus network. The plot indicates that the use of flexible FIFOs allows a
Vicis-equipped network to hit the latency wall at higher injection rates.

again note that the fault-injected topology reaches the latency

wall sooner. However, with flexible FIFOs, this effect can be

mitigated, reaching the latency wall at an injection rate of

approximately 0.1, compared to a previous 0.07.

D. Area Overhead

The physical design of the Vicis router was carried out with

an automated place and route tool chain after synthesizing

with Synopsys Design Compiler, targeting a 45nm technology.

The baseline router was also designed in this fashion. The

resulting Vicis reliable router with 32-flit FIFOs comprised

74,805µm2, for an area overhead of 51% compared to the

baseline router. This includes both the hardware to implement

the routing algorithm, as well as all the architectural features.

Table II shows the overhead of each component in the Vicis

router in a 3x3 network. Among the reliability components,

the BIST logic is the largest.

VII. CONCLUSIONS

We have presented Vicis, a reliable network-on-chip that

is able to tolerate many faults in both the router components

as well as the reliability components themselves. It maintains

correct operation in the face of faults, trading off performance

for correctness. As the number of failures increases, Vicis

13

router component Vicis area (µm2) baseline area (µm2)

crossbar 2,657 1,487

decoder 1,350 395

flexible FIFO buffers (32-flit) 54,303 46,706

output logic 925 644

routing table 585 416

misc 854 28

BIST and reconfig. logic 5,082 -

bypass bus 201 -

ECC 1,544 -

port swapper 603 -

total 74,805µm2 49,676µm2

overhead 51%

TABLE II
AREA BREAKDOWN OF VICIS ROUTER BY COMPONENT.

mitigates errors by reconfiguring both the router architecture

and network routing protocol. By leveraging the redundancy

inherent in networks-on-chip, and NoC routers, Vicis can

maintain high reliability, while incurring a 51% overhead.

A built-in self test at each router diagnoses the number and

locations of hard faults. Architecture features including ECC,

a crossbar bypass bus and port swapping are then deployed

to work around faults. Finally, routers work together to run

a distributed in-hardware network reconfiguration algorithm,

thus bypassing broken links and routers. We show that Vicis

is able to provide significant area and reliability advantages

over TMR, tolerating fault rates of over 1 in 2,000 gates.

ACKNOWLEDGMENTS

This work was developed with partial support from the

Gigascale Systems Research Center.

REFERENCES

[1] M. Alam. A critical examination of the mechanics of dynamic NBTI
for PMOSFETs. In Proc. IDEM, 2003.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook. TILE64 processor: A 64-core
SoC with mesh interconnect. In Proc. ISSCC, 2008.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proc. PACT,
2008.

[4] P. Bogdan, T. Dumitras, and R. Marculescu. Stochastic communication:
A new paradigm for fault-tolerant networks-on-chip. VLSI Design,
2007(95348), 2007.

[5] S. Borkar. Microarchitecture and design challenges for gigascale
integration. In Proc. MICRO, 2004.

[6] S. Borkar, N. P. Jouppi, and P. Stenstrom. Microprocessors in the era
of terascale integration. In Proc. DATE, 2007.

[7] S. Chalasani and R. Boppana. Communication in multicomputers with
nonconvex faults. IEEE Trans. Computers, 46(5), 1997.

[8] L. Cherkasova, V. Kotov, and T. Rokicki. Fibre channel fabrics:
Evaluation and design. In International Conference on System Sciences,
1995.

[9] A. Chien and J. H. Kim. Planar-adaptive routing: Low-cost adaptive
networks for multiprocessors. In Proc. ISCA, 1992.

[10] S. Constantinides, K.and Plaza, J. Blome, V. Zhang, B.and Bertacco,
S. Mahlke, T. Austin, and M. Orshansky. Bulletproof: a defect-tolerant
cmp switch architecture. In Proc. HPCA, 2006.

[11] W. Dally and B. Towles. Route packets, not wires: on-chip interconnec-
tion networks. In Proc. DAC, 2001.

[12] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos.
The reliable router: A reliable and high-performance communication
substrate for parallel computers. In Proc. PCRCW, 1994.

[13] A. DeOrio, K. Aisopos, V. Bertacco, and L.-S. Peh. DRAIN: Distributed
recovery architecture for inaccessible nodes in multi-core chips. In Proc.

DAC, 2011.

[14] J. Duato. A theory of fault-tolerant routing in wormhole networks. IEEE
Trans. Parallel and Distributed Systems, 8(8), 1997.

[15] D. Fick, A. DeOrio, V. Bertacco, D. Sylvester, and D. Blaauw. A highly
resilient routing algorithm for fault-tolerant NoCs. In Proc. DATE, 2009.

[16] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester.
Vicis: a reliable network for unreliable silicon. In Proc. DAC, 2009.

[17] J. Flich and J. Duato. Logic-based distributed routing for nocs. Computer
Architecture Letters, 7(1), 2008.

[18] S. Furber. Living with failure: Lessons from nature? In Proc. ETS,
2006.

[19] P. B. Ghate. Electromigration-induced failures in VLSI interconnects.
In Proc. Reliability Physics Symposium, 1982.

[20] C. Glass and L. Ni. The turn model for adaptive routing. In Proc. ISCA,
1992.

[21] M. E. Gomez, J. Duato, J. Flich, P. Lopez, A. Robles, N. A. Nordbotten,
O. Lysne, and T. Skeie. An efficient fault-tolerant routing methodology
for meshes and tori. IEEE Computer Architecture Letters, 3(1), 2004.

[22] S. Gupta, S. Feng, J. Blome, and S. Mahlke. StageNet: A reconfigurable
CMP fabric for resilient systems. In Reconfigurable and Adaptive
Architecture Workshop, 2007.

[23] R. He and J. Delgado-Frias. Fault tolerant interleaved switching
fabrics for scalable high-performance routers. IEEE Trans. Parallel and

Distributed Systems, 18(12), 2007.

[24] M. Hosseinabady, A. Banaiyan, M. N. Bojnordi, and Z. Navabi. A
concurrent testing method for NoC switches. In Proc. DATE, 2006.

[25] A. Jantsch, R. Lauter, and A. Vitkowski. Power analysis of link level
and end-to-end data protection in networks on chip. In Proc. ISCAS,
2005.

[26] N. Karimi, A. Alaghi, M. Sedghi, and Z. Navabi. Online network-on-
chip switch fault detection and diagnosis using functional switch faults.
Journal of Universal Computer Science, 14(22), 2008.

[27] J. Keane, S. Venkatraman, P. Butzen, and C. H. Kim. An array-based test
circuit for fully automated gate dielectric breakdown characterization. In
Proc. CICC, 2008.

[28] J. Kim, C. Nicopoulos, and D. Park. A gracefully degrading and
energy-efficient modular router architecture for on-chip networks. ACM
SIGARCH Computer Architecture News, 34(2), 2006.

[29] S.-P. Kim and T. Han. Fault-tolerant wormhole routing in mesh with
overlapped solid fault regions. Parallel Computing, 23(13), 1997.

[30] A. Kohler and M. Radetzki. Fault-tolerant architecture and deflection
routing for degradable noc switches. In Proc. NoCs, 2009.

[31] A. Kohler, G. Schley, and M. Radetzki. Fault tolerant network on
chip switching with graceful performance degradation. IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems, 29(6), 2010.

[32] M. Koibuchi, A. Funahashi, A. Jouraku, and H. Amano. L-turn routing:
An adaptive routing in irregular networks. In International Conference

on Parallel Processing, 2001.

[33] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston. A
lightweight fault-tolerant mechanism for network-on-chip. Proc. NoCs,
2008.

[34] S. Lin and D. J. Costello. Error Control Coding: Fundamentals and
Applications. Prentice Hall, 1983.

[35] C. Liu, L. Zhang, Y. Han, and X. Li. A resilient on-chip router design
through data path salvaging. In Proc. ASPDAC, 2011.

[36] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, N. Vangal, Sriram Borkar, G. Ruhl, and S. Dighe. The
48-core SCC processor: the programmer’s view. In Proc. SC, 2010.

[37] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie. Segment-
based routing: An efficient fault-tolerant routing algorithm for meshes
and tori. In Proc. IPDPS, 2006.

[38] G. D. Micheli. Reliable communication in systems on chips. In Proc.

DAC, 2004.

[39] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini,
and G. D. Micheli. Analysis of error recovery schemes for networks on
chips. IEEE Design & Test, 22(5), 2005.

[40] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques
in direct networks. IEEE Computer, 6(2), 1993.

[41] S.-J. Pan and K.-T. Cheng. A framework for system reliability analysis
considering both system error tolerance and component test quality. In
Proc. DATE, 2007.

[42] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das.
Exploring fault-tolerant network-on-chip architectures. In Proc. DSN,
2006.

14

[43] A. Pellegrini, V. Bertacco, and T. Austin. Fault-based attack to RSA
authentication. In Proc. DATE, 2010.

[44] S. Peng and R. Manohar. Self-healing asynchronous arrays. Proc.

ASYNC, 0, 2006.
[45] M. Pirretti, G. Link, R. Brooks, N. Vijaykrishnan, M. Kandemir, and

M. Irwin. Fault tolerant algorithms for network-on-chip interconnect.
In VLSI, 2004. Proceedings. IEEE Computer society Annual Symposium
on, 2004.

[46] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: cost-effective architec-
tural support for rollback recovery in shared-memory multiprocessors.
In Proc. ISCA, 2002.

[47] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A cheap
and robust fault-tolerant packet routing mechanism. ACM SIGARCH

Computer Architecture News, 32(2), 2004.
[48] S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient unicast and

multicast support for CMPs. In Proc. MICRO, 2008.
[49] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho,

F. Silla, and J. Duato. Addressing manufacturing challenges with cost-
efficient fault tolerant routing. In Proc. NoCs, 2010.

[50] J. C. Sancho, A. Robles, and J. Duato. A flexible routing scheme for
networks of workstations. In Proc. HPCS, 2000.

[51] A. Sanusi and M. Bayoumi. Smart-flooding: A novel scheme for fault-
tolerant NoCs. In Proc. SOCC, 2009.

[52] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rode-
heffer, E. Satterthwaite, and C. Thacker. Autonet: a high-speed, self-
configuring local area network using point-to-point links. IEEE Journal

on Selected Areas in Communication, 9(8), 1991.
[53] W. Song, D. Edwards, J. Nunez-Yanez, and S. Dasgupta. Adaptive

stochastic routing in fault-tolerant on-chip networks. In Proc. NoCs,
2009.

[54] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: improving
the availability of shared memory multiprocessors with global check-
point/recovery. In Proc. ISCA, 2002.

[55] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of
technology scaling on lifetime reliability. In Proc. DSN, 2004.

[56] J. H. Stathis, B. P. Linder, R. Rodrguez, and S. Lombardo. Reliability of
ultra-thin oxides in CMOS circuits. Microelectronics Reliability, 43(9-
11), 2003.

[57] P.-H. Sui and S.-D. Wang. Fault-tolerant wormhole routing algorithm
for mesh networks. IEEE Computers and Digital Techniques, 147(1),
2000.

[58] M.-J. Tsai. Fault-tolerant routing in wormhole meshes. Journal of

Interconnection Networks, 4(4), 2003.
[59] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,

D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar. An 80-tile sub-100-w teraFLOPS
processor in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 43(1),
2008.

[60] Z. Zhang, A. Greiner, and S. Taktak. A reconfigurable routing algorithm
for fault-tolerant 2D-mesh network-on-chip. In Proc. DAC, 2008.

Andrew DeOrio (S’07) is a Ph.D. student at the
University of Michigan in the Advanced Computer
Architecture Lab (ACAL). He received his B.S.E.
and M.S.E degrees in Electrical Engineering from
the University of Michigan in 2006 and 2008. His
research interests are in ensuring the correctness
of digital hardware designs, including verification,
reliable system design and post-silicon validation.

David Fick (S’08) is a Ph.D. candidate at the
University of Michigan, Ann Arbor. He works with
Professors Dennis Sylvester and David Blaauw in
the Michigan Integrated Circuits Lab (MICL). His
research interests include fault tolerance, adaptive
circuits and systems, and 3D integrated circuits.

Valeria Bertacco (S’95–M’03) received the Laurea
degree in computer engineering from the University
of Padova, Italy, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University
in 2003. She is an associate professor of electrical
engineering and computer science at the University
of Michigan. She joined the faculty at Michigan
after being at Synopsys for four years. Her research
interests are in the areas of formal and semiformal
design verification with emphasis on full design
validation and digital system reliability. She is an

associate editor of the IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems and has served on the program committees
for DAC and ICCAD.

Dennis Sylvester (S’95–M’00–SM’04–F’11) re-
ceived a Ph.D. from the University of California,
Berkeley and is Professor of Electrical Engineering
and Computer Science at the University of Michigan,
Ann Arbor, where he is the Director of the Michi-
gan Integrated Circuits Laboratory (MICL). He has
published over 300 articles along with one book and
several book chapters. His research interests include
the design of millimeter-scale computing systems
and energy efficient near-threshold computing. He
holds 7 US patents and serves as consultant and

advisor to electronic design automation and semiconductor firms in these
areas. He is a co-founder of Ambiq Micro, a fabless semiconductor company
developing ultra-low power mixed-signal solutions for wireless devices.

David Blaauw (M’00–SM’07) received the B.S.
degree in physics and computer science from Duke
University, Durham, NC, in 1986, and the M.S.
and Ph.D. degrees in computer science from the
University of Illinois at Urbana-Champaign, Urbana,
in 1988 and 1991, respectively. Until August 2001,
he was with Motorola, Inc., Austin, TX, as a Man-
ager with the High-Performance Design Technology
Group. Since August 2001, he has been on the
faculty of the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann

Arbor, where he is currently a Professor. His work has focused on very large-
scale integration design with particular emphasis on ultralow power and high-
performance design.

Jin Hu (S’06) is a graduate student at the University
of Michigan pursuing a P.hD. and studying elec-
tronic design automation (EDA). She completed her
masters at University of Michigan in 2008, and her
undergraduate degrees from Northwestern in 2006.
Her research interests include global routing and
placement, optimizations, and logic synthesis.

Gregory Chen (S’06–M’11) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from the University of Michigan in 2006 and 2009,
and 2011. He currently is a member of the High-
Performance Circuits research group at Intel, Hills-
boro, OR. His research interests include networks-
on-chip, voltage regulation, and energy harvesting.

