Swizzle Switch: A Self-Arbitrating High-Radix Crossbar for NoC Systems

Ronald Dreslinski, Korey Sewell, Thomas Manville, Sudhir Satpathy, Nathaniel Pinckney, Geoff Blake, Michael Cieslak, Reetuparna Das, Thomas Wenisch, Dennis Sylvester, David Blaauw, and Trevor Mudge

University of Michigan

Outline

- Swizzle Switch—Circuit \& Microarchitecture
- Overview
- Arbitration
- Prototype
- Swizzle Switch—Cache Coherent Manycore Interconnect
- Motivation \& Existing Interconnects
- Swizzle Switch Interconnect
- Evaluation

Swizzle Switch

- Embeds arbitration within crossbar-single cycle arbitration
- Re-use input/output data buses for arbitration
- SRAM-like layout with priority bits at cross-points
- Low-power optimizations
- Excellent scalability

Data Routing

Swizzle Switch Architecture

Data routing, arbitration,
And priority update control embedded within crosspoints

Outline

- Swizzle Switch—Circuit \& Microarchitecture
- Overview
- Arbitration
- Prototype
- Swizzle Switch—Cache Coherent Manycore Interconnect
- Motivation \& Existing Interconnects
- Swizzle Switch Interconnect
- Evaluation

Inhibit Based Arbitration

Least Recently Granted(LRG)

Outline

- Swizzle Switch—Circuit \& Microarchitecture
- Overview
- Arbitration
- Prototype
- Swizzle Switch—Cache Coherent Manycore Interconnect
- Motivation \& Existing Interconnects
- Swizzle Switch Interconnect
- Evaluation

64x64 Prototype

Measurement Results

Measurement Results

Outline

- Swizzle Switch—Circuit \& Microarchitecture
- Overview
- Arbitration
- Prototype
- Swizzle Switch—Cache Coherent Manycore Interconnect
- Motivation \& Existing Interconnects
- Swizzle Switch Interconnect
- Evaluation

Scaling Interconnect for Many-Cores

- Existing interconnects—Buses, Crossbars, Rings
- Limited to ~16 cores
- Other's Interconnect proposals for Many-Cores
- Packet-switched, multi-hop, network-on-chip (NoC)
- Grid of routers-meshes, tori and flattened butterfly
- Our Proposal
- Swizzle Switch Networks
- Flat single-stage, one-hop, crossbar++ interconnect

Mesh Network-on-Chip

Flattened Butterfly Network-on-Chip

Motivating Swizzle Switch Networks

- Uniform access latency
-Ease of programming, data placement, thread placement,...
- Low Power
- Simplicity
-Packet-switched NoCs need routing, congestion management, flow control, wormhole switching,...

Motivating Swizzle Switch Networks

- Unfairness $=$ Node $_{\text {highest_throughput }} /$ Node $_{\text {lowest_throughput }}$
- Hotspot Traffic = All nodes sending data to node $_{8,8}$
- Under Hotspot traffic, the Crossbar has a slightly less throughput than the Mesh but is $40 x$ more fair.

Motivating Swizzle Switch Networks

- In the Mesh, nodes closest to the center receive the highest throughput
- Under Uniform Random traffic, the Crossbar has more throughput than the Mesh and is 87% more fair.

Motivating Swizzle Switch Networks

Outline

- Swizzle Switch—Circuit \& Microarchitecture
- Overview
- Arbitration
- Prototype
- Swizzle Switch—Cache Coherent Manycore Interconnect
- Motivation \& Existing Interconnects
- Swizzle Switch Interconnect
- Evaluation

Top-Level Floorplan

Outline

- Swizzle Switch—Circuit \& Microarchitecture
- Overview
- Arbitration
- Prototype
- Swizzle Switch—Cache Coherent Manycore Interconnect
- Motivation \& Existing Interconnects
- Swizzle Switch Interconnect
- Evaluation

Evaluation

- Simulation Parameters

Feature	NoC (Mesh/FBFly)	SSN
Processors	64 in-order cores, 1 IPC, 1.5 GHz	
L1 Cache	32kB I/D Caches, 4-way associative, 64-byte line size, 1 cycle latency	
L2 Cache	Shared L2, 16 MB, 64-way banked, 8way associative, 64-byte line size, 10 cycle latency	Shared L2, 16MB, 32-way banked, 16-way associative, 64-byte line size, 11 cycle latency
Interconnect	3.0 GHz, 128-bit, 4-stage Routers, 3 virt. networks w/ 3 virt. channels	$1.5 \mathrm{GHz}, 64 \times 32 \times 128 \mathrm{bit}$ Swizzle Switch Network
Main Memory	4096MB, 50 cycle latency	

- Benchmarks
- SPLASH 2 : Scientific parallel application suite

Results—Performance \& QoS

Overall Performance

Results—Power

On average the SSN uses $\mathbf{2 8 \%}$ less power in the interconnect compared to a flattened butterfly

Which results in an average reduction in total system energy to complete the task of 11%

Summary

- Swizzle Switch Prototype (45nm)
- 64×64 Crossbar with 128-bit busses
- Embedded LRG priority arbitration
- Achieved 4.4 Tbps @ ~600MHz consuming only 1.3W of power
- Swizzle Switch Network Evaluation
- Improved performance by 21\%
- Reduced power by 28\%
- Reduced latency variability by $3 x$

Additional Detailed Slides

Arbitration Mechanism (Matrix View)

Least Recently Granted (LRG)

	X	X 1	X	X_{3}	X_{4}	Priority
In_{0}	X	1	0	0	1	2
In_{1}	0	X	0	0	1	1
In_{2}	1	1	X	0	1	3
In_{3}	1	1	1	X	1	4
ln_{4}	0	0	0	0	X	0

Round Robin Arbitration

Round Robin Arbitration

QoS Arbitration

Timing Diagram

Crosspoint Circuit

Regenerative Bit-line Repeater

Bit-line Repeaters
 Regeneration and Decoupling improves speed

Simulated bit-line delay improvement (5)

SSN Scaling: Simulation

Technology : 45nm
Supply : 1.1V
Temperature : $\mathbf{2 5}^{\circ} \mathrm{C}$

Regenerative repeaters improve SSN scalability

Swizzle Switch Network-on-Chip

Results-64-core with A9 O3 cores

Comparison of 64 Core Design (Cortex A9's)

