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ABSTRACT 
A scalable architecture to design high radix switch fabric is 
presented. It uses circuit techniques to re-use existing input and 
output data buses and switching logic for fabric configuration and 
supporting multiple arbitration policies. In addition, it integrates a 
4-level message-based priority arbitration for quality of service. 
Fine grain clock gating, tiled fabric topology and self-regenerating 
bit-line repeaters enable scaling the router to 8k wires. A 
64×64(128b data) switch fabric fabricated in 45nm SOI CMOS 
spans 4.06mm2 and achieves a throughput of 4.5Tb/s at 3.4Tb/s/W 
at 1.1V with a peak measured efficiency of 7.4Tb/s/W at 0.6V. 

Categories and Subject Descriptors 
B.4.0 [INPUT/OUTPUT and Data Communications]: General 

General Terms 
Algorithms, Design 

Keywords 
Switch Fabric, Radix, Arbitration, Quality of Service 

1. INTRODUCTION 
Technology scaling has made billion transistors design feasible on 
a single die. With transistors getting cheaper and faster, the core 
count in multi-processor systems has been steadily increasing 
[1,2]. High end servers [3], gigabit Ethernet routers [4,5] and 
multimedia processors [6,7] now serve workloads dealing with 
terabytes of data flow every second. Even medium throughput 
applications now prefer multi-core architectures over a single core 
implementation for better energy efficiency and fault tolerance 
[8]. These system need a network to communicate data among 
processing and storage elements in the chip. Although processing 
units are getting smaller and simpler, the dramatic rise of their 
number in a single die has resulted in the growing complexity of 
interconnect. As a result, the interconnect fabric has become a 
bottleneck in improving overall system efficiency. Thus, the 
design paradigm for multi-core chips is gradually shifting from a 
core-centric architecture towards an interconnect-centric 
architecture, where overall system performance is limited by the 
bandwidth of the interconnect fabric rather than the processing 
ability of any individual core. 
 
 A generic switch fabric comprises of three key modules: 1) A 
data routing module to transfer information among different IPs 
connected to the fabric. This could be a single or a collection of  
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shared buses for systems where processing units rarely 
communicate [9] or could be a fully connected crossbar [10]. 2) 
An arbiter that receives requests from processing units and 
configures the fabric to ensure data sent from a source reaches the 
appropriate destination. 3) A priority management module that 
monitors traffic flow pattern within the fabric and assists the 
arbiter to ensure fairness in resource allocation. The overall 
efficiency of the switch fabric relies on how efficiently each of 
these independent modules function and how seamlessly they 
communicate among one another. With a growing number of 
input and output ports, each module gets physically bigger and 
hence farther from the others. Beyond a size, the latency and 
energy overhead due to communication between these modules 
starts limiting overall fabric efficiency. Existing circuit techniques 
to build high radix switch fabrics rely on assembling together 
smaller switches that are usually 5×5 in dimension [11]. This 
approach has certain limitations: 1) The elementary switches are 
built using multiplexers that select bits rather than buses. Hence, 
as buses get wider, routing at the fabric input ports involves a lot 
of interleaving among the wires incurring additional area penalty. 
2) A switch with ports far exceeding 5 would require multiple of 
these switches to be connected in stages. Data has to traverse 
through multiple stages to reach its destination thereby increasing 
latency and energy dissipation. They would also require additional 
data storage elements in the data routing path for higher 
throughput resulting in further latency and power overhead. 3) 
Each source sends requests to the arbiter before it could access a 
destination, and eventually the arbiter sends an acknowledgement 
back to the source after setting up the routing path. Configuring 
all the switches along the routing path incurs latency. In systems 
that have well defined communication patterns and usually 
operate on massive sets of data, the latency and energy cost for 
configuring the fabric can be amortized by setting up the routing 
path ahead of time or by sending multiple chunks of data once the 
path is established. However, in generic multiprocessor systems 
most traffic patterns are not pre-defined. Hence, the fabric 
configuration cost becomes a bottleneck. 4) A non-blocking 
switch supports all possible permutations and hence can guarantee 
starvation free communication for all applications. However many 
applications (like FFT, LDPC, Color space conversion etc.) can be 
sped up significantly by incorporating multicast and broadcast 
features in the switch fabric [12].  
 
Arbitration policies have a noticeable impact on throughput and 
fairness of interconnection networks. Some arbitration policies 
like the greedy allocation policy tend to maximize network 
throughput at the cost of quality of service. At the other extreme, 
some complex schemes like probabilistic distance [13] based 
arbitration can guarantee quality of service at the price of more 
complex logic and hence additional arbitration latency and power 
overhead. Hence, adaptive and hybrid resource allocation schemes 
are preferred in general over static schemes because of their 
ability to mitigate congestion.  
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In this paper, we propose a fabric architecture called swizzle 
switch network (SSN) to accomplish a variety of arbitration 
policies with very minimal overhead as shown in Fig. 1. For proof 
of concept, we fabricated a 64x64 SSN prototype with 128b data 
bus in 45nm SOI CMOS with the following key features: 1) A 
novel, single cycle least recently granted (LRG) priority 
arbitration technique that re-uses the already present input and 
output data buses and their drivers and sense amps. 2) An 
additional 4-level message-based priority arbitration for quality of 
service (QoS) with 2% logic and 3% wiring overhead. 3) A new 
bidirectional bit-line repeater that allows the router to scale to 
>8000 wires. These features result in a compact fabric (4.06mm2) 
with throughput gain of 2.1× over [5] at 3.4Tb/s/W efficiency 
which improves to 7.4Tb/s/W at 600mV. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Swizzle Switch Network 
 

The rest of the paper is organized as follows: In section 2, we 
present the SSN fabric architecture. Section 3 explains the various 
arbitration policies that can be implemented in SSN. In section 4, 
we present SSN’s message based QoS arbitration scheme. 
Detailed circuit level implementation and design choices are then 
presented in section 5. Measurement results from SSN test 
prototype fabricated in 45nm have been described in section 6 
before conclusion in section 7. 

2. SSN ARCHITECTURE 
SSN is a matrix-type fabric as shown in Fig. 1 with input buses 
running horizontally and output buses vertically. When data is 
routed, the input and output buses transfer data traffic. During 
arbitration the input bus routes a multi-hot code indicating which 
output channel(s) are requested by that input, and the output bus is 
used for conflict detection and arbitration [14]. Each crosspoint 
stores a connectivity status bit indicating whether the input bus 
was granted access to the output channel. An n-1 bit priority 
vector is also stored to represent the priority of the input bus with 
respect to all other inputs for that output bus. Fig. 1 shows the 
priority vector at each crosspoint in a blow-up of a single output 
channel. Each input bus is assigned a unique bit line from the 
channel as its priority line which, if high, indicates it as the 
winner in a particular arbitration cycle. Similarly, each bit in the 
priority vector at a crosspoint indicates whether the input bus at 
that crosspoint has higher or lower priority than the input bus 
associated with the priority line. For instance, in Fig. 2 priority 
line m corresponds to input bus m while the m-th priority bit of 
bus n is a 1, indicating that n has higher priority than m. When 
input n requests the output channel this high bit results in the 

discharge of priority line m, suppressing access by input m. In 
contrast, input l stores a 0 at its m-th priority bit and hence does 
not suppress an access request from input m, meaning that l has 
lower priority that input m. 
Priority vectors need to be set consistently and indicate the same 
priority order. In Fig. 2, the 0 at bit m of input l must be mirrored 
with a 1 at bit l of input m. Furthermore, the priority bits need to 
be correctly updated after each arbitration cycle to implement 
LRG policy. We propose a new, simple mechanism to accomplish 
this. In Fig. 1, inputs l and m request the output channel in an 
arbitration cycle. Input m wins owing to its higher priority and its 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 2. Arbitration and priority update. 
 
connectivity status bit is set to 1. After data transfer, input m 
releases its channel during a channel release cycle. In this cycle, 
input m first resets all its priority bits. This guarantees that m now 
has lowest priority, as required by the LRG algorithm. At the 
same time, input m also lowers its priority line m, which is a 
signal to other crosspoints in the output channel to set their m-th 
priority bit. This ensures that all other input buses now have 
higher priority than m. Input buses with higher priority than m 
remain unchanged and only inputs with lower priority than input 
m are increased in their priority by exactly one level. This simple 
and fast update mechanism provably guarantees both consistency 
of all priority vectors and correct implementation of the LRG 
arbitration scheme, which enables efficient and deadlock-free 
routing. 
 
3. ARBITRATION SCHEMES 
The SSN is capable of supporting multiple arbitration schemes. 
The priority vectors at various crosspoints along a single output 
bus form a priority matrix. A priority matrix with 6 inputs 
(arranged top to down numerically from input1 to input6) is 
shown in Fig. 3. Here, the priority line connections are denoted as 
Xs. The priority matrix satisfies the following criteria: 1) The total 
number of 0s equals the total number of 1s. 2) Each row has a 
unique number of 1s which represents the corresponding input’s 
priority. 3) Each column has a unique number of 1s. 4) At any 
priority line connection (denoted as X in Fig. 3.), the sum of the 
number of 1s (or 0s) in its corresponding row and column must 
add to one less than the total number of inputs. 
3.1 Least Recently Granted (LRG) scheme 
Though priority lines can be randomly assigned to inputs without 
limiting the generality of the priority update schemes, a diagonal 
assignment as shown in Fig. 3 makes the priority matrix skew (or 
anti) symmetric and easy to understand. As shown in Fig. 3, the 
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Figure 3. LRG based priority update 
input corresponding to second row used the channel most 
recently. It is assigned a priority level 3. An LRG priority update 
is accomplished by resetting all priority bits along the second row 
(denoted by R) and by setting all priority bits (denoted by S) along 
the second column (which is the priority line for input2). Input2 is 
thus downgraded to have the least priority while all inputs with 
lower priorities get upgraded by exactly one level. In the rest of 
this section, the other priority update schemes will be explained 
using the priority matrix notation. 

3.2 Most Recently Granted (MRG) scheme 

 
Figure 4. MRG based priority update 

For accomplishing an MRG based update, we set all priority bits 
along the second row (denoted by S) and reset all priority bits 
(denoted by R) along the second column (which is the priority line 
for the input2) as shown in Fig. 4. By setting bits in the second 
row, input2 now gets the highest priority. Inputs that previously 
had higher priorities than input2 get downgraded by exactly one 
level. Inputs that previously had lower priority than input2 retain 
their old priorities. 

3.3 Round Robin schemes 

 
 
 
 
 
 
 

Figure 5. Incremental (top) and decremental (bottom) round 
robin based priority updates 

For accomplishing an incremental Round Robin based update, we 
pick the row with the highest priority. This can be identified by a 
logical AND operation of all the priority bits. In this case input5 
has the highest priority. We reset all priority bits along the fifth 
row (denoted by R) and set all priority bits (denoted by S) along 
the fifth column (which is the priority line for input5) as shown in 
Fig. 5 top. By resetting bits in the fifth row, input5 now gets the 
least priority. All other inputs get upgraded by exactly one level. 
For accomplishing a decremental Round Robin based update, we 
pick the row with the lowest priority. This can be identified by a 
logical OR operation of all the priority bits. In this case input4 has 
the highest priority. We set all priority bits along the fourth row 
(denoted by S) and reset all priority bits (denoted by R) along the 
fourth column (which is the priority line for input4 ) as shown in 
Fig. 5 bot. By setting bits in the fourth row, input4 now gets the 
highest priority. All other inputs get downgraded by exactly one 
level. 
 
3.4 Priority swap and reversal 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 6. Priority swap (top) and priority reversal (bottom) 
 
The priorities of 2 inputs can be swapped (without affecting 
priorities of other inputs) by swapping the priority bits in their 
corresponding rows and those in the columns corresponding to 
their priority lines as shown in Fig. 6 top. Here, we intend to swap 
the priorities of input3 and input4. In the physical realization of 
this technique, already existing word-lines will be used to swap 
priority bits between columns and bit-lines to swap priority bits 
between rows. In a single cycle, any two priorities can be 
swapped. 
 
The unique priority encoding scheme also allows reversing the 
priority of all inputs instantaneously by flipping all the priority 
bits as shown in Fig. 6 bottom. In physical circuit level 
implementation, rather than flipping all the bits, a multiplexer can 
be used to select the inverted priority. Hence, this functionality 
can be achieved without the expense of a clock cycle. The 
consistency of the new priority vectors is guaranteed because this 
transformation ensures that the priority matrix still satisfies all the 
criteria mentioned before. 
 
 
 

Fi 3 LRG b d i i d

Fi 5 I l (t ) d d l (b ) d
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3.4 Selective LRG and MRG 
In this scheme LRG update is applied to a selective section of 
inputs. In the standard LRG scheme, the input that used the output 
bus most recently is downgraded to have the least priority while 
all inputs with lower priorities get upgraded by exactly one level. 
In this case input6 with a priority level 4 used the channel most 
recently. However, in the selective LRG scheme, instead of 
downgrading input6 all the way down to 0, we intend to 
downgrade it to some intermediate priority (say priority level of 
input0 which is 1). To accomplish this, before setting/resetting 
priority bits we identify certain rows and columns that need to be 
frozen. In this case, all columns corresponding to priority bits that 
are high in the first row are frozen as shown in Fig. 7 top. 
Simultaneously, all rows corresponding to priority bits that are 
low in the first column (which is the priority line for input0) are 
also frozen. Following this the priority bits in the sixth row are 
reset (except the bits in frozen columns) and those in the sixth 
column are set (except the bits in frozen rows). This ensures that 
the new priority matrix is consistent and the intended priority 
update is achieved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Selective LRG (top) and selective MRG (bot) 

In this scheme MRG update is applied to a selective section of 
inputs. In the standard MRG scheme, the input that used the 
output bus most recently is upgraded to have the highest priority 
while all inputs with higher priorities get downgraded by exactly 
one level. In this case input1 with a priority level 1 used the 
channel most recently. However, in the selective MRG scheme, 
instead of upgrading input1 all the way up to 5, we intend to 
upgrade it to some intermediate priority (say priority level of 
input6 which is 4). To accomplish this, before setting/resetting 
priority bits we identify certain rows and columns that need to be 
frozen. In this case, all columns corresponding to priority bits that 
are low in the sixth row are frozen as shown in Fig. 7 bot. 
Simultaneously, all rows corresponding to priority bits that are 
high in the sixth column (which is the priority line for input6) are 
also frozen. Following this the priority bits in the first row are set 
(except the bits in frozen columns) and those in the first column 
are reset (except the bits in frozen rows). This ensures that the 
new priority matrix is consistent and the intended priority update 
is achieved. 

4. QoS ARBITRATION 
In a 64×64 SSN it might take a message 64 cycles to win 
arbitration in the worst case when all inputs collide. To assist 
critical messages to reach destination early, SSN also features a 4-
level message-based QoS arbitration technique that allows only 
input buses with the highest message priority to arbitrate for the 
channel as shown in Fig. 8. A 2-bit message priority is decoded 
into a 4-bit thermometer code at the crosspoint, which is used to 
selectively discharge priority bit-lines comprising the QoS priority 
bus. A multiplexer samples one of those priority bit-lines using its 
own message priority and the input bus progresses to the LRG 
arbitration cycle if the monitored priority bit is not discharged. 
Using separate wires for QoS arbitration incurs 3% area overhead. 
However, the additional QoS arbitration cycle can be overlapped 
with the prior routing operation for the output bus, avoiding a 
latency penalty. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 8. QoS arbitration technique 
 
5. PROTOTYPE IMPLEMENTATION 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9a. Crosspoint circuit 
 

ncy penalty. 

Figure 8 QoS arbitration technique
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Figure 9b. Priority storage latch 
 

Fig. 9 shows the SSN crosspoint circuit and the priority storage 
latch. Load_priority_b is an additional bit-line provided per 
channel that is discharged during the release cycle. This triggers 
the priority update mechanism. During a request/release cycle the 
channels are indexed using the lower 64 bits from the input bus. 
Crosspoints send acknowledgements over the upper 64 bits. 

 
Figure 10. SSN die photo (top) and printed circuit board 

hosting SSN test prototype (bottom) 

 
Fig. 10 shows the test prototype fabricated in 45nm SOI CMOS 
with a 64×64 SSN as the communication network between the 
traffic generators and traffic analyzers. SSN is laid out using a 
semi custom design flow. A generic crosspoint cell is laid out as a 
parameterized cell. A skill script parses the generic crosspoint by 
taking in the x coordinate, y coordinate and the priority vector (at 
reset) as the arguments and generates crosspoint specific to each 
location. These crosspoints are then tiled using a compiler that 
appropriately sizes the word line drivers and precharge transistors 
to generate the switch fabric. 
The SSN features 8448 word-lines and 8576 bit-lines spread 
across 4096 crosspoints. The integration of the LRG and QoS 
control within this fabric with very low overhead greatly improve 
SSN’s scalability and makes it possible to realize a fabric of this 
large size. In addition, new bi-directional repeaters (Fig. 11) are 
used for bit-lines that use a regenerative sensing element to 
improve delay despite high slew rates on long bit-lines. The 
proposed repeater uses a thyristor element to detect and amplify a 
transition on the bit-line. Once a transition is detected the repeater 
enters a self regeneration mode where it decouples itself from the 
slow transitioning bit-line. This allows the internal nodes in the 
thyristor to switch faster and reduces delay. The regeneration and 
self-decoupling mechanism improves bit-line delay by 32% and 
allows for a 50% smaller bit-line driver compared to a 
conventional repeater. Simulated fabric latency with increasing 
SSN size shows 1.6× performance improvements over an SSN 
with un-repeated bit-lines as shown in Fig. 11 due to the near-
linear latency increase with radix size rather than quadratic 
dependency without repeaters. Bit-lines are pre-charged within 
every 16×16 SSN macro. This improves pre-charge time by 59% 
over a similar sized lumped driver and results in more uniform 
current drawn from the power grid. Bit-line delay degrades more 
rapidly than word-line delay under voltage scaling. Hence, the bit-
cell aspect ratio (1:0.73) is chosen to shorten bit-lines, improving 
fabric latency at low Vdd. Fine grain clock gating reduces clock 
power by 94% at each crosspoint. A crosspoint is clocked only if 
its connectivity status is ON, a request is asserted, or an LRG 
priority update occurs. These events are registered in the positive 
clock phase, allowing gating of the negative (active) phase with 
2.3% delay penalty. Adjacent SSN input ports are driven from 
opposite directions, reducing routing congestion and local Ldi/dt 
drop when repeaters on the 2.5mm long word-lines switch.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Self-regenerating bit-line repeater improves SSN 
delay by 1.6× 

g
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6. MEASUREMENT RESULTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Measured performance and power for 64×64 SSN 

 
The traffic generators in the test prototype can be tuned to 
produce traffic patterns with varying switching activity and 
collision patterns. The SSN is tested for functionality by 
streaming various data streams through it and verifying the 
signatures. Fig. 12 (top) shows the measured SSN’s operating 
frequency and the aggregate throughput at varying supply voltage. 
SSN’s power consumption at different operating frequencies is 
shown in Fig. 12 (bottom). At 1.1V, the SSN operates at 559MHZ 
with a throughput of 4.47Tb/s while consuming 1.32W. This 
translates into an efficiency of 3.4Tb/s/W which is which is 3.7× 
higher than [4] at similar bandwidth. The work in [4] uses an 8×8 
mesh topology based on 5×5 routers at each node to connect 64 
units, whereas the SSN uses a 64×64 single-stage fabric. The SSN 
is fully functional down to 550mV with a measured peak 
efficiency of 7.4Tb/s/W at 0.6V. 
 
7. CONCLUSION 
In this paper, we present a self-arbitrating fabric called SSN that 
leverages a novel priority encoding scheme that re-uses existing 
logic and interconnect resources in switch fabric to locally store 
priorities at router crosspoints resulting in a compact 
implementation. A 64×64 SSN with 128b data bus achieves a 
peak throughput 4.5Tb/s at an energy efficiency of 3.4Tb/s/W 
while spanning only 4.06mm2 in 45nm SOI CMOS. It features a 
single cycle least recently granted arbitration technique that re-

uses data buses and switching logic, a 4-level message based 
priority arbitration for quality of service and unique bidirectional 
bit-line repeaters to aid scalability. The unique priority encoding 
scheme also allows seamless implementation of many other 
arbitration policies in addition to LRG with very minimal 
overhead. 
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