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Slope Propagation in Static Timing Analysis

David Blaauw Member, IEEEVIadimir Zolotov, Member, IEEEand Savithri Sundareswaraviember, IEEE

Abstract—Static timing analysis has traditionally used the method for timing verification. Static timing analysis also has
PERT method for identifying the critical path of a circuit. The  pecome the core engine used inside circuit optimization tools
authors show in this paper that due to the influence of the transi- such as transistor and gate sizing tools [2], [6], [25] and logic

tion time of a signal on the subsequent path delay, the traditional . R .
timing analysis approach can report an optimistic circuit delay synthesis tools [27]. In static timing analysis, so-catedval

and may identify the wrong critical path. Also, the calculated —Signals which represent the latest time a signal can transition at
circuit delay is a discontinuous function with respect to transistor a node due to a signal change at a circuit input, are propagated
and gate sizes, posing a severe problem for circuit optimization forward through a circuit from inputs to outputs. Similarly,
methods. The authors also examine an alternate approach where so-calledrequired signals which represent the latest time a

the propagated signal is constructed by combining the latest . i .
arrival time and the slowest transition time from all signals signal can transition at a node in order to meet the performance

incident on a node. While this approach remedies the problem of Constraints, are propagated from circuit outputs to inputs. An
discontinuity, it can significantly overestimate the circuit delay arrival signal consists of both tregrival time, when the signal

and can also identify the wrong critical path. In this paper, they reaches a predetermined voltage point, such as the 3/2/éf
therefore propose a new timing analysis algorithm and prove that and the transition time of the signal, measured for instance

it computes the correct and continuous timing graph delay and - .
the proper critical path. The proposed algorithm selectively prop- from the 10% to the 90% supply voltage crossing times. As

agates multiple signals through each timing edge in cases whereSignals are propagated across a gate, their arrival times and
there exists ambiguity regarding which arriving signal represents  transition times are updated.

th%_c_ntlctal F(’jath- They 5h°;"’ fth?‘t thle falgorlthmtpro?ﬁgztels th? Gate delay is a complex function of the arrival times and slopes
sufficient and necessary set of signals for computing the delay ofa . _. : ;
general timing graph. The authors also introduce a new property of signals at the gate inputs, and over thg last decade, extensive
of digital gates, referred to as thetransition shift property and, reseéarch has focused on how to efficiently and accurately
using this property, show that the number of propagated signals calculate propagation delays and slopes for gates in a circuit,
can be significantly reduced for timing graphs of digital circuits. addressing issues such as the state dependence of gate delays
Finally, they discuss the computation of required times and node [10], the impact of slopes on the gate delay [1], [11]-[15]
slacks for the traditional approaches and propose corresponding ' - _ |

algorithms for the new approaches. They show that while the tra- and, more recently, the impact of cross-coupled noise on delay
ditional approach can incur both a positive or negative error in the [28]_.[3_4]- Extensive researc_h was also chused on methqu
computed slack, the proposed algorithms compute a conservative to eliminate false paths, which are unrealizable due to logic
slack for off-critical nodes and the correct and continuous slack and timing correlations in a circuit [7], [8], [16]-[20], [24].

for the critical path. The proposed algorithms were implemented  However, the essential principle of static timing analysis has

in an industrial static timing analysis and optimization tool, and . . . .
the authors present results for a number of industrial circuits. remained largely unchanged since it was proposed in 1982 by

Their results show that the traditional timing analysis method [4]: [5] and is still based on two fundamental assumptions.
underestimates the circuit delay by as much as 39%, while the 1) When calculating the delay of a gate, only one input of the
discussed alternate approach can overestimate circuit delay by as gate is assumed to be switching at a time, ignoring the effects of
much as 17%. The proposed method computes the correct delay, (near-) simultaneous switching of the gate input signals. This

while incurring only a small run time overhead in all cases. . - o ; ; o
] o so-calledsingle-input-switchingassumption greatly simplifies

stamg?i);nil-nzrg]r?;?seilsay computation, performance verification, {he analysis and enhances its computational efficiency. How-
' ever, when the single-input-switching assumption is violated
in the actual circuit, delay estimates become inaccurate and
|. INTRODUCTION may underestimate the actual gate delay, therefore yielding

WO APPROACHES are commonly used to verify thé@n optimistic timing analysis report. In [9] and [21]-[23], this
timing of a digital circuit: dynamic simulation and staticproblem was discussed and solutions proposed at the expense

timing analysis. A disadvantage of dynamic simulation is thz?fc add.itional rurl time. o . . .
h2) Given the single switching assumption, the signal arriving

it requires the user to generate a set of input vectors whic

exhaustively exercise all possible paths in a circuit. For largdth the latest arrival time at a particular node is assumed to

designs, static timing analysis has become the predominggRult in the longest path delay and is, therefore, propagated
forward, while all other signals with earlier arrival times are

_ , _ _ pruned. This second assumption is the main topic of this paper,
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Fig. 2. Discontinuity in delay calculated by LPA method.
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the signal. Given two signals, the signal with an earlier arrival
time might well have a larger overall path delay if it has a signif-
icantly larger signal transition time than that of the signal with
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the later arrival time. However, LPA will propagate the signal
with the later arrival time, and the signal with the longest path
delay will remain undetected, resulting in an underestimation
of the worst circuit delay. To illustrate this problem, we have
shown in Fig. 1(a) a simple two-input circuit with two possible
signal paths, one originating from inpdt(signal.54) and one
originating from inputB (signalSg). Either of the two signals

is applied, such that there is only one input switching at any one
point in time. Delay computations when simultaneous inputs
are switching have been studied elsewhere [21]-[23]. Fig. 1(b)
shows the waveforms for signats; and .Sy at nodeD where
signalS 4 originates from nodel and signals s originates from
node B. Fig. 1(c) shows the waveforms of the same two sig-
nals at nodeE. Since the arrival time of signafz (0.7 ns) is
later than that of signab 4 (0.64 ns), LPA propagates signal
S through gate73 resulting in a total path delay of 0.82 ns
as shown in Fig. 1(c). However, the transition time of arrival
signalS.4 (1.36 ns) is larger than that of signgk (0.1 ns) and
would result in a significantly larger delay of gaté if signal

© S 4 were propagated instead of sigrigt. The total path delay
, in calculated cirouit delay with LPA method. (a) Circuit with tWOof signalS 4 would therefore be 0.95 ns, as shown in Fig. 1(c).
;'35;' prgég’é;igﬁg:tﬁ;D,EandB}'D7E. (b) Waveforms of two signals O this circuit, traditional timing analysis using LPA reports
atnodeD. SignalS., originating from noded and signalS s originating from & worst circuit delay of 0.82 ns, while the actual worst circuit
nodeB. (c) SignalsS4 andSs after they propagate through gaie. delay is 0.95 ns. Although LPA correctly calculated the path
delay of signalSg, it did not detect that signaf 4 resulted in
they often result in the underestimation of the circuit delag longer path delay than sign and therefore identified the
and the identification of the wrong critical path. What is leswrong critical path and underestimated the total circuit delay.
obvious is that these assumption also lead to undesirable dibis erroris independent of the delay model, provided the model
continuities of the circuit delay as a function of the underlyingccounts for the influence of signal transition time on gate delay.
gate delays, thereby significantly complicating the task of cir- Besides underestimating the total circuit delay, LPA poses
cuit optimization algorithms. In this paper, we propose a negroblems to circuit optimization algorithms since it results in
signal propagation algorithm that preserves the simplicity discontinuities in the calculated worst circuit delay with respect
the single-input-switching assumption while at the same tinte transistor and gate sizes. This is illustrated in Fig. 2 where
improving the accuracy of the analysis and eliminating tht@e worst circuit delay computed by LPA is shown as a func-
discontinuities present in traditional timing analysis algorithm&ion of the size of gaté&71. A sudden change in the calculated
The basic problem with LPA is that, out of all signals arrivingircuit delay occurs when the size 6fl is increased such that
at a node, it selects one signal for forward propagation bagbé arrival time of signalg at nodeD becomes earlier than
only on the arrival time of the arriving signals and without rethat of signalS.s. At this point, the signal propagated by LPA
gard for their transition times. The transition time of a signal awitches from signats to signalS,, and the slope used to cal-
a node, however, has a direct impact on the delay of subsequaiiate the delay of gat€'3 changes abruptly. This results in a
gates in its path and therefore affects the overall path delaysefdden increase in the delay®@8 and hence in the worst circuit
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delay. Of course, the actual delay of the circuit is a continuoegperiments also show that LPA can underestimate the worst
and smooth function of gate sizes and the observed discopith delay by as much as 39%, whereas SPA can overestimate
nuity is purely an artifact of LPA. Such discontinuities pose a sthie worst circuit delay by as much as 17%. We also demonstrate
vere problem for efficient gradient-based optimization method$ie occurrence of discontinuities in the worst circuit delay when
which rely on the continuity and smoothness of their objectiv&zing using LPA and demonstrate how these discontinuities
function [3], [25], [26]. Discontinuities tend to trap such opti-are removed with the proposed algorithm.
mization methods far from an optimal circuit solution. The remainder of this paper is organized as follows. In Sec-
Increasingly, designers are using automated sizing and log@ Il we present a formal formulation of the timing analysis
synthesis tools which result in optimized circuits with highlyroblem. In Section IlI, we discuss the traditional approaches
balanced path delays. In such balanced circuits, the signasng LPA and SPA. In Section IV we propose our new MPA, in-
converging at a particular node are likely to have arrivaluding the signal reduction technique using the proposed tran-
times that are very close to one another. However, they mgi§ion shift property for digital gates. In Section V, we discuss the
have dramatically different slopes, and LPA is therefore mopsopagation of required times for the two traditional approaches
likely to select the wrong signal for propagation and repo@nd the proposed MPA approach. In Section VI, we present our
an optimistic worst circuit delay. One approach to addresgsults and in Section VII our conclusion.
this problem is to propagate the latest arriving signal, but
modify its transition time to be the maximum transition time
of all signals arriving at a node. We will refer to this method Il. PROBLEM FORMULATION
as theslowest propagation algorithm (SPAThis approach
guarantees the continuity of the objective function and hasin this section, we present a formal definition of a timing
therefore been used in certain optimization approaches [@laph and its properties. For the purpose of discussion, we do
However, this approach can significantly overestimate circuipt include the elimination of false paths due to logic or timing
delay. In the example in Fig. 1, the propagated arrival signedrrelations in a circuit in our formulation. The problem ad-
would have a arrival time of 0.7 ns and a transition time dgiressed in this paper is orthogonal to the problem of false path
1.36 ns, resulting in an overestimation of circuit delay anglimination and our proposed solution can be applied in con-
a suboptimal optimization result. Hence, there is a criticfiinction with these methods.
need to address the issue of slope propagation in static timing?€finition 1: A timing graph is defined as a directed
analysis. graph having exactly one source and one sink node:
In this paper, we propose a new signal propagation meth6d = {N, E, n,, ny}, where N = {n1, na, ..., ni} i
which, given the delay and slope functions for the gates in tReset of nodesy = {ci, ¢z, ..., ¢;} is a set of edgesi, € N
circuit, computes the worst timing graph delay correctly. ThHg a source node, ang; € NV is a sink node. Each edgec £
algorithm uses the propagation of multiple signals in casisssimply an ordered pair = (n;, n;) of nodes.
where there is ambiguity regarding which signal results in the The nodes in the timing graph correspond to nets in the cir-
longest path delay. We refer to the proposed approach as ¢hé, and the edges in the graph correspond to the connections
multiple propagation algorithn(MPA) and prove that, given the from gate inputs to gate outputs. Although circuits in general
delay and slope function for all gates in the circuit, it identifiebave multiple inputs and outputs, we can trivially transform
the correct delay of the timing graph and that this calculatdblem to graphs with a single source and sink by adding a virtual
delay is continuous with respect to gate/transistor sizes. Weurce and virtual sink. We assume without loss of generality
show that MPA propagates the necessary and sufficient setludt signal arrival times are measured at 50% of the signal level.
signals for correct calculation of the timing graph delay if nélso, for convenience of notation, we will refer to a signal tran-
further information about downstream gates is known. Since thi#ion time as a signalopedenoted by and refer to a slower
proposed MPA approach increases the number of propagaff@ster) slope as a longer (shorter) transition time.
signals, it increases the run time of the analysis. However, forEach edge is assigned two functions: a delay functign=
digital circuits, we construct an upper bound for the addedi(s;), which represents the signal propagation delay from a
delay due to differences in the transition time of signals, basgédte’s input to its output, and a transition time or slope function
on a newly introducetransition shift propertyof digital gates. s. = se(sz), which represents the transition time of the signal
Using this proposed property, we can significantly reduce tlaé¢the gate output. Both are functions of the gate input slope and
number of propagated signals for digital circuits. We aldoave the following property which reflects the fact that for a
discuss in some detail the calculation of required times atapic gate, a faster input slope produces a lesser gate delay and
node slacks for the traditional LPA and SPA approaches afas$ter output slope.
present the required time and slack computation for MPA. ForProperty 1: If slopes, < s, then delayi.(s,) < dc(s;)and
MPA, the slack computed for the critical path is shown to beutput slopes.(s,) < se(sy).
correct and continuous, while for the off-critical path nodes, Note that the validity of Property 1 will depend on the selected
the computed slack is conservative. This is in contrast to LRAltage at which the arrival times are measured. If arrival times
which can compute incorrect and discontinuous slack for tlaee measured at V2id, it is possible that for slow input slopes,
critical path and can have either a positive or negative erridre delay of a gate is negative afd s, ) > d.(s;). However, it
for the off-critical path nodes. We implemented the proposésialways possible to select a set of voltage levels for rising and
MPA approach and show through experimental results that #adling transitions, such that Property 1 is valid, for instabge
increase in the run time over LPA is minor in practice. Ouor rising transitions and' dd — V,,, for falling transitions.
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1. Assign to the source node ng the signal Sy={T), 5o, Py} where Ty=0, Py=(ny)

2. For each node n; in the graph in topological order:

{

2.1. For each incoming edge ¢, to node i from node k with signal S,=(T}, s, Py)
create a new signal Sy,;=(Ty; sp, Py} where Ty =Ty +dyi(sy), spi=spi(sg), Pri=(Pp n;)
2.2. From all signals S;
select signal Syyre=(Tiasesr Statesv Platest)s
where Ty, = max(Ty;) and s;4,,, is the slope of the signal with arrival time T},

2.3 Assign to node n; signal Sy,,,.;.

}

Fig. 3. Traditional latest propagation algorithm.

Below we give a definition of a path in the timing gragh Lemma 1: Given two signalss, andS, at node» with slopes

and of its path delay. sq and s;, respectively, and such tha < s, then for any
Definition 2: A path P of timing graph ¢ = signal pathQ = (n, [, ..., z) the path delay/,(Q) of signal

{N,E,n,,ns} is a sequence of its node®” = S, isalways lessthen the path deldyQ) of signal.s;.

(Na, nu, ..., nz) such that each pair of adjacent nodes

ng andn,, has an edgey, = (ng,n1.). [1l. T RADITIONAL PROPAGATION TECHNIQUES
ApathP = (ng, n, ..., n.) defines a sequence of edges

The most obvious technique for finding the critical path of a

(Cabs Cvey « ooy Cyz). le_en the SI.Op% at the first noden,, of timing graph is to simply enumerate all paths from its source to

path P, we can determine the signal slopes for all the nodes on . .

the path using the equation = s;,(s:) recursively, where; Sink, compute their delays, and select the path with the worst
e = s;,(s;) recursively, where;

is the to-be-determined slope at nadg s; is the slope at the de]ay. However,_smcg th? wqrs_t case.number of paths Inacir-
predecessor node, ands,; is a slope fun::tion of the edge; cuit is exponential with circuit size, this approach is infeasible
3 ij . o . . .

After the signal slope at each node of a path is determined, ﬁ% modern circuits. BEIOV\; Inf_Se(j(?tlonE ”I'A. anld B ;]N.e d'S(.:US$
delay of the path is determined using the following definition.tWO common approaches for finding the critical path in a circuit

Definition 3: The path delaylp, of path P is defined as bas_ed on t_he PERT approach. Both approache; uses the propa-
S _pdi;(s;), whered;; (s;) is a delay of an edge;; on path gation of signals from the source node to the sink node, which

e ;€ (¥ (Y] (¥ ) J

P with input slopes;, and the summation is over all edges be® de.f'r_‘.e more formally as follows. . '
longing to pathP. Definition 4: A S|gna_1l Sn at a noc_ien is a triplet S,, =
Among all paths terminating at a node, we define the paff-4: > £’} where Ty is its arrival time at the node:, s
with the maximum arrival time athe critical pathup to that S itS slope at the node, and P = (n, ng, ..., n) is the
node. The critical path of the sink nodg of a timing graph is Signal propagation path from the source nedeto the node
referred to ashe critical path of the timing graph, and its path°f interestn.
delay,d(G), is referred to as the delay of the timing graph. FOA
convenience, we will at times refer to the delay of a timing graph
as thecircuit delay. The main objective of timing analysis is to  The traditional timing analysis algorithm iterates through
find the correct critical path and to compute its delay. We wigach node in a timing graph in topological order, selecting
now show that the actual delay of a timing graph is a continuotl¥ signal with the latest arrival time from among all incident
function with respect to transistor and gate sizes. This propegignals for forward propagation. As a signal is propagated
is important for circuit optimization methods, since many dbrward, its arrival time is increased by gate deldy(s;)
such methods rely on their objective function being continuouand its slope is replaced with;(s;), wheres; is the slope of
Theorem 1:If the edge delay and slope functions are corthe selected signal. We refer to this algorithm as the LPA to
tinuous with respect to some parameters, then the timing gragflect its selection criteria. Note that in LPA, only one signal is
delay is also continuous with respect to these parameters. propagated across each edge, and each node in the timing graph
Proof: The delay of each path in a graph is a finite sum a§ visited exactly once. Although in our notation a signal at a
finite compositions of delay and slope functions of individugbarticular node records its entire path to that node, in practice a
edges. Hence, the path delay is a continuous function walgnal only needs to record its predecessor node. So, traditional
respect to the parameters of the slope and delay functiotiming analysis has a run time complexity that is linear with the
The total graph delay is the maximum of all path delays inumber of edges in the timing graph. The latest propagation
the timing graph and is therefore also continuous, since thkjorithm is presented below in Fig. 3.
maximum operation is a continuous function. U In Section |, we already presented a small example circuit for
From Property 1 of edge delay and slope functions, it is cleahich LPA identifies wrong critical path. We show in Theorem
that the path delay for slower signals is always more than ferpelow that the presence of a signal with a slower slope and
faster ones along the same path, as stated in the following. an earlier arrival time than the latest arriving signal at a node

Latest Propagation Approach
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dif(slale.\'t)zdmax
dif(sk) zdmax"' Tlutext' Tk+ A

(b) Timing graph H where Sy; is critical but Sy,,,, 1s not

Fig. 4. Construction of a timing graph with a critical path different from the one identified by LPA.

can cause LPA to fail. We prove that the existence of such a Proof: We use the timing grapH constructed in the proof
signal is a necessary and sufficient condition for the existenaETheorem 2. Assuming that the edge delay functipof sub-

of a graph with this signal on which LPA fails. From this wepath Py,;.s; depends strongly and monotonically on parameter
show, in Theorem 3, that the circuit delay calculated by LPA., we setr = zo such that the path delays of subp@h;cs:

can be discontinuous with respect to the gate sizes. and P,; are equal. Then, a small variationofaroundzq will
Theorem 2:If, for some noden; of timing graphG, LPA  result in a variation of the graph delay by, O

selects the signabiatest = (Tlatest, Slatest; Platest) @nd the It is clear that LPA always propagates real signals that occur

slopesiaiest IS faster than the slopg, of another signab,; = inthe actual circuit. Therefore, it never overestimates the arrival

(T, sk, Pr) propagated to;, then we can construct a newtimes at a circuit node and hence will never overestimate the
graphH, containing all nodes and edgeditthat have already circuit delay. However, it can underestimate arrival times and the
been visited by LPA, such that Sy, is critical butSy...s: is not.  circuit delay as is shown in Theorem 2. For LPA to compute the
Proof: The construction is demonstrated in Fig. 4. We firstorrect latest arrival times for each circuit node, it is sufficient if

constructH such that it contains only the nodes fraththat at each node, except the sink node, the latest signal that arrives
have been visited by LPA. To complete, we then add a sink at that node has the slowest slope.

noden; and an edgex s = (ng, ns) for each nodey, of H
that does not have an outgoing edge (including nogeTo all
edgese; s we assign delay functiong, ;(s) = 0, except for
eif = (n;, ns). We now calculate the maximum path delay of The SPA is a variation of LPA where, instead of propagating
the set of all paths that do not pass through nedend denote the signal with the latest arrival time, a new signal is created
it asdmax. FOr edgez; ; = (n;, ny) we assign a delay function by combining the latest arrival time and the slowest slope of
d;¢(s) such thatd; s (Siatest) = dimax @aNdd,;¢(sk) = dmax +  all the signals arriving at a node. The algorithm is presented in
Tatest — T3 + A, whereA > 0. Note that this delay function Fig. 5. Contrary to LPA, the slowest propagation algorithm is
does not violate Property 1. From this construction it is cleapnservative, meaning it always computes a delay that is greater
that signalSy; will arrive at the sink node of timing grapH  than the actual delay in the circuit, and the computed delay is a

B. Slowest Propagation Approach

later than signabyatest . O continuous function of transistor and gate sizes in the circuit.
We now show that the delay calculated by LPA can be a dig/e show that SPA is conservative and continuous in Theorems
continuous function of the gate and transistor sizes. 4 and 5 below. We then show in Lemma 2 that SPA correctly

Theorem 3: It is possible to construct a timing graghwith  computes the slowest signal slope at a node.
edge delay functiong. depending continuously on a certain Theorem 4:If for some noden; of a timing graph SPA as-
edge parameter., but such that the timing graph deldyz.) signs signal {iatest, Ssiowest, Platest) fOr propagation, then its
computed by LPA is discontinuous with respect:to arrival time Tl,1e; and slopesgiowesy are not less than the ar-
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1. Assign to the source node ny the signal Sy={Ty, 54 Py} where Tp=0, Py=(ny)

2. For each node, i, in the graph in topological order:

{

2.1. For each incoming edge ey; to node i from node k with signal S;=(T}, s, P}),
create a new Signal Ski:(ka’ Skir Pki) where Tkisz+dki(sk)’ Ski=5ki(sk)» Pkiz(Pk’ l’ll’)
2.2. Create a new signal Sgew=(Tlatest Sstowese Platest) Where Ty = max(Ty;) and ppypeqr= max(sy;)

2.3. Assign the computed signal Sy, to node n;.

Fig. 5. Slowest signal propagation algorithm.

rival time T}; and slopes;; of any signalS; that may arrive at an overestimation of the circuit delay. Also, it may result in the
this noden;,. identification of the wrong critical path. On the other hand, SPA
Proof: This property can be proved by induction ovehas the desirable characteristic that the delay is a continuous
timing graph nodes ordered topologically. For the source noddunction of the transistor and gate sizes. This allows circuit
is obvious. Assume that it is true for all nodeswhere: < m. optimization problems to be solved with the use of general
Denote S, siowest = (L, latests Sm, slowest, £m, latess) PUrPOSe optimization programs [2]. However, SPA will often
the signal assigned to node:. Consider an arbitrary compute incorrect dependencies of gate delays on transistor
edge ex,, from node & to node m and any signal width and therefore can lead to suboptimal solutions. Also,
Sy = (T, sk, i) that may arrive at node:. Denote the created signals in SPA do not correspond to real signals in
Sk tatest = (Th, latest; Sk, latest, Lk, latest) the signal assigned the circuit and can make understanding of the circuit behavior
to node k. By the induction assumptiofiy 1atest > 1%  difficult for designers. This, therefore, raises the importance

and sy atest > Sk. From Property 1, we have inequalitiesor a timing analysis algorithm that, given delay and slope
Qe (Sk, 1atest) = D (Sk) AN Sk (Sk 1atest) = Skm(sk) functions for all gates in the circuit, computes the correct
for delay and slope functions of the edgg,. Combining timing graph delay.
these we obtaify, 1atest + DSk, 1atest) > Th + drm(s2).
From the SPA description it follows thafl,, iatest =
Tk,latest + dkrn(sk, latest) > Tk + dkrn(sk) However;
T + dim (s) @andsy,, (sy) are the arrival time and slope of the In order to perform timing analysis that correctly identifies
arbitrary signal coming to node: through arbitrary edge;,; the critical path and delay of a timing graph, we propose a new
which proves the theorem. O propagation algorithm. The algorithm propagates multiple sig-
Theorem 5:If the edge delay and slope functions are comals forward in cases where there is ambiguity regarding which
tinuous with respect to some parameters, then the arrival timsigjnal results in the longest path delay and is referred to as the
delays, and slopes computed by SPA are also continuous W{PA. If two arrival signals are incident on a node, such that one
respect to these parameters. of the signals has both an earlier arrival time and a faster slope,
Proof: We can prove it by induction over timing graphthe earlier signal is pruned from the analysis. We prove that
nodes ordered topologically in the same way as SPA. For thfs algorithm finds the correct critical path and timing graph
source node it is obvious. Assume that it is correct for any nogelay for any timing graph. Also, we show that the algorithm
with a number less thai then the arrival time and slope of thepropagates the minimal set of necessary arrival signals. It is not
signal at node is computed ag; = max(7% + dki(sx)), and  possible to propagate fewer signals without incurring an incor-
s; = max(sy;(sx)) are continuous functions too. U rect critical path and worst timing graph delay for some gen-
Lemma 2: If SPA assigns to nodea signal with slope, then - erg timing graph. However, by introducing a new property of
the signal_with the slowest slope that can arrive at this node '@énal propagation through digital gates, we can bound the delay
exactly this slope. o added due to the slope difference between two signals. In Sec-
For SPA to compute the correct arrival times at each nodeyj§, |v/-B, we therefore show how this allows us to significantly

is a sufficient condition that at each timing graph nedexcept g ce the number of propagated signals for this pertinent class
the sink node, the latest signal among all the signals that amMyRSiming graphs.

at n has the slowest slope. It is interesting to see that this is
the same condition necessary for the correctness of LPA, whi’&h
results from the fact that a timing graph satisfying this condition’
has no ambiguities in its signal propagation. Instead of propagating a single signal across each edge, MPA
From Theorem 4 and Lemma 2 it follows that SPA wilpropagates sets of signals across the edges of a timing graph. At
make a conservative error at each node where the slopeeefh node, the union of the propagated signals is taken and is
the latest signal is not the slowest. This error propagates ahén pruned. A signal is pruned from the set if there exists an-
accumulates along the critical path in the circuit, resulting iother signal in the set that has both a not earlier arrival time and

IV. PROPOSEDPROPAGATION ALGORITHM

Multiple Propagation Algorithm
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1. Assign to source node n the signal set Cy={Sy/, where Sy={T, s, Py}, Tp=0, Py=(ny)
2. For each node n; in topological order compute the signal set C=(S;; Sy2....) as follows:

{

2.1. For each incoming edge e;;=(ny n;) from node k with signal set C;={S;, Sy5....}
create a new signal set Cp=(Sg;; Skiz Skiz---)» With Sp=(T8 5 Pri),
where Ty =Ti+di(sg), Spi=sii(Skj) Pri=(Ppo ).

2.2. Assign to node n; signal set C;, consisting of the union of signal sets Cy;.

2.3. Remove from C; any signal S;;=(T;; s;;, P;;}

if C; has another signal Sy ={Ty, sy, Py} suchas T, <T, and s, <5,

Fig. 6. Multiple propagation algorithm.

a not faster slope. The multiple propagation algorithm is shovari a signal. It is impossible to safely prune additional signals
in Fig. 6. We now prove in Theorems 6 and 7 that the proposédm the propagated set of signals at a node without some fur-
algorithm identifies the correct critical path and in Corollary ther knowledge of the gates that lie topologically after this node.
that the calculated graph delay is a continuous function with rig+ the next section, we introduce a property of digital gates
spect to transistor and gate sizes. which, if assumed for this portion of the timing graph, allows

Theorem 6: For any timing grapliZ and for any of its nodes the number of propagated signals to be reduced further.
n;, any signals;; = {7;;, s.;, B;; } thatis pruned by MPA does
not have the Iatgst arrival time at any nqdéollowing noden.i. B. Reduction in Propagated Signals

Proof: If, in the proposed algorithm, we prune signal

Sii = {Ti, sij, Pi;}, then at this noden; there exists  If MPA is used for the analysis of digital circuits, we can
another signalS;, = {Ti, six, Pir} such thatZ;; < T utilize some fundamental properties of such circuits to signifi-
ands;; < s;. Since bothS;; and.S;; propagate through the cantly reduce the number of propagated signals. Let us consider
same edges after node, and from the property of the slopetwo rising signalsS;, and.S;, that are applied to a digital gate
function, it follows that at any node; after noden; the slope resulting in two falling output transitions;, and.S;,, as shown
s1; of signalSy; will be less than the slop@;, of Sy.. From this in Fig. 7(a). We define the following property, which we refer
and the property of the edge delay function it follows that thi® as the transition shift property.
edge delays along the path of sigita) from noden; to node Property 2: For a digital gate connecting input nodgwith
n; will always be less than the edge delays along the same pathiput node.;, if two input signal waveforms;, andS;, are
for signal Sy;.. Since the arrival time is the summation of edgeelated such that at any point along their transitippis earlier
delays from node:; to noden;, and sincel;; < T at node thanSy, then for all time points along the output waveforms

n, it follows thatS;,; will always be earlier tha;;. O S, andS;,, waveformsS;, will be earlier thanS,.
Theorem 7:The multiple propagation algorithm correctly If signal S;, is later thanS;, at all points along its transi-
calculates the critical path and delay of a timing graph. tion, it follows that at every point in time, the voltage of signal

Proof: From Theorem 6, it follows that the proposed algowaveformsS;;, will be less than the voltage of waveforsf, (as-
rithm never prunes a signal that could be critical. Hence, all psaming a rising input transition). Digital gates have the property
tentially critical signals are propagated to the sink node, wheleat at any instant in time, a lesser input voltage results in alesser
the critical path and graph delay are determined by identifyinigstantaneous drive current that charges the output load of the
the latest signal from the set of propagated potentially criticghte. Since the output voltage waveform of a gate is simply the
signals. O integral of this drive current divided by the load capacitance, it

Corollary 1: The timing graph delay computed by the prois clear that a gate with a lesser driving current at all time points
posed algorithm is a continuous function of any parameterswill also have a less complete transition and therefore a later
the edge delay or slope function if these functions are, in tunvaveform at all points. In other words, a digital gate can only
continuous functions of their chosen parameters. produce an output signal wavefosy, that is earlier than signal

Proof: It follows from the fact that the algorithm correctly S,,, if the input signalS;, is earlier than signat;, on at least
computes the timing graph delay and from Theorem 1 that thae time instant along its transition. Note that Property 2 may
calculated timing graph delay is a continuous function of theot hold for certain analog circuits. However, Property 2 holds
parameters of the edge delay and slope functions. O for all standard digital circuits for which static timing analysis

The proposed algorithm propagates the minimum numberisfperformed, including very high performance and deep-submi-
necessary signals to compute the correct delay of a timing gragbn designs as illustrated by the waveforms in Fig. 7(a) from a
without further knowledge of the subsequent gates in the payipical gate of a 0.13:m 2-Ghz digital processor.
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Fig. 7. Bound on added path delay.

We now consider two signats,, andsS;;, atanode:; withthe {T;,, si., Fio} is pruned from the propagation if another later
same arrival time but with different slopes,, ands,;, signal signalS;, = {7}, sis, P} €xists such thdly, — T;q > (si0 —
S having the slower slope, as shown in Fig. 7(b). We would;)/2. Inthis case, signé;, is earlier than signal;; to such an
like to calculate a bound on the difference in arrival times of extent that the added delay 8f, in the path fromn,; to n ¢ will
these two signals at the sink nodg. To do this, we first replace not render it critical. Use of this condition in the MPA algorithm
signal S;;, with a signalS;., such that signab;. has the same limits the propagated signals to a small window of arrival times
slope as signd;, and completes its transition at the same poimtreceding the latest arrival time and significantly reduces the
in time as signab;;. Note that signab;. is later than signa¥;, number of signals propagated through the timing graph. Given
at all points along its transition. Based on Property 2, sighal the correct delay and slope functions, and given that the gates
will be later than signat;;, at all points along its transition at thecomply with the transition shift property 2, this condition guar-
next noden;, and by recursion, also at node. ThereforeS;. antees the correct calculation of the critical path and graph delay
has a later arrival time at nodg than signalS;, and therefore for a circuit. The proof is omitted for brevity. Note that even if
the difference in arrival times o, and.S;. at noden; is an transistion shift property does not hold, the obtained timing re-
upper bound on the difference in the arrival timesef andS;,  sultwill be at least as accurate as with LPA, since the signal with
at noden ;. SincesS;, and.S;. have identical slopes, it is clearthe latest arrival time is always propagated. Also, the proposed
that the bound is exactly the difference in the arrival times ofreduction in propagated signals is only intended for reducing the
Sie @ndS;. at noden;, which is(s;;, — s,,)/2. We define and run time. For circuits where the transition shift property cannot
prove this bound more formally below. be guaranteed, the original MPA algorithm can be used, at a

Theorem 8: Given two signalsS, and S, that propagate modest increase in run time.
along a path? and have at the start point slopgsands; such We now examine the runtime complexity of the proposed
thats, > s, then, at any node along, the delayD, of signal algorithms. In MPA and rMPA, a subset of all signals incident
S, can be bounded by the inequaliy < D, + (s, — s,)/2. on a node is selected for forward propagation. This operation

Proof: We use auxiliary signab,. having slopes, and involves the sorting of all signals according to their arrival time

completing its transition at the same time as sighalDenote and is thusO(Nlog V), where NV is the number of signals
the signals,, S, S. arrival times to the end of the path @5, incident on the node. The sum of all of signals propagated
T,, T. and, their delays aB,,, D,, D.. Denote ag, the arrival across an edge is in the worst case equal to the number of
time of signalsS, and.S, at the start of the path. Obviously,paths in a circuit. Therefore, the overall complexity of the
D, =T,—toandD, = T, —to. From the construction of signal proposed algorithm is exponential in the worst case, since the
S.itfollows D. = D,, T. = T, + (sy — s,)/2. From digital number of paths in a circuit is exponential with the size of the
gate property to preserve signal order it follows that< 7.. graph. This, however, would require that the signal ordering
SubstitutingZ, + (s, — s,)/2 for T, and subtracting, from s identical in terms of decreasing arrival time and increasing
the both sides of the inequality, we obtain the target inequaligjgnal slope, thereby not allowing any pruning. In practice, this
Dy < Dy + (84— 84)/2. O is unlikely, and we find that for industrial circuits the number

Using the bound from Theorem 8, we proposeeduced of signals that are propagated in the proposed algorithm is
multiple propagation algorithnfrMPA) where a signab,, = increased only slightly when compared with LPA or SPA.
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V. REQUIRED TIME PROPAGATION AND arrive at the sink nodey. Let 7z sini be the required time at
TIMING SLACK COMPUTATION the sink node. We define the required time for the sighalat

Up to this point we have only concerned ourselves with geden a‘,STR]Si;]‘k — L, Si“kLatefSt + T;]’“ g he sink
correct identification of the critical path and the circuit delay. ~°" @ Signal that propagates from the source node to the sin

However, for many circuit optimization applications, it is nech®de of a timing graph, theignal slackis the same at all the
essary to compute the so-callgidckandrequired times/’s of nodes along the propagation path. Of course, this does not mean
nodes in the timing graph. For the sink nodg of the timing that thenodeslack is the same for all nodes along the path, be-

graph, the required tim&x s is the latest time that a Signalcause the node slack is the minimum signal slack over all signals
’ ,Din

can arrive such that the circuit will operate correctly. Requiretaat arrive at the nodg. Hc_)wever, all critical path npdes have the
e node slack, which is the least (most negative) node slack

times are defined for a signal at an internal node as the Iat\g/gfn in the circuit. Note that the critical path slack i |
time when the signal may arrive at that node in order to arrive gue € circuit. Tote that the critical paih slack 1S equa

the sink node no later than at the required time. Given the sigrﬁ%llthe sink required time minus the circuit defay. Also, it can

required time at a node, the slack of the signal is defined as %%shown that itis |mpo§S|pIe to compute the correct slack for
very node in a general timing graph where edge delay and gate

difference between the required time and the arrival time of the . . .
. . . output slopes are a function of the input slopes, without propa-

signalS! = Tr —T 4. The slack of a node is the minimum slack” _ " ; : . . ) .
?tmg all arrival signals and their corresponding required times.

of all the signals at the node. The slack of a node is positive if Ince all practical timing analysis algorithms (including the pro-
signals that arrive at the node have an arrival time that is earlier P 9 Y g gihep

than their required times. otherwise it is negative posed MPA and rMPA approaches) prune signals at nodes in the
T requi Imes, Wise L1 gative. timing graph, they will incur errors in the computed slacks for
Required times for internal nodes of a timing graph can l%%me nodes and signals in the timing graph
uniquely and easily defined if the edge delays do not depend n the following four sections, we will discuss the required

signal slopes. In this case, the algorithm is similar to computirggne computation in more detail for the traditional LPA and

arrival times. We propagate the required times backward fro§~|:,A approaches as well for the proposed MPA and rMPA ap-
the sink node to the source node, decreasing the required tirgéaé

by edge del h d hnod aches. We will show that LPA and SPA can compute incor-
y edge delays as they are propagated. Ateach node, we can €l slacks for any node in a general timing graph, including

compute the required time as the minimum of all the requiregh 4o 40ng the critical path. LPA can compute slacks with ei-
times incident on the node through its fanout edges. Given r a positive or negative error, while SPA will always com-

node required time, the node slack is simply computed as e slacks with a negative error, meaning that it will report a

difference between the node required time and its latest armiVal g e, more negative slack than the actual slack. We will then
time. L _ show that, given delay and slope functions for all gates, MPA
Forrealistic timing graphs, the algorithm becomes more comga g r\pA compute slack for the critical path of a timing graph
plicated since the edge delays and gate output slopes depend gfiectly and that this slack is a continuous function of the gate
the |npl_,|t signal slopes as express,_ed, for mstanC_e, In PrOp_%{Hﬁ transistor sizes in the circuit, which is an important prop-
1. In this case, the edge delays will vary depending on whighy for optimization algorithms. For nodes not on the critical
signal is propagated through the edge. Therefore, the backwa h, MPA and rMPA may compute slacks with a negative error,
propagation of required times is a function of the signal slop@seaning that the approach is conservative. Finally, we will show
computed in the forward propagation and the backward and f@kxt MPA and rMPA adhere to the important property that the
ward propagation are interdependent. A required time at a nedfinputed slack of a noncritical path node is never smaller than
n is therefore only properly defined for a particular arrival signghe slack of the critical path. In other words, the error in the
at noden. The signal slack is defined as the difference betwe@@dmputed slack is never so great that the slack of a node not on
the signal arrival time and its corresponding required time agge critical path is less than the slack of a node on the critical

the node slack is the minimum slack of all signal slacks at thgth, which of course is an important criteria for effective anal-
node. The node slack represents the maximum amount of tigags and optimization of a circuit.

by which any signal at the node can be delayed such that it will

still arrive at the sink node before the sink required tifizegiy . . , : :
The difficulty in computing signal slacks results from théa" quuwed Time Propagation for Latest Propagation
. ) . . Algorithm
fact that arrival signals are pruned during forward propagation.
Therefore, during backward propagation, a required signal will For LPA, the required time computation exploits the fact that
not exist for a pruned arrival signal. In this case, a new require@lly a single signal is propagated across each edge and there-
signal must be constructed based on the available required $ige each edge has a unigue edge delay. Hence, the required time
nals, introducing inevitable error in the computation of slacksomputation for LPA is similar to the required time computation
In this section, we will present slack computation algorithms fdor timing graphs with fixed edge delays and is shown in Fig. 8.

the presented propagation algorithms and discuss the accufa@m the fact that LPA underestimates the circuit delay, it fol-

of each. lows that LPA generates a worst slack larger than or equal to the
For future consideration, we first define the required time iactual worst slack in the timing graph, i.e., it is optimistic.
a formal and algorithm independent way as follows. We will now show that LPA can compute a slack for some

Definition 5: Given signalS;. = (T, six, Fir) at node nodes with either a positive or negative error using the example
74, et Tin sinkratess D€ the latest time when the signsh, can  shown in Fig. 9. Let us assume that signals= S(73, s1, P1)
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1. Assign to the sink node the required time Tgy equal to specified required time.

2.For each node, 7, in the graph in reverse topological order:

{

2.1 For each outgoing edge e;;, from node i to node k&
compute T, =T-d;
2.2 From all computed T} select the minimal value T;=min(Ty)

2.3 Assign the computed value T; as a required time to node n;

}

Fig. 8. Required time propagation algorithm for LPA.

Ty<T;and s;<s; dg p(s))<dg p(s3) C. Required Time Propagation for Multiple Propagation
Algorithm

S(T,s,P;) - selected for propagation to b In order to present the backward propagation algorithm for
MPA, we extend the definition of a signal by including a re-
@) dats) @ quired time as follows. Signa¥,, at noden is a quadruplet
p (T4, s, P, Tr), whereTy ands are the signal arrival time and
. Rb . slope at node:, P is the path along which the signal propa-
$(Tys1,P)) - rejected from propagation gates from the source node to nodeandT’x is signal required
time at noden. The forward propagation of MPA remains un-
changed and leaves the required time of the signals undefined.
During the forward propagation, sets of signals are assigned to
each node, and the edge delay corresponding to each signal that
andw, = S(I%, s2, P») arrive at node: from nodesi andc at passes through an edge is defined.
time T3 and7; such thatl; < 73 ands; < s;. LPAatnode  The hackward propagation visits each node in reverse topo-
a propagates to nodesignalw,. The delays of edgés, b) for |ggical order and defines the required time for each signal. For
these signals are such that ,(s1) < d,,5(s2). The required g signals,, at noden, the corresponding signass at the fanout
time propagation starting from nodleises the results of the for- nodes: s of n that resulted from the propagationspfduring the
ward propagation and therefore the required tifire, for node  forward propagation are identified. The required time of a signal
ais computed using dela;, , (s2) of the edgea, b) andisused . s then propagated backward through the edgen() and
for computing the required time for node@sTx, ¢, computed = is decreased by the edge delay of edger(;) corresponding
TR, —da,(52)—da, o Therefore, itunderestimates the requiregh signals,. Among all backward-propagated required times,
time of noded because in reality the required time of nodgne earliest required time is assigned to signaht noden. If
d is determined by propagation of signal as7k,4,reat = signals, at noden was pruned during the forward propagation
Tr,b — da,5(51) = dd, a, ANAda, 5 (51) < da,s(51). CONVersely, of MPA, then no corresponding signal will be found at the fanout
if we assumes; > s, the delay of edgga, b) is such that nodes, ;. Hence, a required time for such a pruned signas
da,5(s1) > da,1(s2) and LPA will overestimate the requiredcnosen from the required times of the nonpruned signals at node
time of noded. Hence, we can conclude that LPA can make 8! The required time of the nonpruned signal that has the least
error in the required time and slack computation of any no@%werslope than the slope of the pruned signas used. This
that is not on the critical path, with either a positive or ”egatiV@peration is illustrated in Fig. 10. It is easy to see from the MPA
sign, y\(hile for nodes on the critical path, LPA will always haV‘Forward—propagation algorithm in Fig. 6 that such a signal will
a positive error. always be available, since its existence is a required condition
, ) , , for pruning signak,,. After the signal required time is computed
B. Required Time Propagation for Slowest Propagation o 5| signals at node, their slacks can be computed and the
Algorithm node slack for node is set to the minimum slack of all its sig-
In SPA, a single edge delay is again computed for each edgaals. The algorithm for backward propagation of required times
the timing graph, and the required time calculation is the samewasler MPA is shown in more detail in Fig. 11.
that shown in Fig. 8 for LPA. After SPA assigns delays to edgesSince the required time for the pruned signals is selected from
during forward signal propagation, the required time propagapropagated signal with a slower slope, the computed required
tion is uniquely determined by these delays. The SPA approdahe is always less than the actual required time. In other words,
differs from the LPA approach in that it uses the maximum poMPA will always report a pessimistic required time. However,
sible slope at a node for computing the edge delays. Therefdrg selecting the signal with tHeastslower slope, we minimize
LPA will compute edge delays that are greater than or equalttee error in the computed slack as much as possible. For the
the actual delays of an edge and it will compute a required timatical signal, propagated along the critical path, MPA always
and slack that are less than or equal to the required time ammputes the correct slack. Hence, the slack of all critical nodes
slack of the actual signals, i.e., it is pessimistic. will be correct. From this, it also follows that the slack computed

Fig. 9. Example of LPA underestimating node timing slack.
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Sy=(Tap 55 P5 Tay

S=(Ty, s, P, Tp)

S1=(Typ 51, Pp. Tgy) -
pruned from forward propagation

- required time of non pruned signal S: Tp=min[(T Rrd(mf), Tpe-d(n,g)] - minimum of all required times

- required time of pruned signal S;: Tp;=Tp is recovered from required time of signal S

Fig. 10. Required time propagation for MPA.

1.Update the required time of all the signals at sink node with the sink node required time Tgg;
2.For each node ;i n the timing graph in reversed topological order:
{
2.1. Denote Ng,..=(n; ;. n; 5,..., npt a set of the fanout nodes of node »;.
2.2, Consider each signal S;;=(T4;1,5: P Trit) at node #;d oing the following:
{
2.2.1. For each fanout node »; that has the signal Sj=(T.5;2P 1 Trip)
such that path P;; completely includes path Py
compute value T;3=Tg;-d;i(s;)
where dy;(s) is delay function of edge ¢;; between nodes »; and n;.
2.2.2. If the set of computed values T}jx is not empty
update the required time of signal S;=(T 4, S5, P Trit) With value Tpy=min(Ty;)
}
2.3. For each signal $;,=(T 4;1,8;, P31 Tri3) at node n; that has undefined required time:
{
2.3.1. Among all the signals at node n; with defined values of required time
find signal S;;=(T4;;5:, P, Tri) with the least slope s;;such as s;;> sy,
2.3.2. Update the required time of signal S;z=(T 4,55 Pt Trit)
with the required time of the found signal Tpy;
}

2.4. Assign to the node r; the required time equal to the minimum of the required times of all its signals.

}

Fig. 11. MPA required time propagation algorithm.

by MPA for the critical nodes is a continuous function of the,;. Clearly, this would be impossible since the required time
transistor and gate sizes. computed by steps 2.2, 2.2.1, and 2.2.2 in Fig. 11 decreases
We show below in Theorem 9 that the computed slack ftihe successor required time by the same delay as the arrival
noncritical signals is never less than the slack of the critichine was increased during forward signal propagation. In the
signal. This is an important and necessary property for the ferward-propagation steps 2.3, 2.3.2, and 2.3.2 in Fig. 11, the
quired time computation to be useful. If the slack of noncriticakquired times for pruned signals are computed. Consider an
nodes were computed to be less than that of the critical pattbitrary pruned signab,,. = (Ip., spr, Ppr, Trpr). There

nodes, the optimization of the circuit would certainly fail. exists a nonpruned signél,, = (T,.p; Snp; Prp, Tr, np) SUCH
Theorem 9: The slack computed by MPA for noncritical sig-thats,,. < s,, andZ},. < 1,,,. From such signals, the algorithm
nals is never less than the slack of the critical signal. selects a signab,,1 = Top1, Snpts Pop1, Tr np1) SUCH as

Proof: We prove this by contradiction. The theorem i$,,,1 > S,y Sppt < Snp and setsl’g . = Tr, np1. Therefore,
true for the sink node. Assume that it is also true for all signalsg ,,» = T'r, np1 > Lr np because the delay of signal,,;
at any node with index more thanand is wrong for node from noden; to the sink is less than the same delay of the
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signal S,,,. Subtracting the inequalities arifl,,. < 7;,, we signal used for estimating the required time of the sighaiith
obtain Si,,. > Sl,, and therefore the slack computed for @equired timel’z; and delayD; from the node of interest to the
pruned signal is never less than the slack of a nonprungidk node. LetS,, be the signal that pruned signg using the
signal at the same node. O digital gate property, with slopg, and arrival timel},. T’ sink
In summary, MPA computes slack values that are exact adenotes the required time at the sink node.
continuous for the critical path nodes. For other noncritical The estimated slack computed by the algorithm for sighal
nodes, MPA will compute a conservative slack that is less thaqual toSl.;; = Tr1 — ((s—s1)/2)—T'. The slack of the signal
the actual slack. However, this computed slack will never I#g, is equal toSl, = T’r, — 1;. As the signalS is pruned by
less than the slack of the critical path. The required time efgnalS,, we have inequalities > s, andT’ < T,,—(s—s,,)/2.
pruned signals is estimated from the required time of nonprunebm the definition of the algorithm, it follows thaj > s,.
signals. This estimate may be a discontinuous function with réhen by combining these inequalities with the above expression
spect to transistor and gate sizes since they can cause an atwtiffie slack estimation, we can obta$id..; > Tr1 — ((s —
change in the set of nonpruned signals. Therefore, the slask$/2) -7, +(s—s,)/2 = Tr1—1). Itis obviousthai), > D,
computed by MPA for noncritical nodes can be a discontinuobgcause; > s,. ThereforeZ’r; = Trsink — D1 £ TR Sink —
function too. It is clear that the only way to compute the exad?, = T’r,. Combining this inequality with the inequality of
required times for all nodes involves computing exact delayise slack estimation, we obtalil.;; > 1Tr, — 1, = Sl,. This
of each signal from each internal node to the sink node whicfieans that the estimated slack at a node is greater than or equal
requires the propagation of all the signals. This would lead to the slack of the critical path. O
an exponential complexity of the slack computation algorithm.
Barring this possibility, the proposed MPA approach satisfies
the best attainable characteristics of slack computation while
maintaining a good run time performance. The proposed algorithms were implemented in an industrial
transistor-level static timing analysis and optimization tool.
Both the MPA algorithm presented in Fig. 6 and the rMPA
algorithm which reduces the number of propagated arrival sig-
nals for digital circuits were implemented. The algorithms were
In the reduced multiple propagation algorithm, additional sigested on a number of industrial designs ranging in size from
nals are pruned during the forward propagation based on &0 to 12500 transistors. These included circuit blocks from
transition shift property, Property 2. The backward-propagatidngh-performance microprocessors and DSP chips. In Table I,
algorithm for rMPA is therefore the same as that for MPA, exwe show the circuit delay calculated using the traditional LPA
cept that the required time for these additional pruned signafethod, the conservative SPA method, and the proposed MPA
needs to be computed. Computation of these required timesrigthod from this paper. The table demonstrates that the LPA
shown in steps 2.4, 2.4.1, and 2.4.2 in Fig. 12. Pruning of themethod underestimates the circuit delay by as much as 39% for
additional signals does not require the presence of a propagatesldecoder circuit and by 21% on average. On the other hand,
signal with a slower slope but only the presence of a propagatbé SPA method overestimates the circuit delay by as much
signal that has a sufficiently greater arrival time. Therefore,as 17% for the decoder circuit and by 8% on average over all
signal with a slower slope may not be found for these additiont@ist cases. In all cases, the circuit delay computed with the
pruned signals in step 2.3.1. In step 2.4.1, we therefore selbtiRA approach lies between the results from the LPA and SPA
the signal with the least faster slope than the slope of the prursggbroach, as expected.
signal and utilize its required time for the pruned signal. Note Table | shows the difference between the circuit delays com-
that in step 2.4.2, the required time of the pruned signal is coputed by the three algorithms using identical delay and slope
puted by subtracting from the required time of the signal withunctions. However, these underlying delay and slope functions
the least faster slope the boutid. — s.:)/2. This ensures that have their own inherentinaccuracies due to the limitations of the
the computed required time and signal slack of the pruned signalderlying transistor-level delay models. Hence, the computed
are conservative. The delay boufd;, — s;;)/2 is guaranteed circuit delay by all three methods, including the proposed MPA
to overestimate the added delay of the downstream gates dumthod, will in practice differ from SPICE-base simulation as
the slower slope of the pruned signal. Therefore, the requiregll as from silicon measurements. To improve the estimate of
time and slack of the pruned signal will be conservative. the computed circuit delay, it is therefore common for designers
We now show that the computed slack in rMPA is never worde run SPICE simulations on the critical paths identified by the
than the slack of the critical signal. timing-analysis algorithm. We preformed such an analysis and
Theorem 10:rMPA computes a required time for a signakhow the results in Table Il. In column 3 through 5 we show the
such that the signal slack is never less than the slack of the cdiélay estimate obtained through SPICE simulation of the critical
ical signal. path identified by the different timing analysis algorithms and
Proof: We need to prove this only for the additional stepeeport the difference between this SPICE delay and the delay
24,241, 2.4.2 in Fig. 12. Assume a sigalwith slopes, computed by timing analysis algorithms using more approxi-
delayD from the node of interest to the sink node, and requiredate transistor-level delay models @fror). The error in the
timeTr. Assume also that signélis pruned during the forward transistor-level delay models can results in either an under or
propagation according to digital gate Property 2. Egtoe the overestimate of the compute circuit delay, as compared with the

VI. RESULTS

D. Required Time Propagation for Reduced Multiple
Propagation Algorithm
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1.Update the required time of all the signals at sink node with the sink node required time T4

2.For each node #i n the timing graph in reverse topological order:

{

2 .1. Denote Ng,..=(7; 1, 1; 5.... h;nit a set of the fanout nodes of node »;.
2.2. Consider each signal S;;=(T ;1.5 Pir Triz) at node n,d oing the following:

{

2 .2.1. For each fanout node n; that has the signal S;;=(T 435 Pt Tri)
such that path P;; completely includes path Py
compute value T;;=Tr;dyi(sy)
where dj(s;y) is the delay function of edge e;; between nodes »; and #;.
2.2.2. If the set of computed values T;; is not empty
update the required time of signal S;=(T ;1. 5;. Pyt Trip) With value Ty =min(T;;)

}

2.3. For each signal S;3=(Ty;5,5:3 Pit, Triz) at node a,t hat has undefined required time:

{

2 .3.1. Among all the signals at node »; with values of required time computed at steps 2.2, 2.2.1,
find signal Sj=(T ;5,3 P;;, Tg;) with the least slope s;7such as s;;> s
2.3.2. Update the required time of signal S;;=(Ty;pSi6 Pit- TRit)
with the required time of the found signal Tg;

}

2.4. For each signal S;3=(T4;1,8;% Py Trix) at node n;t hat has undefined of required time:

{

2.4.1. Among all the signals at node »; with values of required time computed at steps 2.2, 2.2.1,
find signal S;;=(T ;55 Py, Tg;y with the longest s; such as s;;< sy, 7
2.4.2. Update the required time of signal S;=(T4;5,5:5 Pir Triz) With the value Tgy- (sj-5:)/2
}
2.5. Assign to the node #; the required time equal to the minimum of the required times of all the sig-

nals.

}

Fig. 12. rMPA required time propagation algorithm.

TABLE |
EFFECT OFSLOPE PROPAGATION ON CIRCUIT DELAY
Total Circuit Delay in nS
Circuit # transistors - -
LPA SPA MPA % Diff with LPA |% Diff with SPA

mux 784 0.88 1.27 1.16 24% 9%
adder 1,074 0.55 0.93 0.83 34% 12%
decoder 1,490 2.11 4.05 347 39% 17%
contr3 3,190 2.63 3.61 3.22 18% 12%
reg 4,902 3.83 477 4.66 17% 2%
contr2 11,112 - 8.49 9.48 9.26 8% 2%
contrl 12,519 2.07 2.29 2.26 8% 1%

SPICE based simulation. In columns 6 and 7, the difference liberefore able to better identify the critical path than the LPA
tween the SPICE delay of critical paths for LPA and SPA am@nd SPA algorithms.

compared with that of MPA. In all cases, MPA identifies a crit- Note that even though the circuit delay computed by SPA in
ical path that has a SPICE delay that is greater or equal to ffable | is consistently greater than that computed by MPA, the
SPICE delay of the critical paths identified by LPA and SPASPICE delay of the critical path identified by SPA is consis-
Despite the inaccuracies in the underlying delay model, MPAtisntly less than or equal to that of MPA. This is due to the fact
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TABLE I

SPICE DELAY OF CRITICAL PATHS IDENTIFIED BY LPA, SPA,AND MPA ALGORITHMS

1193

Delay of critical paths simulated with SPICE (nS)
Circuit # transistors
(%L:r?or) (%S:r?or) (%Ngf;r) % Diff with LPA |% Diff with SPA
mux 784 1.03 (-14.6%) 1.03 23.3%) 1.35 (-14.1%) 23.7% 23.7%
adder 1,074 0.604 (-8.9%) | 0.612 (52.0%) | 0.649 (27.9%) 6.9% 5.7%
decoder 1,490 2.27 (-7.0%) 3.29 (23.1%) 3.41 (1.8%) 33.4% 3.5%
contr3 3,190 2.40 (9.6%) 2.71 (33.2%) 2.77 (16.2%) 13.4% 2.2%
reg 4,902 447 (-143%) | 5.36(-11.0%) | 6.16 (-24.4%) 27.4% 13.0%
contr2 11,112 8.67 (-2.3%) 8.67 (9.3%) 9.56 (-3.1%) 9.3% 9.3%
contrl 12,519 2.50 (-17.2%) 2.50 (-8.4%) 2.50 (-9.6%) 0% 0%
TABLE Il
PERFORMANCE COMPARISON
o #signals propagated(% increase over LPA) Run time in Seconds (% increase over LPA)
clreuit LPA MPA rMPA LPA MPA MPA
mux 1614 1836 (13.8) 1744 (8.1) 1.7 1.9 (11.8) 1.8 (5.9)
adder 1524 1597 (4.8) 1541 (1.1) 4.9 5.1@4.1) 5.0 (2.0)
decoder 2636 2732 (3.6) 2638 (0.1) 3.25 3.373.7) 329(1.2)
contr3 4863 5476 (12.6) 5276 (8.5) 83 8.6 (3.6) 8.4(1.2)
reg 32130 35150 (9.4) 32584 (1.4) 15.1 16.85 (12.3) 159 (5.3)
contr2 92792 98288 (5.9) 93511 (0.8) 35.6 41.93(17.8) 39.14 (9.9)
contrl 58215 59820 (2.8) 58595 (0.7) 32.46 34.44 (6.1) 33,72 (3.9)

that while SPA has the property of making conservative approx-
imations of the propagated signal shapes, these approximation
will result in incorrect identification of the critical path, which
therefore has a lesser SPICE delay than the true critical path
Accordingly, the discrepancy between circuit delay in Table |
and the SPICE delay in Table Il can be very large for SPA.

In Table 1ll, the run time and the number of propagated sig-
nals for the traditional LPA method, the proposed MPA method,
and the proposed rMPA methods are shown. The run time of
SPA is not shown, since it is the same as that of LPA. The MPA
method has a run time penalty of 8.5% on average over the tra-
ditional LPA method. On the other hand, the rMPA method di-
minishes the run time penalty to only 4% on average over the
LPA method. In all cases, the rMPA method produced identical
results with the MPA method, as expected.

Finally, the proposed methods were also used in transistor-
sized optimization. In Fig. 13, we show the area/delay tradeoff
produced during the optimization of circuituxfor both LPA ; . - ; ;
and MPA. In the upper left corner of the tradeoff curve, gener- . sm;‘;’(nsl -
ated by LPA toward the end of the optimization, saw teeth in
the tradeoff curve are evident. These are the results of two paths
that join at an internal node and have nearly equal arrival timg§- 13- Circuit optimization with LPA and proposed MPA methods.
at this node, while one path has a significantly slower slope at
this node than the other path. As the optimization improves the
arrival time at this node for each path in turn, the LPA algorithm
switches back and forth between the two paths, creating abruptn this paper, we have shown that the traditional timing
changes in the computed circuit delay. The tradeoff curve pradalysis approach, referred to as the latest propagation ap-
duced by the proposed MPA method is smooth and free of systoach, can significantly underestimate the delay of a circuit
discontinuities, as shown in Fig. 13. due to its method of propagating arrival signals and slopes.

1000~

Total Transistor Area

600~

400 -

VIlI. CONCLUSION
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We also showed that this can lead to discontinuities in the[9] H. Yalcinand J. P. Hayes, “Event propagation conditions in circuit delay

circuit delay as a function of its transistor and gate sizes
which creates difficulties for circuit optimization tools. We
then discussed an alternate propagation approach, referred to
as the SPA, which combines the latest arrival time with thelll

slowest slope of all signals at a node. We show that while this

approach eliminates the discontinuity of timing graph delayj12]

it significantly overestimates the delay of the circuit. In this

paper, we presented a new algorithm that, given delay ang3]

slope functions for all gates in a circuit, computes the correct

critical path in the timing graph and the correct delay of thell4]
timing graph. We also showed that this algorithm propagates
the minimum number of possible arrival signals for a generajis)

timing graph. Then, based on a newly introduced property of

digital gates, we showed that the number of propagated arrivé%el
signals can be reduced for digital circuits, without incurring[17

an error. Finally, we discussed the computation of required

times and slacks and presented associated algorithms for t &

proposed methods. We show that the traditional algorithms
can compute an incorrect slack for the critical path, while the

proposed algorithms will compute a slack for the critical path[19
that is both correct and continuous with the transistor and gateo]

sizes in the circuit. We also show that the traditional latest

propagation algorithm computes an error for the noncritica[21
nodes that can be both positive or negative, while the proposed

algorithms will always incur a conservative (negative) error.
The proposed algorithms were implemented in an industri

timing analysis and optimization tool and were tested on a
number of industrial circuits. The results show that the tra-

ditional method can underestimate the delay of a circuit b)I23]
as much as 39%, while the slowest propagation approach can
overestimate the circuit delay by as much as 17%. We als4]
show that the proposed algorithms increase the run time of

timing analysis only marginally by 4% on average.
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