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Abstract—Static timing analysis has traditionally used the
PERT method for identifying the critical path of a circuit. The
authors show in this paper that due to the influence of the transi-
tion time of a signal on the subsequent path delay, the traditional
timing analysis approach can report an optimistic circuit delay
and may identify the wrong critical path. Also, the calculated
circuit delay is a discontinuous function with respect to transistor
and gate sizes, posing a severe problem for circuit optimization
methods. The authors also examine an alternate approach where
the propagated signal is constructed by combining the latest
arrival time and the slowest transition time from all signals
incident on a node. While this approach remedies the problem of
discontinuity, it can significantly overestimate the circuit delay
and can also identify the wrong critical path. In this paper, they
therefore propose a new timing analysis algorithm and prove that
it computes the correct and continuous timing graph delay and
the proper critical path. The proposed algorithm selectively prop-
agates multiple signals through each timing edge in cases where
there exists ambiguity regarding which arriving signal represents
the critical path. They show that the algorithm propagates the
sufficient and necessary set of signals for computing the delay of a
general timing graph. The authors also introduce a new property
of digital gates, referred to as thetransition shift property, and,
using this property, show that the number of propagated signals
can be significantly reduced for timing graphs of digital circuits.
Finally, they discuss the computation of required times and node
slacks for the traditional approaches and propose corresponding
algorithms for the new approaches. They show that while the tra-
ditional approach can incur both a positive or negative error in the
computed slack, the proposed algorithms compute a conservative
slack for off-critical nodes and the correct and continuous slack
for the critical path. The proposed algorithms were implemented
in an industrial static timing analysis and optimization tool, and
the authors present results for a number of industrial circuits.
Their results show that the traditional timing analysis method
underestimates the circuit delay by as much as 39%, while the
discussed alternate approach can overestimate circuit delay by as
much as 17%. The proposed method computes the correct delay,
while incurring only a small run time overhead in all cases.

Index Terms—Delay computation, performance verification,
static timing analysis.

I. INTRODUCTION

T WO APPROACHES are commonly used to verify the
timing of a digital circuit: dynamic simulation and static

timing analysis. A disadvantage of dynamic simulation is that
it requires the user to generate a set of input vectors which
exhaustively exercise all possible paths in a circuit. For large
designs, static timing analysis has become the predominant
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method for timing verification. Static timing analysis also has
become the core engine used inside circuit optimization tools
such as transistor and gate sizing tools [2], [6], [25] and logic
synthesis tools [27]. In static timing analysis, so-calledarrival
signals, which represent the latest time a signal can transition at
a node due to a signal change at a circuit input, are propagated
forward through a circuit from inputs to outputs. Similarly,
so-calledrequired signals, which represent the latest time a
signal can transition at a node in order to meet the performance
constraints, are propagated from circuit outputs to inputs. An
arrival signal consists of both thearrival time, when the signal
reaches a predetermined voltage point, such as the 1/2 of,
and the transition time of the signal, measured for instance
from the 10% to the 90% supply voltage crossing times. As
signals are propagated across a gate, their arrival times and
transition times are updated.

Gatedelay isacomplex functionof the arrival timesand slopes
of signals at the gate inputs, and over the last decade, extensive
research has focused on how to efficiently and accurately
calculate propagation delays and slopes for gates in a circuit,
addressing issues such as the state dependence of gate delays
[10], the impact of slopes on the gate delay [1], [11]–[15]
and, more recently, the impact of cross-coupled noise on delay
[28]–[34]. Extensive research was also focused on methods
to eliminate false paths, which are unrealizable due to logic
and timing correlations in a circuit [7], [8], [16]–[20], [24].
However, the essential principle of static timing analysis has
remained largely unchanged since it was proposed in 1982 by
[4], [5] and is still based on two fundamental assumptions.

1) When calculating the delay of a gate, only one input of the
gate is assumed to be switching at a time, ignoring the effects of
(near-) simultaneous switching of the gate input signals. This
so-calledsingle-input-switchingassumption greatly simplifies
the analysis and enhances its computational efficiency. How-
ever, when the single-input-switching assumption is violated
in the actual circuit, delay estimates become inaccurate and
may underestimate the actual gate delay, therefore yielding
an optimistic timing analysis report. In [9] and [21]–[23], this
problem was discussed and solutions proposed at the expense
of additional run time.

2) Given the single switching assumption, the signal arriving
with the latest arrival time at a particular node is assumed to
result in the longest path delay and is, therefore, propagated
forward, while all other signals with earlier arrival times are
pruned. This second assumption is the main topic of this paper,
and the traditional algorithm of propagating only the latest ar-
riving signal is referred to as thelatest propagation algorithm
(LPA).

While the single-switching assumption and the latest prop-
agation algorithm enable efficient timing analysis algorithms,
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Fig. 1. Error in calculated circuit delay with LPA method. (a) Circuit with two
signal propagation paths:A;D;E andB;D;E. (b) Waveforms of two signals
at nodeD. SignalS originating from nodeA and signalS originating from
nodeB. (c) SignalsS andS after they propagate through gateG .

they often result in the underestimation of the circuit delay
and the identification of the wrong critical path. What is less
obvious is that these assumption also lead to undesirable dis-
continuities of the circuit delay as a function of the underlying
gate delays, thereby significantly complicating the task of cir-
cuit optimization algorithms. In this paper, we propose a new
signal propagation algorithm that preserves the simplicity of
the single-input-switching assumption while at the same time
improving the accuracy of the analysis and eliminating the
discontinuities present in traditional timing analysis algorithms.

The basic problem with LPA is that, out of all signals arriving
at a node, it selects one signal for forward propagation based
only on the arrival time of the arriving signals and without re-
gard for their transition times. The transition time of a signal at
a node, however, has a direct impact on the delay of subsequent
gates in its path and therefore affects the overall path delay of

Fig. 2. Discontinuity in delay calculated by LPA method.

the signal. Given two signals, the signal with an earlier arrival
time might well have a larger overall path delay if it has a signif-
icantly larger signal transition time than that of the signal with
the later arrival time. However, LPA will propagate the signal
with the later arrival time, and the signal with the longest path
delay will remain undetected, resulting in an underestimation
of the worst circuit delay. To illustrate this problem, we have
shown in Fig. 1(a) a simple two-input circuit with two possible
signal paths, one originating from input(signal ) and one
originating from input (signal ). Either of the two signals
is applied, such that there is only one input switching at any one
point in time. Delay computations when simultaneous inputs
are switching have been studied elsewhere [21]–[23]. Fig. 1(b)
shows the waveforms for signals and at node where
signal originates from node and signal originates from
node . Fig. 1(c) shows the waveforms of the same two sig-
nals at node . Since the arrival time of signal (0.7 ns) is
later than that of signal (0.64 ns), LPA propagates signal

through gate resulting in a total path delay of 0.82 ns
as shown in Fig. 1(c). However, the transition time of arrival
signal (1.36 ns) is larger than that of signal (0.1 ns) and
would result in a significantly larger delay of gate if signal

were propagated instead of signal . The total path delay
of signal would therefore be 0.95 ns, as shown in Fig. 1(c).
For this circuit, traditional timing analysis using LPA reports
a worst circuit delay of 0.82 ns, while the actual worst circuit
delay is 0.95 ns. Although LPA correctly calculated the path
delay of signal , it did not detect that signal resulted in
a longer path delay than signal and therefore identified the
wrong critical path and underestimated the total circuit delay.
This error is independent of the delay model, provided the model
accounts for the influence of signal transition time on gate delay.

Besides underestimating the total circuit delay, LPA poses
problems to circuit optimization algorithms since it results in
discontinuities in the calculated worst circuit delay with respect
to transistor and gate sizes. This is illustrated in Fig. 2 where
the worst circuit delay computed by LPA is shown as a func-
tion of the size of gate . A sudden change in the calculated
circuit delay occurs when the size of is increased such that
the arrival time of signal at node becomes earlier than
that of signal . At this point, the signal propagated by LPA
switches from signal to signal and the slope used to cal-
culate the delay of gate changes abruptly. This results in a
sudden increase in the delay of and hence in the worst circuit
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delay. Of course, the actual delay of the circuit is a continuous
and smooth function of gate sizes and the observed disconti-
nuity is purely an artifact of LPA. Such discontinuities pose a se-
vere problem for efficient gradient-based optimization methods,
which rely on the continuity and smoothness of their objective
function [3], [25], [26]. Discontinuities tend to trap such opti-
mization methods far from an optimal circuit solution.

Increasingly, designers are using automated sizing and logic
synthesis tools which result in optimized circuits with highly
balanced path delays. In such balanced circuits, the signals
converging at a particular node are likely to have arrival
times that are very close to one another. However, they may
have dramatically different slopes, and LPA is therefore more
likely to select the wrong signal for propagation and report
an optimistic worst circuit delay. One approach to address
this problem is to propagate the latest arriving signal, but
modify its transition time to be the maximum transition time
of all signals arriving at a node. We will refer to this method
as theslowest propagation algorithm (SPA). This approach
guarantees the continuity of the objective function and has
therefore been used in certain optimization approaches [2].
However, this approach can significantly overestimate circuit
delay. In the example in Fig. 1, the propagated arrival signal
would have a arrival time of 0.7 ns and a transition time of
1.36 ns, resulting in an overestimation of circuit delay and
a suboptimal optimization result. Hence, there is a critical
need to address the issue of slope propagation in static timing
analysis.

In this paper, we propose a new signal propagation method
which, given the delay and slope functions for the gates in the
circuit, computes the worst timing graph delay correctly. The
algorithm uses the propagation of multiple signals in cases
where there is ambiguity regarding which signal results in the
longest path delay. We refer to the proposed approach as the
multiple propagation algorithm(MPA) and prove that, given the
delay and slope function for all gates in the circuit, it identifies
the correct delay of the timing graph and that this calculated
delay is continuous with respect to gate/transistor sizes. We
show that MPA propagates the necessary and sufficient set of
signals for correct calculation of the timing graph delay if no
further information about downstream gates is known. Since the
proposed MPA approach increases the number of propagated
signals, it increases the run time of the analysis. However, for
digital circuits, we construct an upper bound for the added
delay due to differences in the transition time of signals, based
on a newly introducedtransition shift propertyof digital gates.
Using this proposed property, we can significantly reduce the
number of propagated signals for digital circuits. We also
discuss in some detail the calculation of required times and
node slacks for the traditional LPA and SPA approaches and
present the required time and slack computation for MPA. For
MPA, the slack computed for the critical path is shown to be
correct and continuous, while for the off-critical path nodes,
the computed slack is conservative. This is in contrast to LPA
which can compute incorrect and discontinuous slack for the
critical path and can have either a positive or negative error
for the off-critical path nodes. We implemented the proposed
MPA approach and show through experimental results that the
increase in the run time over LPA is minor in practice. Our

experiments also show that LPA can underestimate the worst
path delay by as much as 39%, whereas SPA can overestimate
the worst circuit delay by as much as 17%. We also demonstrate
the occurrence of discontinuities in the worst circuit delay when
sizing using LPA and demonstrate how these discontinuities
are removed with the proposed algorithm.

The remainder of this paper is organized as follows. In Sec-
tion II we present a formal formulation of the timing analysis
problem. In Section III, we discuss the traditional approaches
using LPA and SPA. In Section IV we propose our new MPA, in-
cluding the signal reduction technique using the proposed tran-
sition shift property for digital gates. In Section V, we discuss the
propagation of required times for the two traditional approaches
and the proposed MPA approach. In Section VI, we present our
results and in Section VII our conclusion.

II. PROBLEM FORMULATION

In this section, we present a formal definition of a timing
graph and its properties. For the purpose of discussion, we do
not include the elimination of false paths due to logic or timing
correlations in a circuit in our formulation. The problem ad-
dressed in this paper is orthogonal to the problem of false path
elimination and our proposed solution can be applied in con-
junction with these methods.

Definition 1: A timing graph is defined as a directed
graph having exactly one source and one sink node:

, where is
a set of nodes, is a set of edges,
is a source node, and is a sink node. Each edge
is simply an ordered pair of nodes.

The nodes in the timing graph correspond to nets in the cir-
cuit, and the edges in the graph correspond to the connections
from gate inputs to gate outputs. Although circuits in general
have multiple inputs and outputs, we can trivially transform
them to graphs with a single source and sink by adding a virtual
source and virtual sink. We assume without loss of generality
that signal arrival times are measured at 50% of the signal level.
Also, for convenience of notation, we will refer to a signal tran-
sition time as a signalslopedenoted by and refer to a slower
(faster) slope as a longer (shorter) transition time.

Each edge is assigned two functions: a delay function
, which represents the signal propagation delay from a

gate’s input to its output, and a transition time or slope function
, which represents the transition time of the signal

at the gate output. Both are functions of the gate input slope and
have the following property which reflects the fact that for a
logic gate, a faster input slope produces a lesser gate delay and
faster output slope.

Property 1: If slope then delay and
output slope .

Note that the validity of Property 1 will depend on the selected
voltage at which the arrival times are measured. If arrival times
are measured at 1/2 , it is possible that for slow input slopes,
the delay of a gate is negative and . However, it
is always possible to select a set of voltage levels for rising and
falling transitions, such that Property 1 is valid, for instance
for rising transitions and for falling transitions.
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Fig. 3. Traditional latest propagation algorithm.

Below we give a definition of a path in the timing graph
and of its path delay.

Definition 2: A path of timing graph
is a sequence of its nodes
such that each pair of adjacent nodes

and has an edge .
A path defines a sequence of edges

. Given the slope at the first node of
path , we can determine the signal slopes for all the nodes on
the path using the equation recursively, where
is the to-be-determined slope at node, is the slope at the
predecessor node , and is a slope function of the edge .
After the signal slope at each node of a path is determined, the
delay of the path is determined using the following definition.

Definition 3: The path delay of path is defined as
, where is a delay of an edge on path

with input slope , and the summation is over all edges be-
longing to path .

Among all paths terminating at a node, we define the path
with the maximum arrival time asthe critical pathup to that
node. The critical path of the sink node of a timing graph is
referred to asthecritical path of the timing graph, and its path
delay, , is referred to as the delay of the timing graph. For
convenience, we will at times refer to the delay of a timing graph
as thecircuit delay. The main objective of timing analysis is to
find the correct critical path and to compute its delay. We will
now show that the actual delay of a timing graph is a continuous
function with respect to transistor and gate sizes. This property
is important for circuit optimization methods, since many of
such methods rely on their objective function being continuous.

Theorem 1: If the edge delay and slope functions are con-
tinuous with respect to some parameters, then the timing graph
delay is also continuous with respect to these parameters.

Proof: The delay of each path in a graph is a finite sum of
finite compositions of delay and slope functions of individual
edges. Hence, the path delay is a continuous function with
respect to the parameters of the slope and delay functions.
The total graph delay is the maximum of all path delays in
the timing graph and is therefore also continuous, since the
maximum operation is a continuous function.

From Property 1 of edge delay and slope functions, it is clear
that the path delay for slower signals is always more than for
faster ones along the same path, as stated in the following.

Lemma 1: Given two signals and at node with slopes
and , respectively, and such that , then for any

signal path the path delay of signal
is always less then the path delay of signal .

III. T RADITIONAL PROPAGATIONTECHNIQUES

The most obvious technique for finding the critical path of a
timing graph is to simply enumerate all paths from its source to
sink, compute their delays, and select the path with the worst
delay. However, since the worst case number of paths in a cir-
cuit is exponential with circuit size, this approach is infeasible
for modern circuits. Below in Sections III-A and B we discuss
two common approaches for finding the critical path in a circuit
based on the PERT approach. Both approaches uses the propa-
gation of signals from the source node to the sink node, which
we define more formally as follows.

Definition 4: A signal at a node is a triplet
where is its arrival time at the node ,

is its slope at the node, and is the
signal propagation path from the source nodeto the node
of interest .

A. Latest Propagation Approach

The traditional timing analysis algorithm iterates through
each node in a timing graph in topological order, selecting
the signal with the latest arrival time from among all incident
signals for forward propagation. As a signal is propagated
forward, its arrival time is increased by gate delay
and its slope is replaced with , where is the slope of
the selected signal. We refer to this algorithm as the LPA to
reflect its selection criteria. Note that in LPA, only one signal is
propagated across each edge, and each node in the timing graph
is visited exactly once. Although in our notation a signal at a
particular node records its entire path to that node, in practice a
signal only needs to record its predecessor node. So, traditional
timing analysis has a run time complexity that is linear with the
number of edges in the timing graph. The latest propagation
algorithm is presented below in Fig. 3.

In Section I, we already presented a small example circuit for
which LPA identifies wrong critical path. We show in Theorem
2 below that the presence of a signal with a slower slope and
an earlier arrival time than the latest arriving signal at a node
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Fig. 4. Construction of a timing graph with a critical path different from the one identified by LPA.

can cause LPA to fail. We prove that the existence of such a
signal is a necessary and sufficient condition for the existence
of a graph with this signal on which LPA fails. From this we
show, in Theorem 3, that the circuit delay calculated by LPA
can be discontinuous with respect to the gate sizes.

Theorem 2: If, for some node of timing graph , LPA
selects the signal and the
slope is faster than the slope of another signal

propagated to , then we can construct a new
graph , containing all nodes and edges inthat have already
been visited by LPA, such that is critical but is not.

Proof: The construction is demonstrated in Fig. 4. We first
construct such that it contains only the nodes fromthat
have been visited by LPA. To complete, we then add a sink
node and an edge for each node of
that does not have an outgoing edge (including node). To all
edges we assign delay functions , except for

. We now calculate the maximum path delay of
the set of all paths that do not pass through nodeand denote
it as . For edge we assign a delay function

such that and
, where . Note that this delay function

does not violate Property 1. From this construction it is clear
that signal will arrive at the sink node of timing graph
later than signal .

We now show that the delay calculated by LPA can be a dis-
continuous function of the gate and transistor sizes.

Theorem 3: It is possible to construct a timing graphwith
edge delay functions depending continuously on a certain
edge parameter , but such that the timing graph delay )
computed by LPA is discontinuous with respect to.

Proof: We use the timing graph constructed in the proof
of Theorem 2. Assuming that the edge delay functionof sub-
path depends strongly and monotonically on parameter

, we set such that the path delays of subpath
and are equal. Then, a small variation ofaround will
result in a variation of the graph delay by.

It is clear that LPA always propagates real signals that occur
in the actual circuit. Therefore, it never overestimates the arrival
times at a circuit node and hence will never overestimate the
circuit delay. However, it can underestimate arrival times and the
circuit delay as is shown in Theorem 2. For LPA to compute the
correct latest arrival times for each circuit node, it is sufficient if
at each node, except the sink node, the latest signal that arrives
at that node has the slowest slope.

B. Slowest Propagation Approach

The SPA is a variation of LPA where, instead of propagating
the signal with the latest arrival time, a new signal is created
by combining the latest arrival time and the slowest slope of
all the signals arriving at a node. The algorithm is presented in
Fig. 5. Contrary to LPA, the slowest propagation algorithm is
conservative, meaning it always computes a delay that is greater
than the actual delay in the circuit, and the computed delay is a
continuous function of transistor and gate sizes in the circuit.
We show that SPA is conservative and continuous in Theorems
4 and 5 below. We then show in Lemma 2 that SPA correctly
computes the slowest signal slope at a node.

Theorem 4: If for some node of a timing graph SPA as-
signs signal ( , , ) for propagation, then its
arrival time and slope are not less than the ar-
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Fig. 5. Slowest signal propagation algorithm.

rival time and slope of any signal that may arrive at
this node .

Proof: This property can be proved by induction over
timing graph nodes ordered topologically. For the source node it
is obvious. Assume that it is true for all nodeswhere .
Denote
the signal assigned to node . Consider an arbitrary
edge from node to node and any signal

that may arrive at node . Denote
the signal assigned

to node . By the induction assumption
and . From Property 1, we have inequalities

and
for delay and slope functions of the edge . Combining
these we obtain .
From the SPA description it follows that

. However,
and are the arrival time and slope of the

arbitrary signal coming to node through arbitrary edge
which proves the theorem.

Theorem 5: If the edge delay and slope functions are con-
tinuous with respect to some parameters, then the arrival times,
delays, and slopes computed by SPA are also continuous with
respect to these parameters.

Proof: We can prove it by induction over timing graph
nodes ordered topologically in the same way as SPA. For the
source node it is obvious. Assume that it is correct for any node
with a number less than, then the arrival time and slope of the
signal at node is computed as , and

are continuous functions too.
Lemma 2: If SPA assigns to nodea signal with slope, then

the signal with the slowest slope that can arrive at this node has
exactly this slope .

For SPA to compute the correct arrival times at each node, it
is a sufficient condition that at each timing graph node, except
the sink node, the latest signal among all the signals that arrives
at has the slowest slope. It is interesting to see that this is
the same condition necessary for the correctness of LPA, which
results from the fact that a timing graph satisfying this condition
has no ambiguities in its signal propagation.

From Theorem 4 and Lemma 2 it follows that SPA will
make a conservative error at each node where the slope of
the latest signal is not the slowest. This error propagates and
accumulates along the critical path in the circuit, resulting in

an overestimation of the circuit delay. Also, it may result in the
identification of the wrong critical path. On the other hand, SPA
has the desirable characteristic that the delay is a continuous
function of the transistor and gate sizes. This allows circuit
optimization problems to be solved with the use of general
purpose optimization programs [2]. However, SPA will often
compute incorrect dependencies of gate delays on transistor
width and therefore can lead to suboptimal solutions. Also,
the created signals in SPA do not correspond to real signals in
the circuit and can make understanding of the circuit behavior
difficult for designers. This, therefore, raises the importance
for a timing analysis algorithm that, given delay and slope
functions for all gates in the circuit, computes the correct
timing graph delay.

IV. PROPOSEDPROPAGATION ALGORITHM

In order to perform timing analysis that correctly identifies
the critical path and delay of a timing graph, we propose a new
propagation algorithm. The algorithm propagates multiple sig-
nals forward in cases where there is ambiguity regarding which
signal results in the longest path delay and is referred to as the
MPA. If two arrival signals are incident on a node, such that one
of the signals has both an earlier arrival time and a faster slope,
the earlier signal is pruned from the analysis. We prove that
this algorithm finds the correct critical path and timing graph
delay for any timing graph. Also, we show that the algorithm
propagates the minimal set of necessary arrival signals. It is not
possible to propagate fewer signals without incurring an incor-
rect critical path and worst timing graph delay for some gen-
eral timing graph. However, by introducing a new property of
signal propagation through digital gates, we can bound the delay
added due to the slope difference between two signals. In Sec-
tion IV-B, we therefore show how this allows us to significantly
reduce the number of propagated signals for this pertinent class
of timing graphs.

A. Multiple Propagation Algorithm

Instead of propagating a single signal across each edge, MPA
propagates sets of signals across the edges of a timing graph. At
each node, the union of the propagated signals is taken and is
then pruned. A signal is pruned from the set if there exists an-
other signal in the set that has both a not earlier arrival time and
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Fig. 6. Multiple propagation algorithm.

a not faster slope. The multiple propagation algorithm is shown
in Fig. 6. We now prove in Theorems 6 and 7 that the proposed
algorithm identifies the correct critical path and in Corollary 1
that the calculated graph delay is a continuous function with re-
spect to transistor and gate sizes.

Theorem 6: For any timing graph and for any of its nodes
, any signal that is pruned by MPA does

not have the latest arrival time at any nodefollowing node .
Proof: If, in the proposed algorithm, we prune signal

, then at this node there exists
another signal such that
and . Since both and propagate through the
same edges after node, and from the property of the slope
function, it follows that at any node after node the slope

of signal will be less than the slope of . From this
and the property of the edge delay function it follows that the
edge delays along the path of signal from node to node

will always be less than the edge delays along the same path
for signal . Since the arrival time is the summation of edge
delays from node to node , and since at node

, it follows that will always be earlier than .
Theorem 7: The multiple propagation algorithm correctly

calculates the critical path and delay of a timing graph.
Proof: From Theorem 6, it follows that the proposed algo-

rithm never prunes a signal that could be critical. Hence, all po-
tentially critical signals are propagated to the sink node, where
the critical path and graph delay are determined by identifying
the latest signal from the set of propagated potentially critical
signals.

Corollary 1: The timing graph delay computed by the pro-
posed algorithm is a continuous function of any parameters of
the edge delay or slope function if these functions are, in turn,
continuous functions of their chosen parameters.

Proof: It follows from the fact that the algorithm correctly
computes the timing graph delay and from Theorem 1 that the
calculated timing graph delay is a continuous function of the
parameters of the edge delay and slope functions.

The proposed algorithm propagates the minimum number of
necessary signals to compute the correct delay of a timing graph
without further knowledge of the subsequent gates in the path

of a signal. It is impossible to safely prune additional signals
from the propagated set of signals at a node without some fur-
ther knowledge of the gates that lie topologically after this node.
In the next section, we introduce a property of digital gates
which, if assumed for this portion of the timing graph, allows
the number of propagated signals to be reduced further.

B. Reduction in Propagated Signals

If MPA is used for the analysis of digital circuits, we can
utilize some fundamental properties of such circuits to signifi-
cantly reduce the number of propagated signals. Let us consider
two rising signals and that are applied to a digital gate
resulting in two falling output transitions and , as shown
in Fig. 7(a). We define the following property, which we refer
to as the transition shift property.

Property 2: For a digital gate connecting input nodewith
output node , if two input signal waveforms and are
related such that at any point along their transitionis earlier
than , then for all time points along the output waveforms

and , waveform will be earlier than .
If signal is later than at all points along its transi-

tion, it follows that at every point in time, the voltage of signal
waveform will be less than the voltage of waveform (as-
suming a rising input transition). Digital gates have the property
that at any instant in time, a lesser input voltage results in a lesser
instantaneous drive current that charges the output load of the
gate. Since the output voltage waveform of a gate is simply the
integral of this drive current divided by the load capacitance, it
is clear that a gate with a lesser driving current at all time points
will also have a less complete transition and therefore a later
waveform at all points. In other words, a digital gate can only
produce an output signal waveform that is earlier than signal

, if the input signal is earlier than signal on at least
one time instant along its transition. Note that Property 2 may
not hold for certain analog circuits. However, Property 2 holds
for all standard digital circuits for which static timing analysis
is performed, including very high performance and deep-submi-
cron designs as illustrated by the waveforms in Fig. 7(a) from a
typical gate of a 0.13-m 2-Ghz digital processor.
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Fig. 7. Bound on added path delay.

We now consider two signals and at a node with the
same arrival time but with different slopes, and , signal

having the slower slope, as shown in Fig. 7(b). We would
like to calculate a bound on the difference in arrival times of
these two signals at the sink node. To do this, we first replace
signal with a signal , such that signal has the same
slope as signal and completes its transition at the same point
in time as signal . Note that signal is later than signal
at all points along its transition. Based on Property 2, signal
will be later than signal at all points along its transition at the
next node , and by recursion, also at node. Therefore,
has a later arrival time at node than signal and therefore
the difference in arrival times of and at node is an
upper bound on the difference in the arrival times of and
at node . Since and have identical slopes, it is clear
that the bound is exactly the difference in the arrival times of

and at node , which is . We define and
prove this bound more formally below.

Theorem 8: Given two signals and that propagate
along a path and have at the start point slopesand such
that then, at any node along, the delay of signal

can be bounded by the inequality .
Proof: We use auxiliary signal having slope and

completing its transition at the same time as signal. Denote
the signal , , arrival times to the end of the path as,

, and, their delays as , , . Denote as the arrival
time of signals and at the start of the path. Obviously,

and . From the construction of signal
it follows , . From digital

gate property to preserve signal order it follows that .
Substituting for and subtracting from
the both sides of the inequality, we obtain the target inequality

.
Using the bound from Theorem 8, we propose areduced

multiple propagation algorithm(rMPA) where a signal

is pruned from the propagation if another later
signal exists such that

. In this case, signal is earlier than signal to such an
extent that the added delay of in the path from to will
not render it critical. Use of this condition in the MPA algorithm
limits the propagated signals to a small window of arrival times
preceding the latest arrival time and significantly reduces the
number of signals propagated through the timing graph. Given
the correct delay and slope functions, and given that the gates
comply with the transition shift property 2, this condition guar-
antees the correct calculation of the critical path and graph delay
for a circuit. The proof is omitted for brevity. Note that even if
transistion shift property does not hold, the obtained timing re-
sult will be at least as accurate as with LPA, since the signal with
the latest arrival time is always propagated. Also, the proposed
reduction in propagated signals is only intended for reducing the
run time. For circuits where the transition shift property cannot
be guaranteed, the original MPA algorithm can be used, at a
modest increase in run time.

We now examine the runtime complexity of the proposed
algorithms. In MPA and rMPA, a subset of all signals incident
on a node is selected for forward propagation. This operation
involves the sorting of all signals according to their arrival time
and is thus , where is the number of signals
incident on the node. The sum of all of signals propagated
across an edge is in the worst case equal to the number of
paths in a circuit. Therefore, the overall complexity of the
proposed algorithm is exponential in the worst case, since the
number of paths in a circuit is exponential with the size of the
graph. This, however, would require that the signal ordering
is identical in terms of decreasing arrival time and increasing
signal slope, thereby not allowing any pruning. In practice, this
is unlikely, and we find that for industrial circuits the number
of signals that are propagated in the proposed algorithm is
increased only slightly when compared with LPA or SPA.
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V. REQUIRED TIME PROPAGATION AND

TIMING SLACK COMPUTATION

Up to this point we have only concerned ourselves with the
correct identification of the critical path and the circuit delay.
However, for many circuit optimization applications, it is nec-
essary to compute the so-calledslackandrequired times of
nodes in the timing graph. For the sink node of the timing
graph, the required time is the latest time that a signal
can arrive such that the circuit will operate correctly. Required
times are defined for a signal at an internal node as the latest
time when the signal may arrive at that node in order to arrive at
the sink node no later than at the required time. Given the signal
required time at a node, the slack of the signal is defined as the
difference between the required time and the arrival time of the
signal . The slack of a node is the minimum slack
of all the signals at the node. The slack of a node is positive if all
signals that arrive at the node have an arrival time that is earlier
than their required times, otherwise it is negative.

Required times for internal nodes of a timing graph can be
uniquely and easily defined if the edge delays do not depend on
signal slopes. In this case, the algorithm is similar to computing
arrival times. We propagate the required times backward from
the sink node to the source node, decreasing the required times
by edge delays as they are propagated. At each node, we can then
compute the required time as the minimum of all the required
times incident on the node through its fanout edges. Given the
node required time, the node slack is simply computed as the
difference between the node required time and its latest arrival
time.

For realistic timing graphs, the algorithm becomes more com-
plicated since the edge delays and gate output slopes depend on
the input signal slopes as expressed, for instance, in Property
1. In this case, the edge delays will vary depending on which
signal is propagated through the edge. Therefore, the backward
propagation of required times is a function of the signal slopes
computed in the forward propagation and the backward and for-
ward propagation are interdependent. A required time at a node

is therefore only properly defined for a particular arrival signal
at node . The signal slack is defined as the difference between
the signal arrival time and its corresponding required time and
the node slack is the minimum slack of all signal slacks at the
node. The node slack represents the maximum amount of time
by which any signal at the node can be delayed such that it will
still arrive at the sink node before the sink required time .

The difficulty in computing signal slacks results from the
fact that arrival signals are pruned during forward propagation.
Therefore, during backward propagation, a required signal will
not exist for a pruned arrival signal. In this case, a new required
signal must be constructed based on the available required sig-
nals, introducing inevitable error in the computation of slacks.
In this section, we will present slack computation algorithms for
the presented propagation algorithms and discuss the accuracy
of each.

For future consideration, we first define the required time in
a formal and algorithm independent way as follows.

Definition 5: Given signal at node
, let be the latest time when the signal can

arrive at the sink node . Let be the required time at
the sink node. We define the required time for the signalat
node as .

For a signal that propagates from the source node to the sink
node of a timing graph, thesignal slackis the same at all the
nodes along the propagation path. Of course, this does not mean
that thenodeslack is the same for all nodes along the path, be-
cause the node slack is the minimum signal slack over all signals
that arrive at the node. However, all critical path nodes have the
same node slack, which is the least (most negative) node slack
value in the circuit. Note that the critical path slack is equal
to the sink required time minus the circuit delay. Also, it can
be shown that it is impossible to compute the correct slack for
every node in a general timing graph where edge delay and gate
output slopes are a function of the input slopes, without propa-
gating all arrival signals and their corresponding required times.
Since all practical timing analysis algorithms (including the pro-
posed MPA and rMPA approaches) prune signals at nodes in the
timing graph, they will incur errors in the computed slacks for
some nodes and signals in the timing graph.

In the following four sections, we will discuss the required
time computation in more detail for the traditional LPA and
SPA approaches as well for the proposed MPA and rMPA ap-
proaches. We will show that LPA and SPA can compute incor-
rect slacks for any node in a general timing graph, including
nodes along the critical path. LPA can compute slacks with ei-
ther a positive or negative error, while SPA will always com-
pute slacks with a negative error, meaning that it will report a
smaller, more negative slack than the actual slack. We will then
show that, given delay and slope functions for all gates, MPA
and rMPA compute slack for the critical path of a timing graph
correctly and that this slack is a continuous function of the gate
and transistor sizes in the circuit, which is an important prop-
erty for optimization algorithms. For nodes not on the critical
path, MPA and rMPA may compute slacks with a negative error,
meaning that the approach is conservative. Finally, we will show
that MPA and rMPA adhere to the important property that the
computed slack of a noncritical path node is never smaller than
the slack of the critical path. In other words, the error in the
computed slack is never so great that the slack of a node not on
the critical path is less than the slack of a node on the critical
path, which of course is an important criteria for effective anal-
ysis and optimization of a circuit.

A. Required Time Propagation for Latest Propagation
Algorithm

For LPA, the required time computation exploits the fact that
only a single signal is propagated across each edge and there-
fore each edge has a unique edge delay. Hence, the required time
computation for LPA is similar to the required time computation
for timing graphs with fixed edge delays and is shown in Fig. 8.
From the fact that LPA underestimates the circuit delay, it fol-
lows that LPA generates a worst slack larger than or equal to the
actual worst slack in the timing graph, i.e., it is optimistic.

We will now show that LPA can compute a slack for some
nodes with either a positive or negative error using the example
shown in Fig. 9. Let us assume that signals
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Fig. 8. Required time propagation algorithm for LPA.

Fig. 9. Example of LPA underestimating node timing slack.

and arrive at node from nodes and at
time and such that and . LPA at node

propagates to nodesignal . The delays of edge for
these signals are such that . The required
time propagation starting from nodeuses the results of the for-
ward propagation and therefore the required time for node

is computed using delay of the edge and is used
for computing the required time for nodeas

. Therefore, it underestimates the required
time of node because in reality the required time of node

is determined by propagation of signal as
, and . Conversely,

if we assume , the delay of edge is such that
and LPA will overestimate the required

time of node . Hence, we can conclude that LPA can make an
error in the required time and slack computation of any node
that is not on the critical path, with either a positive or negative
sign, while for nodes on the critical path, LPA will always have
a positive error.

B. Required Time Propagation for Slowest Propagation
Algorithm

In SPA, a single edge delay is again computed for each edge in
the timing graph, and the required time calculation is the same as
that shown in Fig. 8 for LPA. After SPA assigns delays to edges
during forward signal propagation, the required time propaga-
tion is uniquely determined by these delays. The SPA approach
differs from the LPA approach in that it uses the maximum pos-
sible slope at a node for computing the edge delays. Therefore,
LPA will compute edge delays that are greater than or equal to
the actual delays of an edge and it will compute a required time
and slack that are less than or equal to the required time and
slack of the actual signals, i.e., it is pessimistic.

C. Required Time Propagation for Multiple Propagation
Algorithm

In order to present the backward propagation algorithm for
MPA, we extend the definition of a signal by including a re-
quired time as follows. Signal at node is a quadruplet
( ), where and are the signal arrival time and
slope at node , is the path along which the signal propa-
gates from the source node to node, and is signal required
time at node . The forward propagation of MPA remains un-
changed and leaves the required time of the signals undefined.
During the forward propagation, sets of signals are assigned to
each node, and the edge delay corresponding to each signal that
passes through an edge is defined.

The backward propagation visits each node in reverse topo-
logical order and defines the required time for each signal. For
a signal at node , the corresponding signals at the fanout
nodes of that resulted from the propagation ofduring the
forward propagation are identified. The required time of a signal

is then propagated backward through the edge ( ) and
is decreased by the edge delay of edge ( ) corresponding
to signal . Among all backward-propagated required times,
the earliest required time is assigned to signalat node . If
signal at node was pruned during the forward propagation
of MPA, then no corresponding signal will be found at the fanout
nodes . Hence, a required time for such a pruned signalis
chosen from the required times of the nonpruned signals at node

. The required time of the nonpruned signal that has the least
slower slope than the slope of the pruned signalis used. This
operation is illustrated in Fig. 10. It is easy to see from the MPA
forward-propagation algorithm in Fig. 6 that such a signal will
always be available, since its existence is a required condition
for pruning signal . After the signal required time is computed
for all signals at node , their slacks can be computed and the
node slack for node is set to the minimum slack of all its sig-
nals. The algorithm for backward propagation of required times
under MPA is shown in more detail in Fig. 11.

Since the required time for the pruned signals is selected from
a propagated signal with a slower slope, the computed required
time is always less than the actual required time. In other words,
MPA will always report a pessimistic required time. However,
by selecting the signal with theleastslower slope, we minimize
the error in the computed slack as much as possible. For the
critical signal, propagated along the critical path, MPA always
computes the correct slack. Hence, the slack of all critical nodes
will be correct. From this, it also follows that the slack computed
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Fig. 10. Required time propagation for MPA.

Fig. 11. MPA required time propagation algorithm.

by MPA for the critical nodes is a continuous function of the
transistor and gate sizes.

We show below in Theorem 9 that the computed slack for
noncritical signals is never less than the slack of the critical
signal. This is an important and necessary property for the re-
quired time computation to be useful. If the slack of noncritical
nodes were computed to be less than that of the critical path
nodes, the optimization of the circuit would certainly fail.

Theorem 9: The slack computed by MPA for noncritical sig-
nals is never less than the slack of the critical signal.

Proof: We prove this by contradiction. The theorem is
true for the sink node. Assume that it is also true for all signals
at any node with index more thanand is wrong for node

. Clearly, this would be impossible since the required time
computed by steps 2.2, 2.2.1, and 2.2.2 in Fig. 11 decreases
the successor required time by the same delay as the arrival
time was increased during forward signal propagation. In the
forward-propagation steps 2.3, 2.3.2, and 2.3.2 in Fig. 11, the
required times for pruned signals are computed. Consider an
arbitrary pruned signal . There
exists a nonpruned signal such
that and . From such signals, the algorithm
selects a signal such as

, and sets . Therefore,
because the delay of signal

from node to the sink is less than the same delay of the
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signal . Subtracting the inequalities and we
obtain and therefore the slack computed for a
pruned signal is never less than the slack of a nonpruned
signal at the same node.

In summary, MPA computes slack values that are exact and
continuous for the critical path nodes. For other noncritical
nodes, MPA will compute a conservative slack that is less than
the actual slack. However, this computed slack will never be
less than the slack of the critical path. The required time of
pruned signals is estimated from the required time of nonpruned
signals. This estimate may be a discontinuous function with re-
spect to transistor and gate sizes since they can cause an abrupt
change in the set of nonpruned signals. Therefore, the slacks
computed by MPA for noncritical nodes can be a discontinuous
function too. It is clear that the only way to compute the exact
required times for all nodes involves computing exact delays
of each signal from each internal node to the sink node which
requires the propagation of all the signals. This would lead to
an exponential complexity of the slack computation algorithm.
Barring this possibility, the proposed MPA approach satisfies
the best attainable characteristics of slack computation while
maintaining a good run time performance.

D. Required Time Propagation for Reduced Multiple
Propagation Algorithm

In the reduced multiple propagation algorithm, additional sig-
nals are pruned during the forward propagation based on the
transition shift property, Property 2. The backward-propagation
algorithm for rMPA is therefore the same as that for MPA, ex-
cept that the required time for these additional pruned signals
needs to be computed. Computation of these required times is
shown in steps 2.4, 2.4.1, and 2.4.2 in Fig. 12. Pruning of these
additional signals does not require the presence of a propagated
signal with a slower slope but only the presence of a propagated
signal that has a sufficiently greater arrival time. Therefore, a
signal with a slower slope may not be found for these additional
pruned signals in step 2.3.1. In step 2.4.1, we therefore select
the signal with the least faster slope than the slope of the pruned
signal and utilize its required time for the pruned signal. Note
that in step 2.4.2, the required time of the pruned signal is com-
puted by subtracting from the required time of the signal with
the least faster slope the bound . This ensures that
the computed required time and signal slack of the pruned signal
are conservative. The delay bound is guaranteed
to overestimate the added delay of the downstream gates due to
the slower slope of the pruned signal. Therefore, the required
time and slack of the pruned signal will be conservative.

We now show that the computed slack in rMPA is never worse
than the slack of the critical signal.

Theorem 10:rMPA computes a required time for a signal
such that the signal slack is never less than the slack of the crit-
ical signal.

Proof: We need to prove this only for the additional steps
2.4, 2.4.1, 2.4.2 in Fig. 12. Assume a signalwith slope ,
delay from the node of interest to the sink node, and required
time . Assume also that signalis pruned during the forward
propagation according to digital gate Property 2. Letbe the

signal used for estimating the required time of the signalwith
required time and delay from the node of interest to the
sink node. Let be the signal that pruned signal, using the
digital gate property, with slope and arrival time .
denotes the required time at the sink node.

The estimated slack computed by the algorithm for signalis
equal to . The slack of the signal

is equal to . As the signal is pruned by
signal , we have inequalities and .
From the definition of the algorithm, it follows that .
Then by combining these inequalities with the above expression
of the slack estimation, we can obtain

. It is obvious that
because . Therefore,

. Combining this inequality with the inequality of
the slack estimation, we obtain . This
means that the estimated slack at a node is greater than or equal
to the slack of the critical path.

VI. RESULTS

The proposed algorithms were implemented in an industrial
transistor-level static timing analysis and optimization tool.
Both the MPA algorithm presented in Fig. 6 and the rMPA
algorithm which reduces the number of propagated arrival sig-
nals for digital circuits were implemented. The algorithms were
tested on a number of industrial designs ranging in size from
780 to 12 500 transistors. These included circuit blocks from
high-performance microprocessors and DSP chips. In Table I,
we show the circuit delay calculated using the traditional LPA
method, the conservative SPA method, and the proposed MPA
method from this paper. The table demonstrates that the LPA
method underestimates the circuit delay by as much as 39% for
the decoder circuit and by 21% on average. On the other hand,
the SPA method overestimates the circuit delay by as much
as 17% for the decoder circuit and by 8% on average over all
test cases. In all cases, the circuit delay computed with the
MPA approach lies between the results from the LPA and SPA
approach, as expected.

Table I shows the difference between the circuit delays com-
puted by the three algorithms using identical delay and slope
functions. However, these underlying delay and slope functions
have their own inherent inaccuracies due to the limitations of the
underlying transistor-level delay models. Hence, the computed
circuit delay by all three methods, including the proposed MPA
method, will in practice differ from SPICE-base simulation as
well as from silicon measurements. To improve the estimate of
the computed circuit delay, it is therefore common for designers
to run SPICE simulations on the critical paths identified by the
timing-analysis algorithm. We preformed such an analysis and
show the results in Table II. In column 3 through 5 we show the
delay estimate obtained through SPICE simulation of the critical
path identified by the different timing analysis algorithms and
report the difference between this SPICE delay and the delay
computed by timing analysis algorithms using more approxi-
mate transistor-level delay models (%error). The error in the
transistor-level delay models can results in either an under or
overestimate of the compute circuit delay, as compared with the
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Fig. 12. rMPA required time propagation algorithm.

TABLE I
EFFECT OFSLOPE PROPAGATION ONCIRCUIT DELAY

SPICE based simulation. In columns 6 and 7, the difference be-
tween the SPICE delay of critical paths for LPA and SPA are
compared with that of MPA. In all cases, MPA identifies a crit-
ical path that has a SPICE delay that is greater or equal to the
SPICE delay of the critical paths identified by LPA and SPA.
Despite the inaccuracies in the underlying delay model, MPA is

therefore able to better identify the critical path than the LPA
and SPA algorithms.

Note that even though the circuit delay computed by SPA in
Table I is consistently greater than that computed by MPA, the
SPICE delay of the critical path identified by SPA is consis-
tently less than or equal to that of MPA. This is due to the fact
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TABLE II
SPICE DELAY OF CRITICAL PATHS IDENTIFIED BY LPA, SPA,AND MPA ALGORITHMS

TABLE III
PERFORMANCECOMPARISON

that while SPA has the property of making conservative approx-
imations of the propagated signal shapes, these approximations
will result in incorrect identification of the critical path, which
therefore has a lesser SPICE delay than the true critical path.
Accordingly, the discrepancy between circuit delay in Table I
and the SPICE delay in Table II can be very large for SPA.

In Table III, the run time and the number of propagated sig-
nals for the traditional LPA method, the proposed MPA method,
and the proposed rMPA methods are shown. The run time of
SPA is not shown, since it is the same as that of LPA. The MPA
method has a run time penalty of 8.5% on average over the tra-
ditional LPA method. On the other hand, the rMPA method di-
minishes the run time penalty to only 4% on average over the
LPA method. In all cases, the rMPA method produced identical
results with the MPA method, as expected.

Finally, the proposed methods were also used in transistor-
sized optimization. In Fig. 13, we show the area/delay tradeoff
produced during the optimization of circuitmux for both LPA
and MPA. In the upper left corner of the tradeoff curve, gener-
ated by LPA toward the end of the optimization, saw teeth in
the tradeoff curve are evident. These are the results of two paths
that join at an internal node and have nearly equal arrival times
at this node, while one path has a significantly slower slope at
this node than the other path. As the optimization improves the
arrival time at this node for each path in turn, the LPA algorithm
switches back and forth between the two paths, creating abrupt
changes in the computed circuit delay. The tradeoff curve pro-
duced by the proposed MPA method is smooth and free of such
discontinuities, as shown in Fig. 13.

Fig. 13. Circuit optimization with LPA and proposed MPA methods.

VII. CONCLUSION

In this paper, we have shown that the traditional timing
analysis approach, referred to as the latest propagation ap-
proach, can significantly underestimate the delay of a circuit
due to its method of propagating arrival signals and slopes.
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We also showed that this can lead to discontinuities in the
circuit delay as a function of its transistor and gate sizes,
which creates difficulties for circuit optimization tools. We
then discussed an alternate propagation approach, referred to
as the SPA, which combines the latest arrival time with the
slowest slope of all signals at a node. We show that while this
approach eliminates the discontinuity of timing graph delay,
it significantly overestimates the delay of the circuit. In this
paper, we presented a new algorithm that, given delay and
slope functions for all gates in a circuit, computes the correct
critical path in the timing graph and the correct delay of the
timing graph. We also showed that this algorithm propagates
the minimum number of possible arrival signals for a general
timing graph. Then, based on a newly introduced property of
digital gates, we showed that the number of propagated arrival
signals can be reduced for digital circuits, without incurring
an error. Finally, we discussed the computation of required
times and slacks and presented associated algorithms for the
proposed methods. We show that the traditional algorithms
can compute an incorrect slack for the critical path, while the
proposed algorithms will compute a slack for the critical path
that is both correct and continuous with the transistor and gate
sizes in the circuit. We also show that the traditional latest
propagation algorithm computes an error for the noncritical
nodes that can be both positive or negative, while the proposed
algorithms will always incur a conservative (negative) error.
The proposed algorithms were implemented in an industrial
timing analysis and optimization tool and were tested on a
number of industrial circuits. The results show that the tra-
ditional method can underestimate the delay of a circuit by
as much as 39%, while the slowest propagation approach can
overestimate the circuit delay by as much as 17%. We also
show that the proposed algorithms increase the run time of
timing analysis only marginally by 4% on average.
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