

High Radix Self-Arbitrating Switch Fabric with Multiple
Arbitration Schemes and Quality of Service

Sudhir Satpathy, Reetuparna Das, Ronald Dreslinski, Trevor Mudge, Dennis Sylvester, David Blaauw
University of Michigan, Ann Arbor

sudhirks@umich.edu

ABSTRACT
A scalable architecture to design high radix switch fabric is
presented. It uses circuit techniques to re-use existing input and
output data buses and switching logic for fabric configuration and
supporting multiple arbitration policies. In addition, it integrates a
4-level message-based priority arbitration for quality of service.
Fine grain clock gating, tiled fabric topology and self-regenerating
bit-line repeaters enable scaling the router to 8k wires. A
64×64(128b data) switch fabric fabricated in 45nm SOI CMOS
spans 4.06mm2 and achieves a throughput of 4.5Tb/s at 3.4Tb/s/W
at 1.1V with a peak measured efficiency of 7.4Tb/s/W at 0.6V.

Categories and Subject Descriptors
B.4.0 [INPUT/OUTPUT and Data Communications]: General

General Terms
Algorithms, Design

Keywords
Switch Fabric, Radix, Arbitration, Quality of Service

1. INTRODUCTION
Technology scaling has made billion transistors design feasible on
a single die. With transistors getting cheaper and faster, the core
count in multi-processor systems has been steadily increasing
[1,2]. High end servers [3], gigabit Ethernet routers [4,5] and
multimedia processors [6,7] now serve workloads dealing with
terabytes of data flow every second. Even medium throughput
applications now prefer multi-core architectures over a single core
implementation for better energy efficiency and fault tolerance
[8]. These system need a network to communicate data among
processing and storage elements in the chip. Although processing
units are getting smaller and simpler, the dramatic rise of their
number in a single die has resulted in the growing complexity of
interconnect. As a result, the interconnect fabric has become a
bottleneck in improving overall system efficiency. Thus, the
design paradigm for multi-core chips is gradually shifting from a
core-centric architecture towards an interconnect-centric
architecture, where overall system performance is limited by the
bandwidth of the interconnect fabric rather than the processing
ability of any individual core.

 A generic switch fabric comprises of three key modules: 1) A
data routing module to transfer information among different IPs
connected to the fabric. This could be a single or a collection of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06...$10.00

shared buses for systems where processing units rarely
communicate [9] or could be a fully connected crossbar [10]. 2)
An arbiter that receives requests from processing units and
configures the fabric to ensure data sent from a source reaches the
appropriate destination. 3) A priority management module that
monitors traffic flow pattern within the fabric and assists the
arbiter to ensure fairness in resource allocation. The overall
efficiency of the switch fabric relies on how efficiently each of
these independent modules function and how seamlessly they
communicate among one another. With a growing number of
input and output ports, each module gets physically bigger and
hence farther from the others. Beyond a size, the latency and
energy overhead due to communication between these modules
starts limiting overall fabric efficiency. Existing circuit techniques
to build high radix switch fabrics rely on assembling together
smaller switches that are usually 5×5 in dimension [11]. This
approach has certain limitations: 1) The elementary switches are
built using multiplexers that select bits rather than buses. Hence,
as buses get wider, routing at the fabric input ports involves a lot
of interleaving among the wires incurring additional area penalty.
2) A switch with ports far exceeding 5 would require multiple of
these switches to be connected in stages. Data has to traverse
through multiple stages to reach its destination thereby increasing
latency and energy dissipation. They would also require additional
data storage elements in the data routing path for higher
throughput resulting in further latency and power overhead. 3)
Each source sends requests to the arbiter before it could access a
destination, and eventually the arbiter sends an acknowledgement
back to the source after setting up the routing path. Configuring
all the switches along the routing path incurs latency. In systems
that have well defined communication patterns and usually
operate on massive sets of data, the latency and energy cost for
configuring the fabric can be amortized by setting up the routing
path ahead of time or by sending multiple chunks of data once the
path is established. However, in generic multiprocessor systems
most traffic patterns are not pre-defined. Hence, the fabric
configuration cost becomes a bottleneck. 4) A non-blocking
switch supports all possible permutations and hence can guarantee
starvation free communication for all applications. However many
applications (like FFT, LDPC, Color space conversion etc.) can be
sped up significantly by incorporating multicast and broadcast
features in the switch fabric [12].

Arbitration policies have a noticeable impact on throughput and
fairness of interconnection networks. Some arbitration policies
like the greedy allocation policy tend to maximize network
throughput at the cost of quality of service. At the other extreme,
some complex schemes like probabilistic distance [13] based
arbitration can guarantee quality of service at the price of more
complex logic and hence additional arbitration latency and power
overhead. Hence, adaptive and hybrid resource allocation schemes
are preferred in general over static schemes because of their
ability to mitigate congestion.

406

17.6

In this paper, we propose a fabric architecture called swizzle
switch network (SSN) to accomplish a variety of arbitration
policies with very minimal overhead as shown in Fig. 1. For proof
of concept, we fabricated a 64x64 SSN prototype with 128b data
bus in 45nm SOI CMOS with the following key features: 1) A
novel, single cycle least recently granted (LRG) priority
arbitration technique that re-uses the already present input and
output data buses and their drivers and sense amps. 2) An
additional 4-level message-based priority arbitration for quality of
service (QoS) with 2% logic and 3% wiring overhead. 3) A new
bidirectional bit-line repeater that allows the router to scale to
>8000 wires. These features result in a compact fabric (4.06mm2)
with throughput gain of 2.1× over [5] at 3.4Tb/s/W efficiency
which improves to 7.4Tb/s/W at 600mV.

Figure 1. Swizzle Switch Network

The rest of the paper is organized as follows: In section 2, we
present the SSN fabric architecture. Section 3 explains the various
arbitration policies that can be implemented in SSN. In section 4,
we present SSN’s message based QoS arbitration scheme.
Detailed circuit level implementation and design choices are then
presented in section 5. Measurement results from SSN test
prototype fabricated in 45nm have been described in section 6
before conclusion in section 7.

2. SSN ARCHITECTURE
SSN is a matrix-type fabric as shown in Fig. 1 with input buses
running horizontally and output buses vertically. When data is
routed, the input and output buses transfer data traffic. During
arbitration the input bus routes a multi-hot code indicating which
output channel(s) are requested by that input, and the output bus is
used for conflict detection and arbitration [14]. Each crosspoint
stores a connectivity status bit indicating whether the input bus
was granted access to the output channel. An n-1 bit priority
vector is also stored to represent the priority of the input bus with
respect to all other inputs for that output bus. Fig. 1 shows the
priority vector at each crosspoint in a blow-up of a single output
channel. Each input bus is assigned a unique bit line from the
channel as its priority line which, if high, indicates it as the
winner in a particular arbitration cycle. Similarly, each bit in the
priority vector at a crosspoint indicates whether the input bus at
that crosspoint has higher or lower priority than the input bus
associated with the priority line. For instance, in Fig. 2 priority
line m corresponds to input bus m while the m-th priority bit of
bus n is a 1, indicating that n has higher priority than m. When
input n requests the output channel this high bit results in the

discharge of priority line m, suppressing access by input m. In
contrast, input l stores a 0 at its m-th priority bit and hence does
not suppress an access request from input m, meaning that l has
lower priority that input m.
Priority vectors need to be set consistently and indicate the same
priority order. In Fig. 2, the 0 at bit m of input l must be mirrored
with a 1 at bit l of input m. Furthermore, the priority bits need to
be correctly updated after each arbitration cycle to implement
LRG policy. We propose a new, simple mechanism to accomplish
this. In Fig. 1, inputs l and m request the output channel in an
arbitration cycle. Input m wins owing to its higher priority and its

Figure 2. Arbitration and priority update.

connectivity status bit is set to 1. After data transfer, input m
releases its channel during a channel release cycle. In this cycle,
input m first resets all its priority bits. This guarantees that m now
has lowest priority, as required by the LRG algorithm. At the
same time, input m also lowers its priority line m, which is a
signal to other crosspoints in the output channel to set their m-th
priority bit. This ensures that all other input buses now have
higher priority than m. Input buses with higher priority than m
remain unchanged and only inputs with lower priority than input
m are increased in their priority by exactly one level. This simple
and fast update mechanism provably guarantees both consistency
of all priority vectors and correct implementation of the LRG
arbitration scheme, which enables efficient and deadlock-free
routing.

3. ARBITRATION SCHEMES
The SSN is capable of supporting multiple arbitration schemes.
The priority vectors at various crosspoints along a single output
bus form a priority matrix. A priority matrix with 6 inputs
(arranged top to down numerically from input1 to input6) is
shown in Fig. 3. Here, the priority line connections are denoted as
Xs. The priority matrix satisfies the following criteria: 1) The total
number of 0s equals the total number of 1s. 2) Each row has a
unique number of 1s which represents the corresponding input’s
priority. 3) Each column has a unique number of 1s. 4) At any
priority line connection (denoted as X in Fig. 3.), the sum of the
number of 1s (or 0s) in its corresponding row and column must
add to one less than the total number of inputs.
3.1 Least Recently Granted (LRG) scheme
Though priority lines can be randomly assigned to inputs without
limiting the generality of the priority update schemes, a diagonal
assignment as shown in Fig. 3 makes the priority matrix skew (or
anti) symmetric and easy to understand. As shown in Fig. 3, the

407

17.6

Figure 3. LRG based priority update
input corresponding to second row used the channel most
recently. It is assigned a priority level 3. An LRG priority update
is accomplished by resetting all priority bits along the second row
(denoted by R) and by setting all priority bits (denoted by S) along
the second column (which is the priority line for input2). Input2 is
thus downgraded to have the least priority while all inputs with
lower priorities get upgraded by exactly one level. In the rest of
this section, the other priority update schemes will be explained
using the priority matrix notation.

3.2 Most Recently Granted (MRG) scheme

Figure 4. MRG based priority update

For accomplishing an MRG based update, we set all priority bits
along the second row (denoted by S) and reset all priority bits
(denoted by R) along the second column (which is the priority line
for the input2) as shown in Fig. 4. By setting bits in the second
row, input2 now gets the highest priority. Inputs that previously
had higher priorities than input2 get downgraded by exactly one
level. Inputs that previously had lower priority than input2 retain
their old priorities.

3.3 Round Robin schemes

Figure 5. Incremental (top) and decremental (bottom) round
robin based priority updates

For accomplishing an incremental Round Robin based update, we
pick the row with the highest priority. This can be identified by a
logical AND operation of all the priority bits. In this case input5
has the highest priority. We reset all priority bits along the fifth
row (denoted by R) and set all priority bits (denoted by S) along
the fifth column (which is the priority line for input5) as shown in
Fig. 5 top. By resetting bits in the fifth row, input5 now gets the
least priority. All other inputs get upgraded by exactly one level.
For accomplishing a decremental Round Robin based update, we
pick the row with the lowest priority. This can be identified by a
logical OR operation of all the priority bits. In this case input4 has
the highest priority. We set all priority bits along the fourth row
(denoted by S) and reset all priority bits (denoted by R) along the
fourth column (which is the priority line for input4) as shown in
Fig. 5 bot. By setting bits in the fourth row, input4 now gets the
highest priority. All other inputs get downgraded by exactly one
level.

3.4 Priority swap and reversal

Figure 6. Priority swap (top) and priority reversal (bottom)

The priorities of 2 inputs can be swapped (without affecting
priorities of other inputs) by swapping the priority bits in their
corresponding rows and those in the columns corresponding to
their priority lines as shown in Fig. 6 top. Here, we intend to swap
the priorities of input3 and input4. In the physical realization of
this technique, already existing word-lines will be used to swap
priority bits between columns and bit-lines to swap priority bits
between rows. In a single cycle, any two priorities can be
swapped.

The unique priority encoding scheme also allows reversing the
priority of all inputs instantaneously by flipping all the priority
bits as shown in Fig. 6 bottom. In physical circuit level
implementation, rather than flipping all the bits, a multiplexer can
be used to select the inverted priority. Hence, this functionality
can be achieved without the expense of a clock cycle. The
consistency of the new priority vectors is guaranteed because this
transformation ensures that the priority matrix still satisfies all the
criteria mentioned before.

Fi 3 LRG b d i i d

Fi 5 I l (t) d d l (b) d

408

17.6

3.4 Selective LRG and MRG
In this scheme LRG update is applied to a selective section of
inputs. In the standard LRG scheme, the input that used the output
bus most recently is downgraded to have the least priority while
all inputs with lower priorities get upgraded by exactly one level.
In this case input6 with a priority level 4 used the channel most
recently. However, in the selective LRG scheme, instead of
downgrading input6 all the way down to 0, we intend to
downgrade it to some intermediate priority (say priority level of
input0 which is 1). To accomplish this, before setting/resetting
priority bits we identify certain rows and columns that need to be
frozen. In this case, all columns corresponding to priority bits that
are high in the first row are frozen as shown in Fig. 7 top.
Simultaneously, all rows corresponding to priority bits that are
low in the first column (which is the priority line for input0) are
also frozen. Following this the priority bits in the sixth row are
reset (except the bits in frozen columns) and those in the sixth
column are set (except the bits in frozen rows). This ensures that
the new priority matrix is consistent and the intended priority
update is achieved.

Figure 7. Selective LRG (top) and selective MRG (bot)

In this scheme MRG update is applied to a selective section of
inputs. In the standard MRG scheme, the input that used the
output bus most recently is upgraded to have the highest priority
while all inputs with higher priorities get downgraded by exactly
one level. In this case input1 with a priority level 1 used the
channel most recently. However, in the selective MRG scheme,
instead of upgrading input1 all the way up to 5, we intend to
upgrade it to some intermediate priority (say priority level of
input6 which is 4). To accomplish this, before setting/resetting
priority bits we identify certain rows and columns that need to be
frozen. In this case, all columns corresponding to priority bits that
are low in the sixth row are frozen as shown in Fig. 7 bot.
Simultaneously, all rows corresponding to priority bits that are
high in the sixth column (which is the priority line for input6) are
also frozen. Following this the priority bits in the first row are set
(except the bits in frozen columns) and those in the first column
are reset (except the bits in frozen rows). This ensures that the
new priority matrix is consistent and the intended priority update
is achieved.

4. QoS ARBITRATION
In a 64×64 SSN it might take a message 64 cycles to win
arbitration in the worst case when all inputs collide. To assist
critical messages to reach destination early, SSN also features a 4-
level message-based QoS arbitration technique that allows only
input buses with the highest message priority to arbitrate for the
channel as shown in Fig. 8. A 2-bit message priority is decoded
into a 4-bit thermometer code at the crosspoint, which is used to
selectively discharge priority bit-lines comprising the QoS priority
bus. A multiplexer samples one of those priority bit-lines using its
own message priority and the input bus progresses to the LRG
arbitration cycle if the monitored priority bit is not discharged.
Using separate wires for QoS arbitration incurs 3% area overhead.
However, the additional QoS arbitration cycle can be overlapped
with the prior routing operation for the output bus, avoiding a
latency penalty.

Figure 8. QoS arbitration technique

5. PROTOTYPE IMPLEMENTATION

Figure 9a. Crosspoint circuit

ncy penalty.

Figure 8 QoS arbitration technique

409

17.6

Figure 9b. Priority storage latch

Fig. 9 shows the SSN crosspoint circuit and the priority storage
latch. Load_priority_b is an additional bit-line provided per
channel that is discharged during the release cycle. This triggers
the priority update mechanism. During a request/release cycle the
channels are indexed using the lower 64 bits from the input bus.
Crosspoints send acknowledgements over the upper 64 bits.

Figure 10. SSN die photo (top) and printed circuit board

hosting SSN test prototype (bottom)

Fig. 10 shows the test prototype fabricated in 45nm SOI CMOS
with a 64×64 SSN as the communication network between the
traffic generators and traffic analyzers. SSN is laid out using a
semi custom design flow. A generic crosspoint cell is laid out as a
parameterized cell. A skill script parses the generic crosspoint by
taking in the x coordinate, y coordinate and the priority vector (at
reset) as the arguments and generates crosspoint specific to each
location. These crosspoints are then tiled using a compiler that
appropriately sizes the word line drivers and precharge transistors
to generate the switch fabric.
The SSN features 8448 word-lines and 8576 bit-lines spread
across 4096 crosspoints. The integration of the LRG and QoS
control within this fabric with very low overhead greatly improve
SSN’s scalability and makes it possible to realize a fabric of this
large size. In addition, new bi-directional repeaters (Fig. 11) are
used for bit-lines that use a regenerative sensing element to
improve delay despite high slew rates on long bit-lines. The
proposed repeater uses a thyristor element to detect and amplify a
transition on the bit-line. Once a transition is detected the repeater
enters a self regeneration mode where it decouples itself from the
slow transitioning bit-line. This allows the internal nodes in the
thyristor to switch faster and reduces delay. The regeneration and
self-decoupling mechanism improves bit-line delay by 32% and
allows for a 50% smaller bit-line driver compared to a
conventional repeater. Simulated fabric latency with increasing
SSN size shows 1.6× performance improvements over an SSN
with un-repeated bit-lines as shown in Fig. 11 due to the near-
linear latency increase with radix size rather than quadratic
dependency without repeaters. Bit-lines are pre-charged within
every 16×16 SSN macro. This improves pre-charge time by 59%
over a similar sized lumped driver and results in more uniform
current drawn from the power grid. Bit-line delay degrades more
rapidly than word-line delay under voltage scaling. Hence, the bit-
cell aspect ratio (1:0.73) is chosen to shorten bit-lines, improving
fabric latency at low Vdd. Fine grain clock gating reduces clock
power by 94% at each crosspoint. A crosspoint is clocked only if
its connectivity status is ON, a request is asserted, or an LRG
priority update occurs. These events are registered in the positive
clock phase, allowing gating of the negative (active) phase with
2.3% delay penalty. Adjacent SSN input ports are driven from
opposite directions, reducing routing congestion and local Ldi/dt
drop when repeaters on the 2.5mm long word-lines switch.

Figure 11. Self-regenerating bit-line repeater improves SSN
delay by 1.6×

g

410

17.6

6. MEASUREMENT RESULTS

Figure 12. Measured performance and power for 64×64 SSN

The traffic generators in the test prototype can be tuned to
produce traffic patterns with varying switching activity and
collision patterns. The SSN is tested for functionality by
streaming various data streams through it and verifying the
signatures. Fig. 12 (top) shows the measured SSN’s operating
frequency and the aggregate throughput at varying supply voltage.
SSN’s power consumption at different operating frequencies is
shown in Fig. 12 (bottom). At 1.1V, the SSN operates at 559MHZ
with a throughput of 4.47Tb/s while consuming 1.32W. This
translates into an efficiency of 3.4Tb/s/W which is which is 3.7×
higher than [4] at similar bandwidth. The work in [4] uses an 8×8
mesh topology based on 5×5 routers at each node to connect 64
units, whereas the SSN uses a 64×64 single-stage fabric. The SSN
is fully functional down to 550mV with a measured peak
efficiency of 7.4Tb/s/W at 0.6V.

7. CONCLUSION
In this paper, we present a self-arbitrating fabric called SSN that
leverages a novel priority encoding scheme that re-uses existing
logic and interconnect resources in switch fabric to locally store
priorities at router crosspoints resulting in a compact
implementation. A 64×64 SSN with 128b data bus achieves a
peak throughput 4.5Tb/s at an energy efficiency of 3.4Tb/s/W
while spanning only 4.06mm2 in 45nm SOI CMOS. It features a
single cycle least recently granted arbitration technique that re-

uses data buses and switching logic, a 4-level message based
priority arbitration for quality of service and unique bidirectional
bit-line repeaters to aid scalability. The unique priority encoding
scheme also allows seamless implementation of many other
arbitration policies in addition to LRG with very minimal
overhead.

8. ACKNOWLEDGEMENTS
The authors gratefully acknowledge funding and support from
ARM Ltd.

9. REFERENCES
[1] D.Truong et al., “A 167-processor 65nm Computational

Platform with per-Processor Dynamic Supply Voltage and
Dynamic Clock Frequency Scaling,” International
symposium of VLSI Circuits, pp. 22-23, 2008.

[2] S. Vangal et al., “An 80-Tile 1.28TFLOPS Network-on-Chip
in 65nm CMOS,” International Solid State Circuits
Conference, pp. 98-99, 2007.

[3] S.Tremblay et al., “A Third-Generation 65nm 16-Core 32-
thread Plus32-Scout-Thread CMY SPARC Processor,”
International Solid State Circuits Conference, pp. 82-83,
2008.

[4] S. Vangal et al., “A 5.1 GHz 0.34mm2 Router for Network-
on-Chip Applications,” International Symposium on VLSI
Circuits, pp. 42-43, 2007.

[5] M.Anders et al., “A 4.1Tb/s Bisection-Bandwidth 560Fb/s/W
Streaming Circuit-Switched 8×8 Mesh Network-on-Chip in
45nm CMOS,” International Solid State Circuits Conference,
pp. 110-111, 2010.

[6] K.Kim et al., “A 211 GOPS/W Dual-Mode Real-time Object
Recognition Processor with Network-on-Chip,” European
Solid State Circuits Conference, pp. 462-465, 2008.

[7] J.Kim et al., “A 118.4 GB/s multi-casting Network-on-Chip
with hierarchical star-ring combines topology for real-time
object recognition,” Journal of Solid State Circuits, vol.45
pp. 1309-1409, 2010.

[8] E. Karl et al., “ElastIC: An Adaptive Self-Healing
Architecture for Unpredictable Silicon,” IEEE Design and
Test of Computers, Vol. 23, No. 6, pp. 484-490, 2006.

[9] D. Flynni et al., “AMBA: enabling reusable on-chip
designs,” IEEE Micro, pp. 20-27, 1997.

[10] P. Kongetira et al., “Niagara: A 32-way multithreaded Sparc
processor,” IEEE Micro, pp. 21-29, 2005.

[11] P. Salihundam et al. ,“A 2Tb/s 6×4 Mesh Network with
DVFS and 2.3Tb/s/W router in 45nm CMOS,” International
Symposium on VLSI Circuits, pp. 79-80, 2010.

[12] S. Satpathy et al., “A 1.07 Tbit/s 128×128 Swizzle Network
for SIMD Processors,” International Symposium on VLSI
Circuits, pp. 81-82, 2010.

[13] M. Lee et al., “Probabilistic distance-based arbitration:
Providing equality of service for many-core CMPs,” IEEE
MICRO, 2010.

[14] S. Satpathy et al., “SWIFT: A 2.1Tb/s 32x32 self-arbitrating
many-core interconnect fabric,” International Symposium on
VLSI Circuits, pp. 81-82, 2010.

411

17.6

