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Abstract—OQOxide breakdown has become an increasingly press-
ing reliability issue in modern very large scale integration design
with ultrathin oxides. The conventional guard-band methodology
assumes uniformly thin oxide thickness, resulting in overly
pessimistic reliability estimation that severely degrades system
performance. In this paper, we present the use of limited post-
fabrication measurements of oxide thicknesses from on-chip
sensors to aid in the chip-level oxide breakdown reliability
management. A key challenge, which is the focus of this paper,
is precisely predicting and managing the reliability condition
of each chip with a limited number of measurements and
quantifying the tradeoff between reliability margin and system
performance. Given the post-fabrication measurements, chip
oxide breakdown reliability can be formulated as a conditional
distribution that allows one to achieve a significantly more
accurate chip lifetime estimation. The estimation is then used to
individually tune the supply voltage of each chip for performance
maximization while maintaining or improving the reliability.
Experimental results show that, by using 25 measurements, the
proposed method can achieve an average of 19% performance
improvement, and a 27% maximum for a design with up to 50
million devices, with an average operation time of approximately
0.4 s per chip.
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oxide breakdown, post-

1. INTRODUCTION

Due to aggressive technology scaling, designing a reliable
system has become more challenging than ever [1]. The
worsening process variation increases susceptibility of the
system to various wear-out mechanisms [2]. Among these
reliability issues, oxide breakdown (OBD) has emerged as
one of the most pressing concerns. As gate oxide thickness
is scaled down to the nanometer regime, the stronger electric
field across the gate insulator results in faster formation of a
conduction path through the dielectric layer, aggravating the
risk of destructive breakdown [3]. Even with the change of gate
dielectrics nature (high-k dielectrics), the oxide breakdown

Manuscript received May 31, 2012; revised September 4, 2012; accepted
November 9, 2012. Date of current version March 15, 2013. This work
was supported in part by the National Science Foundation. This paper was
recommended by Associate Editor Y. Cao.

C. Zhuo was with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109 USA. He is now with
Intel Corporation, Hillsboro, OR 97124 USA (e-mail: cheng.zhuo@intel.com).

D. Sylvester and D. Blaauw are with the Department of Electrical Engineer-
ing and Computer Science, University of Michigan, Ann Arbor, MI 48109
USA (e-mail: dennis@eecs.umich.edu; blaauw @umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2012.2228303

a chip with thinner oxides
<--- standard deviation: 132.3 year

2.5f 99.99% reliability confidence
point: 2.2 year
2 S e
a chip with-thicKer oxides
ctandard deviation: 204.4 year
515 9% reliability confidence point: 5.9 year

chip lifetime distribution for the
ensemble of chips

standard deviation: 908.8 year
99.99% reliability confidence
Pelmio gr

0 260 400 600 800 1000 1400

Chip lifetime (year)

1200 1600

Fig. 1. Chip lifetime distribution for the ensemble of chips (blue dashed
curve) with oxide thickness variation of 30/u = 4% [8]. The distribution is
computed by generating transistor oxide thicknesses that follow the variation
model in [10] and then simulating the failure time of each chip in a Monte
Carlo fashion.

still remains a major reliability issue for both interfacial and
high-k layers in high-k stacks [4].

The conventional worst-case guard-band methodology an-
alyzes chip OBD reliability by assuming a minimum oxide
thickness across the chip and then sets a supply voltage level
to ensure the required lifetime of the chip. Clearly, such
a strategy is overly pessimistic and enforces an overly low
supply voltage for the ensemble of chips, causing significant
penalty in the performance budget [2], [3]. In practice, no two
transistors are identical or have precisely the same character-
istics. Instead, they vary significantly from wafer to wafer,
reticle to reticle, die to die, and across the die. Thus, some
dies with thinner than average oxides are much more likely
to fail than others. To more accurately account for the impact
of thickness variation on lifetime prediction, there have been
recent works incorporating both inter- and intra-die variations
into a statistical lifetime analysis [5], [6] or accounting for the
circuit functionality and actual stress modes [7].

However, without measurement, designers are not able to
know the oxide thickness of an individual transistor on a
particular die or determine the specific lifetime expectation
from one chip to another. The methods in [5]-[7] or Monte
Carlo simulation only relies on the general process variation
knowledge, which results in a more accurate but still highly
spread lifetime distribution for any chip. This is partly due
to the lack of unique information of a particular chip. In
other words, it may unfairly imply that a chip with thicker
oxides bears the same risk to failure as the one with thinner
oxides. Fig. 1 presents the simulated chip lifetime distribution
(blue dashed curve) of 50000 chips. The lifetime spread is
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partly from the innate randomness of the OBD mechanism,
but further increased by thickness variation. The variation has
an exponential effect on the tunneling current and injected
charge [8], [9]. This eventually leads to the lognormal shape
with a long tail of 908.8-years standard deviation and a 99.99%
reliability confidence point of 4.0 years.! Without any other
information, those numbers will be considered the reliability
for all the chips of the design and used to determine the
maximum supply voltage. However, each chip has unique
oxide thickness conditions for each transistor, and hence some
chips are bound to have a significant lifetime margin that could
be traded off for higher performance by allowing these chips
to operate at a higher supply voltage.

If the oxide thickness of each individual transistor on a
fabricated chip can be measured, the lifetime distribution
for that chip would be significantly tightened. Fig. 1 also
shows the reliability for two particular chips, one with thinner
oxides (red curve with triangles, 132.3 years standard devia-
tion/99.99% reliability confidence point is 2.2 years) and one
with thicker oxides (black solid curve, 204.4 years standard
deviation/99.99% reliability confidence point is 5.9 years).
This can be noted from the figure.

1) The estimation based on the blue dashed curve may
cause 50%—-100% difference from the actual condition.

2) The chip with a thinner oxide (red curve with triangles)
has a significantly higher risk to fail early and should be
operated with a lower maximum supply voltage, thereby
improving the overall reliability of the design. Con-
versely, the chip with a thicker oxide (black solid curve)
is less prone to failure and can be operated at a higher
supply voltage limit and hence obtain a performance
gain while still meeting the reliability target.

Thus, understanding the oxide thickness condition on a die can
result in both performance improvement and higher reliability.

Unfortunately, obtaining the oxide thickness condition for
all devices on a die is impossible in today’s chips with
hundreds of millions to billions of transistors. Recent advances
in compact oxide thickness sensors [11], [12] allow tens to
hundreds of sensors to be placed on a chip or even inside cores.
Thus, the key challenge, which is the focus of this paper, is:
how to precisely predict and manage the reliability condition
of each chip with a limited number of on-chip oxide thickness
measurements. This problem is nontrivial.

1) First, while the number of measurements is limited, the
number of transistors on a die in today’s technology
can be enormous, exceeding 1 billion. Therefore, it is
crucial to fully utilize the measurement information to
predict the oxide thickness for all devices as accurately
as possible.

2) Second, while we can measure the oxide thickness of
sensor device with reasonable accuracy, the thicknesses
of all other transistors remain uncertain and must be
modeled as random variables. Even with a fixed oxide
thickness, the reliability for a device itself is a random

!The reliability analysis typically requires more than 30 confidence point
due to the large volume of transistors and chips [24]. The 99.99% reliability
confidence point is defined as the time when the first 0.01% chips fail.
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Fig. 2. Proposed post-fabrication oxide thickness measurement-driven

supply voltage optimization flow.

function representing the probability the device can
survive to a certain lifetime [3]. The measurement-
driven chip reliability estimation, therefore, turns out to
have the form of a conditional multidimensional nested
stochastic process. Simple Monte Carlo simulation must
model both the random variation in oxide thickness
and the innate variation of OBD reliability itself and is
therefore extremely expensive in both time and memory.

3) Third, due to the ultrathin oxide thickness in today’s pro-

cesses, the discrete number of atoms along the vertical
dimension introduces a random, spatially uncorrelated
component to the oxide thickness variation. Hence, ox-
ide thickness across the chip shows noncontinuousness
and random nature from transistor to transistor. Recent
studies [13] on compressive sensing have exploited the
sparsity in frequency domain and achieved deterministic
process parameter estimation with a few measurements.
However, the independent variation and measurement
noise may induce high frequency components (nonspar-
sity) in the frequency domain and, hence, limit the
efficiency of compressive sensing to be applied in OBD
reliability.

In this paper, we propose a new statistical framework for
post-fabrication OBD reliability prediction and management
using a limited number of measurement points. The mea-
surements of oxide thicknesses for a subset of devices can
be conducted by on-chip sensors [11] or test structures [12],
which can easily be modified to assess the initial oxide
thickness instead of monitoring the degradation process.?
Fig. 2 illustrates the proposed post-fabrication flow, including
the OBD reliability prediction module using the introduced
OBD analysis. For each fabricated chip, the measurement is
performed once during post-silicon testing to find the initial
oxide thickness at the start of its lifetime. Then, the optimal
supply voltage limit is selected by the prediction module to
maximize performance while maintaining or improving chip
OBD reliability. Given the computed supply voltage limit, the
tester permanently stores the optimized supply voltage for each
chip using either fuses or embedded flash memory. This supply
voltage limit is then accessed by the dynamic voltage scaling

2For example, the sensor in [11] monitors the breakdown leakage, which is
exponentially dependent on the oxide thickness. The same sensor can be used
to collect the first few cycle data and calibrate the initial oxide thickness. The
process-dependent data can be characterized from test chips of the process to
enable such calibration.
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algorithms and, if available, dynamic reliability management
algorithms that control the chip operation during runtime.

The OBD reliability prediction and voltage tuning module
in this flow consists of three phases (which are also the major
contributions of the proposed work).

1) The first phase uses limited post-fabrication measure-
ments to reduce the uncertainty of the oxide thickness
for any unmeasured device. In our framework, we pro-
pose to separately account for the inter-die, intra-die
spatially correlated, random residual variation compo-
nents, and the measurement noise. We compute the inter-
die component using a maximum-likelihood estimation
method and the rest by leveraging the spatial correla-
tion between devices. Then, we construct a conditional
distribution based on the post-fabrication measurements,
while still preserving the correlation between devices in
a conditional covariance matrix.

2) Based on the conditional distribution, the second phase
applies conditional principal component analysis to pre-
dict the chip reliability [14]. The conditional principal
components are employed to derive a tightened lifetime
distribution of a particular chip for a given reliability
target. The chip lifetime is then bounded by a certain
confidence-level interval, the lower bound of which is
conservatively used for lifetime evaluation.

3) Finally, in the third phase, we present an optimization
flow to efficiently tune the chip maximum supply volt-
age. As a result, we can boost chip performance for
many chips while maintaining or improving reliability.

The remainder of this paper is organized as follows. In

Section II, we review the process variation model and oxide
breakdown reliability analysis. In Section III, we discuss how
to accurately estimate the oxide thicknesses of unmeasured
devices by treating inter- and intra-die variation components
separately. Section IV details the flow of chip reliability
prediction and management for performance maximization,
followed by the experimental results in Section V and the
conclusion in Section VI.

II. REVIEW OF OBD RELIABILITY ANALYSIS

The gate oxide degradation is dependent on oxide thickness,
transistor area, supply voltage, and temperature [3]. Although
many of the physical details are still under debate, most models
note the nondeterministic process of defect generation, even-
tually resulting in a statistically distributed oxide breakdown
time [16], [17] and the strong dependence of this random
process on oxide thickness. In this section, we will give a
brief review of the oxide thickness variation modeling and
previously developed statistical OBD reliability analysis.

A. Oxide Thickness Variation Modeling

The oxide thickness variation can be classified based on
the spatial scale over which it manifests [18], [19]. Given
the decomposition of global inter-die, intra-die spatially cor-
related, and random variation components, oxide thickness for
any device can be modeled as [10]

X =Ug+Zg + Zeorr + Ze (D

where up is the nominal oxide thickness. z, is the inter-
die variation component due to the long-range shifts in
oxidation temperature and pressure. Clearly, all the devices
on the same chip observe the same amount of z, in oxide
thickness, whereas z, varies for die to die. The fluctuation of
zg among different dies can then be modeled by a Gaussian
process N(0, 052,) [10]. zcorr is the intra-die spatially correlated
component that tends to affect closely placed devices in a
similar manner. It is typically modeled by a random vector
for m devices, Zecorr = [Zcor.1> Zcorr.2s ---s Zeorr.m], Which is a
multivariate Gaussian process [10], [18]

Zeorr ™ Nm(ov eorr)- (2)
The subscript of A denotes the dimensionality of the random
vector, and X iS an m X m covariance matrix for m devices.
A simplified spatial correlation model can be achieved by
partitioning the chip into N grids and assuming perfect cor-
relation within each grid [18], [19]. Thus, the devices within
the same grid have a correlation coefficient of 1 and bear
the same spatially correlated variation component, whereas the
devices in different grids (i, and jy, grids) have a covariance
of p; jafm, with a correlation coefficient p; ; <1 [18]. The
last component z. in (1) is the independent residual variation
resulting from certain local device scale effects, which is
modeled as an independent Gaussian process N(O, ‘752) [10].
In summary, o,, Xcor, and o, denote the uncertainness of
the variation components at different spatial scales, which can
be either achieved from prior knowledge or extracted from
measurements as in [10], [20], and [21].

B. Review of Statistical OBD Reliability Analysis

A common failure criterion for OBD is soft breakdown
(SBD), which is initiated by a small gate leakage increase
and eventually followed by un-recoverable hard breakdown.
SBD is considered an irreversible process with gate leakage
increase up to several orders [3]. Some recent works have
also noted that the leakage increase does not necessarily lead
to circuit or logic failure and circuit may even survive after
several breakdowns [3], [7]. Thus, the selection of the failure
criterions actually depends on the application or the design
under investigation [3]. In this paper, we limit our analysis to
determining the initiation of SBD and use this as our failure
criteria for large chips, especially CPU designs [3]. In other
words, the proposed framework considers the system to have
failed as soon as breakdown occurs for any device on the chip.

Due to its stochastic nature, the breakdown time for SBD
is modeled as a random variable. The SBD randomness is
typically modeled by the Weibull statistics [4], [16], [17], [22].
Even though it is extremely difficult to directly measure the tail
cell behavior at a low percentile of the reliability distribution,
some earlier works applied Poisson area scaling and found
that the tail distribution converges consistently to the Weibull
statistics [22], [23]. Thus, in this paper, we follow the use of
Weibull statistics to model the innate randomness of SBD [4],
(71, [16], [17], [22], [23]

F(t)=1— e @ A3)

where F is the cumulative distribution function (cdf) of time-
to-breakdown ¢, a is the device area normalized with the
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minimum device area, and « and B are the scale and shape
parameters of the Weibull model. B can be expressed as bx for
a given temperature and voltage, where x is the device oxide
thickness. The reliability function of a device is then

R(t)=P(T>1)=1— F(t) = e @, )
Since oxide thickness is nondeterministic at the design
stage, the device reliability can be interpreted as the condi-

tional reliability given its oxide thickness and can be written
as R(t|x;)

Riltlx) = P(T > t]x;) = / " sl )

where x; is the oxide thickness for the ith device and f(.)
denotes the probability density function (pdf). As is discussed
in [5] and [6], for a particular chip, if the thicknesses of all
devices are known as a priori then any device fails indepen-
dently of all other devices. The overall chip-level reliability
is

&m:A-~A HRMMﬂMW%Mm“dm (6)
i=1
where x is the vector of oxide thicknesses (xi, ..., X;), m is
the total number of devices on the chip, and f(xi,..., x,) is
the joint pdf of the gate oxide thicknesses for m devices.

In modern VLSI design, a chip can have millions to
billions transistors. To handle the tremendous dimensionality
of (6), [5], [6] proposed to project the parametric space of m
devices to two distinct random variables, sample mean («) and
sample variance (v) of the chip oxide thickness distribution,
which is the frequency distribution of observing certain oxide
thicknesses in a particular chip. Based on this, the conditional
reliability product [, R;(¢|x;) in (6) with m variables can
be simplified to a conditional probability R.(f|u, v) that only
depends on the sample mean u and variance v. The integral
of (6) is then compactly expressed as

R(1) = / / Re(tlus v) fun(ts )i dv (7)

where fuy(u, v) is the joint pdf of a Gaussian random variable
u and a chi-square random variable v [5]. R.(t|u, v) for a
particular chip can analytically be written as

R.(tu, v) = exp[_Aeln(;—)hu+(ln(é))2b2v/2] )
where A is the die area.

Although the statistical method in [5] and [6] can re-
duce some pessimism in the traditional guard band [3], the
formulation in (7) is still a design time method and only
utilizes the general process variation knowledge for a design,
without incorporating any post-silicon information. As in Fig.
1, the result obtained by [5] and [6] is still a wide banded
distribution. Thus, neither the statistical method [5], [6] nor
the guard-band method [3] can distinguish the unique process
condition of a particular die. Those methods are still overly
pessimistic and result in one global unnecessarily low lifetime
estimation for the ensemble of chips.

III. POST-FABRICATION MEASUREMENT-DRIVEN OXIDE
THICKNESS ESTIMATION

In this section, we will present a statistical framework
that uses a relatively small number of measurements to

significantly reduce the uncertainty of oxide thicknesses for
a particular die, and hence provide more accurate lifetime
estimation.

A. Problem Formulation

For one particular chip, the inter-die and intra-die variation
components (spatially correlated and random) are introduced
at different manufacturing stages and hence play very different
roles in the oxide thickness model. The inter-die component
induces the same increment or decrement to the oxide thick-
nesses for all the devices within the die and is a constant
in (1) for one die. On the other hand, the intra-die spatially
correlated and random components vary from device to device.
In practice, we cannot distinguish the sources of the variation
when the number of measurements is limited. Thus, in anal-
ysis, we combine the intra-die variation components together
and comprehensively evaluate their impact.

Given a chip dissected to N grids as in [18] with m devices
in total, the vector of oxide thicknesses for all the devices is

X =Up+ g+ Zeorr + Ze = Uchip T Zintra 9

where x = [x1, x2,...,x,,] is the oxide thicknesses for m
devices, uchip=ttg + 2 denotes the chip-level oxide thickness
mean for this particular chip and may be different from
one chip to another, z.,, is the spatially correlated variation
component as in (2), z. is the vector containing the random
variation component of each device, Zina=Zcorr+Ze 1S hence
the combined intra-die variation component that preserves the
spatial correlation among the devices.

Since z. can be interpreted as a multivariate Gaussian
process N, (0, Gflm), where I, is an m x m identity matrix,
Zintra 1S the sum of two multivariate Gaussians and remains a
multivariate Gaussian process

Zintra ™ Nm (0, Zintra)

where Tinga = Zeorr + 062 L.

The post-fabrication measurement-driven oxide thickness
estimation problem is formulated as follows.

Formulation 1: Given the thickness variation model in (9)
and the oxide thickness measurements of ny devices across a
particular die, estimate the oxide thickness of any unmeasured
device (including the components of ucpip and Zingra) and the
corresponding variance.

(10)

B. Model Simplification

The grid-based spatial correlation model in [18] indicates
that devices within one grid bear approximately the same inter-
die and intra-die spatially correlated variation components.
This is reasonable when we have relatively finer grids across
the chip. The difference in the oxide thicknesses for devices
within one grid are then completely attributed to the random
variation component, which is independent from one device
to another and hence cannot be deterministically predicted.
Instead of performing device-level estimation, we employ a
grid-based prediction scheme by associating every grid with
one random variable. The estimation corresponding to each
grid includes: 1) deterministic expected estimation; 2) variance
for estimation uncertainty; and 3) the correlation with the
estimations for other grids.
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Clearly, such modeling simplifies the complexity from the
dimensionality of millions (number of devices) to N + ny,
where ng is the number of sites to be measured and N denotes
the number of unmeasured sites with each representing one
grid.

After reformulating (9) to the granularity of a grid, both x
and z;,,, are now (N+ng)x1 vectors, and

an

where Xinra gria 18 an (N+ng)x(N+ng) covariance matrix for
N unmeasured sites corresponding to each grid and ny sites
to be measured. The entries in Xiyya gria can be obtained from
the covariance matrix Xy, in (10) by identifying the grids to
which the sites belong.

Zintra ™ NN+n0 (O, 2:intra,grid)

C. Estimating the Chip-Level Oxide Thickness Mean upip

Before measurements are conducted, the oxide thickness for
the sites to be measured remain unknown and hence can be
characterized by a multivariate Gaussian model as in (11)

Ny (tchips Zpnm)- 12)

Then, the measurements on ng sites s=[s, $2...5,,] can be
considered a sample vector drawn from this stochastic model,
with measurements acting as n observations. Thus, by using
the maximum likelihood estimation (MLE) [24], the maximum
likelihood can be achieved when

[1]1><I‘l(] En_lyln ST
[l]lxng E;rln[l]lTxno
where [1];4,, denotes a 1xn all-one vector. The correspond-

ing MLE estimation variance can be approximately bounded
by the Cramér-Rao bound as in [24]

13)

Uchip ~

var(uenip) X [y Sy 11 - (14)

D. Estimating the Intra-Chip Variation Component Zintra

If every site of a chip could be measured, the variance for
the random vector x would be reduced to 0. In practice, since
the number of measurements is limited, measured oxide thick-
nesses can only reduce the variance of unmeasured sites to a
certain level. In order to assess the impact of measurements,
we reorder and separate the oxide thickness vector x into two
subvectors as X = [s, Xy], where s represents the sites to be
measured and x, represents the unmeasured sites. Ziyra,grid
can then be written as

Emu ]
Euu

where X, is an ngxno submatrix containing the covari-
ance for sites to be measured, X,,, is an nox N submatrix
evaluating the covariance between any site to be measured
and unmeasured site, X%,, is an NXxng submatrix and the
transpose of X,,,, and X,, is an Nx N covariance submatrix
for unmeasured sites. It is noted that that both subvectors s
and x, are multivariate Gaussian variables with a mean of
Uchip and a covariance matrices of X, and X,,, respectively.

E mm

Eum (1 5)

Eintra, grid = [

Conditional variance of
a randomly selected site

N 7
0.9F 25% reduction‘
0.8~ ‘ =

52% reduction

0.7+

63% reduction

0.6

0.3~ 1
0.2

| . . . P R R R \
01 o] 1 4 9 16 25 36 4964 100 225 6é5
# of measurements (log-scale)

Normalized variance

Fig. 3. Reduction in variance of the conditional estimator uy,s=s, for a
randomly selected site with an increasing number of measurements. The
variance is normalized with respect to the variance when no measurement
is conducted.

Given the measurement s = sy at ng sites, the subvector x,
for the oxide thicknesses at unmeasured sites can then be ex-
pressed in a conditional way, i.e., Xy|S = S¢. Such an expression
illustrates the impact of measurements on unmeasured sites.
By exploiting the spatial correlation between x,, and s, the pdf
for this conditional random vector can be written as

f X(th s = 50)
fxuls—so (Xu) fs(s — So)
where fx(x) and fy(s) are pdfs for the multivariate Gaussian
random vectors X and s, respectively, fx, s=s,(Xu) 1S the condi-
tional pdf for x, given s = sy. Due to space limitation, we only
provide an outline while details can be found in [25], which
are also employed in some earlier works [26], [27].

Based on the decomposition of (15), we can define

(16)

Uy, |s = Uchip + (s — uchip)zrz,ln pI a7
2:X“\s =2y — Zum E;lln Xonu- (18)

Thus, given s = sy, (16) is still a multivariate Gaussian
NN(uxuls, 2:xu\s) (19)

where uy, s=s, and Xy |s defined in (17) and (18) are conditional
mean and conditional covariance matrix for the conditioned
random vector Xy |s=s, -

Intuitively speaking, the vector uy,-=s, provides a natural
estimation of the oxide thickness at the unmeasured sites,
whereas the diagonal entries of X, s evaluate the variance
of the estimation. The variance term bounds the remaining
uncertainty in the spatial correlation component as well as
the independent variation component. According to (18), the
conditional variance in Xy, s is reduced compared with the
unconditional variance in (15). Fig. 3 illustrates the trend of
variance reduction of the conditional estimator uy,s—s, for a
randomly selected site from the chip model in Fig. 1 with
regards to the growing number of measurements. It is noted
that with only nine measurements, the variance of iy, jjs=s,,
as computed in (18), is reduced by 63% compared with the
initial variance when no measurement is conducted.

E. Handling Measurement Noise

Electrical measurements can easily be contaminated by
measurement noise, which is one of the most fundamental
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problems in post-silicon validation. The presence of mea-
surement errors may bias the data and lead to inconsistent
parameter estimation.

In general, measurement noise is treated as a Gaussian
distribution according to the central limit theorem. The mea-
surement data from OBD degradation sensors also validated
the assumption of Gaussian measurement noise. Fig. 4 shows
the measured leakage data of degradation procedure from
three OBD degradation sensors [11] at different locations of
different test chips.> Each data curve represents the measured
degradation leakage for a certain period of time and comes
with different amount of measurement noise. Since leakage
degradation change on the same sensor is continuous with
time, the discontinuousness in the curve is highly related to
the measurement noise. By denoising the curve using a wavelet
filter, the histograms of the extracted measurement noises
for all three curves are illustrated in Fig. 5. The extracted
measurement noise has consistent close-to-zero mean and
around 1% standard deviation.

Based on the calibrated noise model above, assume that the
noise on each measurement site is modeled by

e~ N(O, o,). (20)
The measured data is the superposition of the measurement
noise and actual data. This random variable should be added
to the oxide thickness variation formulation to account for the

3The data was collected for the whole degradation procedure to calibrate
the measurement noise. The proposed methodology only requires the initial
state data from the sensors (the first few cycles), which takes limited test time.

Procedure: Chip-Level Oxide Thickness Mean Refinement
Input: measurements sg, estimated chip-level oxide
thickness mean ucnip, the estimator vector Uy, |s—s,»
tolerance ¢

Output: updated chip-level oxide thickness mean ucpip

1: Compute sample mean ZTyp, using (22);

2: While “TN+nu—uchip|‘ >0

3: Uchip = TN+no>

4: Compute Uy, |s—s, using (17);

5: Compute sample mean Z x4 n, using (22);
6:  End while

Fig. 6. Algorithm for chip-level oxide thickness mean refinement.

noise. The oxide thickness variation model is then

X = U +2Zg t+ Zeorr + Ze + € = Uchip + Zintra 2D

where e is the measurement noise vector. For the entry corre-
sponding to the measurement site, it follows (20), while for the
other entries, it is 0. Similar to (9), we have Zjya = Zeorr +Zc +€
to denote the intra-die variation after accounting for the
measurement noise, where Yo — = Tcor + 052 + 062. Since the
noise is considered a Gaussian, Zipgg 1S still a multivariate
Gaussian and the techniques in the earlier subsections can still

be applied for oxide thickness characterization.
FE. Chip-Level Oxide Thickness Mean Refinement

Due to the limited number of measurements, the initial MLE
for ucpip in (13) may not be the best estimator. By using
information from the measurements and the estimator in (17)
for the unmeasured sites, the chip level oxide thickness mean
Uchip can be further refined. In theory, uchip equals the sample
mean of all the sites, denoted as X .,

Trveng = S X [l]noxl + Uy, s=sp X [I]le.

N +ny

The deviation between Xu.,, and ucp could be attributed
to both the estimator error and statistics error. Thus, we can
perform a refinement step iteratively to reduce the deviation
to a negligible level, i.e., to make ucpip ~ Xy, by repeatedly
replacing ucpip in (17) with Xy, and then computing Xy,
with (22), as shown in Fig. 6. In general, the refinement is
completed within tens of iterations to reach certain tolerance,
e.g., 1073, Moreover, it is worthwhile noting that either the
estimation variance in (14) or the conditional covariance
matrix in (18) does not rely on uchp and remains unchanged
for the updated chip-level oxide thickness mean. Thus, the
complexity of each iteration is linear with N + ng.

(22)

G. Summary of Post-Fabrication Measurement-Driven Esti-
mation

We summarize the algorithm for measurement-driven oxide
thickness estimation in Fig. 7. The complexity of the procedure
is very low as most computations are analytically achievable.
The matrix inverse ¥, ! and matrix product in (18) are two
operations with relatively higher complexly, which depend on
the spatial correlation structure of the design and only need
to be computed once for a particular design with fixed mea-
surement sites. Since the number of measurements is limited
to fewer than hundreds, those operations can numerically be
computed within seconds. It is noted that the algorithm results
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Procedure: Post-Fabrication Measurement-Driven Esti-

mation
Input: measurements sq, process variation model in (9)

Output: Oxide thickness estimation for each device and
the corresponding estimation variance
1: Simplify the model as in subsection III-B to

achieve (11); . .
2:  Compute the chip-level oxide thickness mean and

corresponding variance using (13) and (14);

3: Estimate the intra-chip variation component Zintra
using (17)-(19);

4: Perform chip-level oxide thickness mean refine-

ment as figure 6; ) )
5:  Map the estimation and corresponding variance at

the granularity of grid level to the devices in the
same grid;

Fig. 7. Flow for post-fabrication measurement-driven estimation.
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Fig. 8. Accuracy of chip-level oxide thickness mean estimation. (a) His-
tograms of relative errors for MLE in Section III-C and MLE with refine-
ment (MLE+Refinement) in Section III-F. (b) Scatter plots for MLE and
MLE+Refinement (nominal oxide thickness is 1.67 nm).

in one random variable for each grid, which represents all
the devices in the grid. In other words, the estimation for the
variable will be projected to all the other devices within the
same grid to compute the chip reliability.

We apply the proposed algorithm in Fig. 7 to 10000
sample chips in 65-nm technology. Each chip has 0.5 million
devices, the oxide thicknesses of which are generated by
Monte Carlo sampling according to the variation model in
[10] and feature parameters in [8]. The chip is then imposed
a 50x50 (=2500) grids with 100 uniformly distributed sample
sites.* The estimated chip-level oxide thickness mean up;p is
compared with the actual mean of the oxide thicknesses for
all the devices in Fig. 8. From either the histogram or the
scatter plot, it can be seen that the estimation achieved by
the MLE in Section III-C is very accurate with a maximum
relative error of 0.77%, while the mean refinement algorithm
(in Section III-F) can further reduce the relative error to a
maximum of only 0.33%. We then examine the estimation
accuracy at the device level (achieved by step 5 in Fig. 7)
for a randomly selected chip. Fig. 9 demonstrates the contour
of the difference between the actual oxide thickness and the
estimated thickness mapped from the estimator uy,s=5, in (17)
for all the devices on a chip. With 100 measurements, the
accuracy of the oxide thickness estimation for each device is
already very high, with average relative error of 0.59% and
maximum relative error of 2.8%. Those errors are mainly due
to the unpredictable random residual variation but are bounded
by the covariance matrix X s in (18).

4The measurement sites are selected in a chessboard manner.

7

Relative error

Fig. 9. Contour of the device-level oxide thickness estimation error for a
chip with 0.5M devices and 100 samples.

TABLE I
NOTATIONS USED IN OBD RELIABILITY ANALYSIS

Notation Definition
m Number of devices in a chip
N Number of grids in the spatial correlation model
X=[x1,...,Xmn] The oxide thicknesses for m device of a chip
The conditional random vector for oxide thick-
Xu[So nesses of unmeasured sites, given the measured
oxide thicknesses of sg
Uy, |s=s Mean of xy|sg, given measurements So
Zxyls=sg Variance of Xy|sp, given measurements S
fmz% The sample mean for m devices of a chip
v:m‘:ijx”’)z The sample variance for m devices of a chip
R(ty) Chip reliability at time #p, which is Pr(t > #g)
Trarget Chip design lifetime target
R, Chip reliability target at the end of lifetime
Quantile-based time-to-failure (QTTF)’, de-
T, fined as
quargTq {R(Ty)=Pr(t>T,)=R;}
B d; denotes the number of unmeasured devices
Do =1[d,, ...dy] in the iy, grid
D = diag(Dy) A diagonal matrix with diagonal vector of Dy

IV. MEASUREMENT-DRIVEN OBD RELIABILITY
PREDICTION AND MANAGEMENT

Based on the oxide thickness estimation discussed in the
previous section, we performed a statistical reliability analysis
to tighten the lifetime distribution of a chip. Other than the
oxide thickness variation, the reliability is also impacted by
other variation sources, such as threshold voltage, temperature,
etc. Among the variations source, oxide thickness variation is
the major factor that impacts the reliability [16], [17], [22],
[31], [32]. Here, we focus on chip-level reliability analysis by
incorporating the oxide thickness variation and consider the
worst-case operating temperature to ensure a correct operation
throughout the entire lifetime. By using thermal sensors or
process sensors, as in [28] and [29], we can construct the tem-
perature/process profile of the chip and incorporate the other
variation sources by performing analysis at the granularity of
functional blocks or subblocks, where devices within a block
are assumed to bear the same parameter.

For a chip with m devices and N grids for a spatial
correlation model, we define the following notations in Table
I for the remainder of this paper.
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A. Measurement-Driven Reliability Prediction

The challenge of chip-level statistical OBD reliability
analysis is the large dimensionality of the integral in (6).
Reference [5] proposed to map millions of random variables
to two random variables, sample mean and variance of the
chip oxide thickness distribution. However, for a conditioned
random vector Xu|sg, the variables do not bear the same
mean and cannot employ the method in [5]. Thus, it is
essential to revisit the statistical OBD reliability analysis
when measurements are available.

1) Spatial Correlation Characterization Using Conditional
Principal Component Analysis: Given the measurements S,
Xu|So is still a multivariate Gaussian random vector. As in (18),
its covariance is

quls = Xuu — Zum E;rlnzmu

According to the principal component analysis (PCA), this
multivariate Gaussian can be mapped to another set of mu-
tually independent random variables with zero mean and
unit variance [5], [18]. Then, for a device in the ith
grid, its conditional oxide thickness x,;|sp can be canon-
ically expressed as a linear combination of the principal
components
N

Xu,i180 = Ux, ijs=sy + ZFI AijZj (23)
where N is the number of principal components (the same
as the number of grids in the spatial correlation model),
zjs represent the N independent random variables to char-
acterize the spatial correlation, the coefficients A; ;s repre-
sent the sensitivity of thickness variation with respect to
the jth principal component for the random variable in
the ith grid. Thus, the conditional random vector of N
unmeasured sites can be written compactly with principal
components

XulSo = Uy, js=s, T Z X P 24)

where P, is an N x N matrix containing the sensitivity
coefficients A; js for different principal components and can
be achieved by eigenvalue decomposition, z = [z1, 22, ...2y] 1S
a vector of principal components.

As defined in Table I, the conditional sample mean and
sample variance (X, and v) can be expressed in terms of
principal components

X = [(XulS0) Dy + 50 X [Mnyx11/m (25)

v = (XulSo — X)) D(XulSo — Xn)” + (S0 — X )(So — T)”
m—1
X, and v describe the characteristics of the conditional chip
oxide thickness distribution given measurements sg. Based on
(22), (25) can further be simplified to

(26)

1
T T
Xm = Uchip + ZZ X Py Dy = Uchip + UeoefrZ (27)

5 Actual time to failure is a stochastic process and cannot be known until the chip fails.
Thus, we introduce a quantile-based time-to-failure which can be interpreted as certain
quantile of the time-to-failure distribution. In other words, it is the actual time when chip
meets certain reliability target. Note that this value is a deterministic value if the oxide
thicknesses of all the devices are known.

where Uceetf = iDo P)\T . Thus, X,, remains a Gaussian

Xm ™ N(uchipv var(X,)) (28)

where var(x,,) = Var(uchip) + ucoeffucoeffT-
After expanding the numerator of (25), the conditional
variance v can be written as
V= Vconsl + 2Vl + VZ (29)
m—1
where Vs 18 a constant, and V; and V, are random variables.
The formulations can be found in

T
Veonst = (uxu\s=so - uchip)D(uxulszso - uchip)

+(So — Uechip)(So — Uchip)” (30

Vi =Veeiz', Vo=2zVz' (31

Veoeff = Ux, |s=sy DP)\T —(m- Uchip — SO[l]noxl)ucoeff (32)
V = (P} + [Uyuiteerr) D(P] — [Mnxilcoer).  (33)

Based on (30)—(33), it is found that V; is a Gaussian and V,
has the form of a quadratic normal product, in which V is a
positive and symmetric matrix. The uncorrelation between V;
and V5, X,, and v can be proved in the following two lemmas
(the details are presented in the Appendix).

Lemma 1: V|, and V, in (31) are uncorrelated.
Lemma 2: X,, in (25) and v in (26) are uncorrelated.

Based on Lemma 1, the mean and variance of v can then

be computed from (29) and (30)

E(v) = [Veonst + tr(V)]/(m — 1) (34)
(V) 4 r
var(v) = (m — 1)2 + (m — 1)2 Veoeff Veoeff ™ - (35)

As detailed in [30], a quadratic normal product random
variable as V, can be accurately approximated by a chi-square
distribution, i.e., Vy ~ a2, with & = “07) and b = 2L,
where #r[.] is the sum of diagonal entries. Since the conditional
covariance entries in Xy |s are reduced as in (18), the principal
coefficients resulting from the decomposition of Xy s are
then small and eventually result in a matrix V with small
diagonal entries and almost negligible off-diagonal entries.
Thus, the degree of freedom for the chi-square distribution
b= [ZE@]; is close to N. Given the central limit theorem, the
chi-square distribution with a large degree of freedom can
be well approximated by a Gaussian distribution [24], [30].
Fig. 10(a) shows a histogram of V,, with a degree of freedom
of 2209 (close to N = 2500), the samples of which are
collected in a Monte Carlo simulation using (30). The
histogram clearly shows Gaussian-like curves with fitting
goodness of 0.98 (R-square) and validates the proposed
Gaussian approximation. Since both V| and V, are Gaussians,
the un-correlation in Lemma 1 indicates the independence
of V; and V,. Thus, v in (29) can also be characterized as a
Gaussian random variable.
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Fig. 10. Comparison of the histogram of chi-square random variable V5 in
(30) with degree of freedom of 2209 (N = 2500) and the fitted Gaussian
curve. The fitting goodness is 0.98 (R-square).

2) Post-Fabrication Measurement-Driven Lifetime Predic-
tion: Once the underlying distributions of X,, and v are char-
acterized, we can conduct the post-fabrication measurement-
driven reliability prediction for a particular chip and analyze
the quantile-based time-to-failure® (QTTF) for a given relia-
bility target R, by using (8) from [5]

R(T, [T, v) = exp[_Aeln(%)b}"ﬁ(ln(%)b)Zv/Z] =R, (36)
where A is the chip area, o and b are the parameters for
the device Weibull reliability function [16], [31]-[33]. This
equality illustrates the actual quantile-based time-to-failure
when chip meets ceratin reliability target. The QTTF is then
compared with design lifetime T to evaluate chip reliabil-
ity. To simplify the analysis, we introduce a supplementary
random variable y = In(7,/a)b to derive the distribution of 7,
(QTTF), and rewrite the equation above as

v/2 X ¥* + %, X ¥ — In(—In(R,)/A) = 0. (37)
The solution to (37) is
%, + \/ffn +21n(=1In(R,)/A) x v
Yy =y@&n,v) = . (%)

In other words, for a given reliabilityvtarget R;, y is arandom
function depending on the distributions of X, and v.

By noting that both X, and v have limited variance, we
can further simplify (38) by the delta method for first-order
approximation [24]

N _ ay dy
y & y(E@Xny), E(v) + [a, %”E@W,),E(v)

X[Xn — EGn), v — E)]". (39)

Since both X, and v are Gaussians and uncorrelated, y follows
a Gaussian process with mean and variance

—E(,) + \/ E(%)? + 2 In(— ") ()
E)

E(y) = (40)

var(y) = [(%)2, (%)2]|E<;m>,E<,,>[var(fm>, var(v)]’.  (41)

As T, = aexply/bl, T, can then be characterized as a
lognormal distribution, with mean and variance

E(T,) = o x exp(? + Vzrb(i/)) (42)
var(y) 2E(y) var(y)

var(T,) = az[exp( )—1] exp(T + ). (43)

b? b?

f’Tq is defined as Tq:argrq{R(Tq):Pr(t>Tq):R,} as in Table I. In other
words, it is the quantile of reliability distribution for certain reliability target
R;.

B. Reliability Management and Performance Optimization

In practice, the design objective may be a certain design
lifetime Ty With a predefined reliability requirement R;,
i.e., the probability of chip failures may not exceed 1—R,
within T years lifetime. However, due to process variation,
some chips have thinner oxides and are quicker to fail. The
tightened QTTF distribution 7}, enables us to quantitatively
evaluate whether the chip will meet the design lifetime target.
The next question is then how much voltage we need to tune
to optimize the performance, which will be discussed in the
following optimization flow.

Due to the remaining uncertainty of the oxide thicknesses,
QTTEF itself is a distribution as in (42) and (43). We therefore
use the lower bound of the distribution with a certain confi-
dence to ensure a robust design and margin for other variation
sources. Conservatively, with a 99.9% confidence level, we
can derive the following one-sided confidence interval:

E(y) — 34/var(y)
— |

T, € [aexp 0] 44)
where the moments of y can be computed from (40) and (41).
The lower bound of (44) is then denoted as 7, and used to
evaluate chip lifetime in optimization. In other words, after
optimization, we may push the distribution of QTTF to the
right of Tiyger and have 99.9% confidence that the chip will
meet the lifetime target. Since both parameters o and b in
(44) depend on supply voltage [31]-[33], we formulate the
following to maximize the supply voltage while 7j, meets the
design lifetime target.

Maximize voltage 45)
subject to
E(y) — 34/
Ty, = a(voltage) exp E) = 3yvary) > Target (46)
b(voltage)
Umin < voltage < vy 47)

where voltage denotes the maximum supply voltage available
for the chip, the first constraint in (46) implies that the 99.9%
confidence lower bound of QTTF is larger than the design
lifetime target, and the second constraint in (47) denotes the
possible voltage tuning range. This optimization problem is
equivalent to finding the feasible domain of the inequality in
(46), where the parameters of the device reliability function
(ax(voltage) and b(voltage)) indicate the underlying depen-
dence on supply voltage. In our implementation, we adopt the
linear models as in [31]-[33], and hence achieve a quadratic
inequality from (46). As a result, the optimization flow above
eventually reduces the failure rate to improve reliability yields,
while the performance is also enhanced by reducing lifetime
safety margins.

C. Summary of OBD Reliability Prediction and Management

The flow for post-fabrication measurement-driven reliability
prediction and management is summarized in Fig. 11. Given
no measurements for a particular chip, we first estimate the
oxide thicknesses and corresponding variance using a con-
ditional multivariate Gaussian model. The conditional spatial
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Procedure: Post-Fabrication Measurement-Driven OBD

Reliability Prediction and Management

Input: measurements sy, process variation model in

(9), reliability target and design lifetime

Output: optimized supply voltage

1: Given measurements sg, estimate the conditional
oxide thickness and covariance matrix with the
flow in figure 7;

2:  Apply PCA to the conditional covariance matrix
and obtain the underlying distributions of x,,, and
v using (27)-(35);

3: Estimate tightened chip lifetime distribution using
(42) and (43);

4: Solve the optimization problem in (45)-(47) to
achieve the optimized supply voltage;

Fig. 11. Procedure for post-fabrication measurement-driven OBD reliability
prediction and management.

correlation is then explored by conditional PCA to derive the
distributions of Xx,, and v, which characterize the underlying
conditional chip oxide thickness distribution and help achieve
a tightened lifetime distribution. The lifetime estimation then
allows an optimization flow to quantify tradeoffs between
reliability and supply voltage/performance.

V. EXPERIMENTAL RESULTS

The proposed framework was implemented and tested on
several designs using 65-nm devices (nominal oxide thickness
is 1.67 nm). The defect generation relationships for the tech-
nology node and the technology dependent parameters of the
oxide reliability function model are obtained from [16], [31]-
[33], which are used in the device-level reliability model. In
practice, this can be obtained by a one time per technology
characterization using test devices.

Seven designs are employed in the experiment, including
six synthetic circuits that were automatically generated
and an alpha processor design with 15 functional modules.
For each design, we collected 10000 chips by Monte
Carlo simulation that follows the thickness variation model
discussed in Section II. According to [8], the 30/u ratio
for oxide thickness variation is assumed to be 4% for the
nominal value, and then split into 50% global variation, 25%
spatially correlated variation, and 25% independent variation
[10], [27]. The measurement noise model is based on the
calibration of the degradation sensor data in [11] with zero
mean and 3o0/u = 3%. Since the real measurement data for
thickness correlation was unavailable, the covariance matrix
for thickness variations was derived from an exponential
decaying function of the respective distance [10], [20].

A. Efficacy of the Proposed OBD Reliability Prediction

To evaluate the accuracy of the proposed method, the
conditional QTTF distribution for a chip was also computed by
Monte Carlo simulation with an accept-and-reject strategy. The
simulation only accepted sample vectors with similar entries at
the sample sites, the tolerance of which was set to 0.01 nm in
our implementation. This is equivalent to exploring the param-
eter space of the conditional random vector xy|sg. The results
are shown in Fig. 12 for a design with 0.5 million devices
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—99.9% confidence lower bound| [l #
—e—Mean of the predicted pdf
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Fig. 12. Accuracy comparison of the quantile-based time-to-failure (QTTF)
histogram generated by Monte Carlo simulation and predicted QTTF pdf using
proposed method (fitting goodness is 0.96 for R-square). The design has 0.5M
devices and 25 samples with 2500 grid cells for spatial correlation modeling.
The reliability target R; is set to 99.99% (100 failures per million).
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Fig. 13. Reduction in the variance of 99.99% quantile-based time-to-failure
(QTTF) distribution for a particular chip with increasing number of samples
(1, 2, 4, 25, and 100 samples).

and 25 measurements. That the predicted lognormal pdf using
the samples in Sections III and IV shows good agreement
with the histogram of Monte-Carlo simulation (1000 sample
chips). The difference between the mean of the histogram and
lognormal pdf is 0.038 years. The 99.9% confidence lower
bound of QTTF is 3.203 years that demonstrates the tightness
of the distribution.

For the same chip, we also explored how the predicted
QTTF distribution changes when the number of samples is
increased. Fig. 13 clearly shows the reduction in variance as
the number of samples grows. It is interesting to note that
even one or two samples provide sufficient information to
tighten the distribution, whereas 100 samples help reduce the
standard deviation of the distribution to only 0.16 years. The
difference between the actual QTTF point (for a reliability
target R, = 99.99%) and the mean of the predicted QTTF
distribution (using 100 samples) is only 0.03 years (0.8%
estimation error), while the conventional guard band is 2.07
years with almost 50% estimation error.

Moreover, we studied the convergence of the mean and
99.9% confidence lower bound (i — 30) of the predicted
QTTF distribution to the exact values, as shown in Fig. 14 for
two chips, one with thicker oxides and another with thinner
oxides. For each particular sample number, we picked ten
different configurations (placement) of sample sites and then
computed the 10 set mean/99.9% confidence lower bound of
QTTEF distribution to achieve the error bar. Note that the exact
value can only be obtained by having complete knowledge of
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Fig. 14.  Convergence of the mean and 99.9% confidence lower bound of the
predicted quantile-based time-to-failure (QTTF) distribution with increased
samples. (a) Chip with thicker oxides. (b) Chip with thinner oxides.
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Fig. 15. Reliability management results with increased samples for 10000
chips of a 0.5M-device design: performance improvement and number of
tuned chips that fail to meet target after optimization. Conventional guard-
band is employed as baseline for comparison. The results for 0 samples in
the figure are from the method in [5]. Others are from the proposed method.

all transistor oxide thicknesses on the chip. When only one
or two samples are available, the results may be dominated
by the randomness of sample site and have a relatively larger
variation. However, with an increasing number of samples,
both the estimated values or their variance converge quickly.

B. Reliability Management and Performance Optimization

In this subsection, we applied the proposed post-fabrication
measurement-driven methodology to tune the supply voltage
of 10000 chips of a synthetic 0.5M-device design to ensure
reliability while maximizing performance. The lifetime target
T, was set to four years for a reliability target R, = 99.99%
and the supply voltage tuning range is 0.8 V to 1.3 V. The re-
lationship between oxide thickness, voltage, and performance
is calibrated by SPICE simulation on 65 nm standard cells.

Fig. 15 shows the tuning results using a conventional guard-
band design-time statistical analysis in [5] and [6] (denoted as
0 sample in the figure) and the proposed methodology using
different numbers of samples. The guard band that assumes
minimum oxide thickness across the chip achieved a single
supply voltage for all the chips (0.858 V) and was employed
as the baseline for comparison. The other two methods used
99.9% confidence lower bound of the predicted QTTF distri-
bution as the evaluation of chip’s lifetime. Since [5] uses a
more accurate model of the oxide variation compared to the
baseline approach, it assigns the ensemble of chip a slightly
higher supply voltage of 0.875 V. However, since it is unaware
of the unique condition of each particular chip, it remains
overly pessimistic and results in a merely 3% performance
improvement. On the other hand, with only 25 samples, the
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Fig. 16. Distributions of (a) optimized supply voltages and (b) performance
improvement with different numbers of samples.
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Fig. 17. Comparison of the quantile-based time-to-failure distribution of
the chips optimized by the proposed framework, bilinear interpolation based
method, and compressive sensing based method.

proposed methodology can obtain a well-tightened QTTF
distribution and a more precisely optimized voltage for each
chip, achieving 15% performance improvement on average and
26% improvement at maximum.

Moreover, although [5] since the proposed methodology
provides more accurate prediction it quickly reduces the
number of failures to O with increased samples. Even for
those chips that fail to ensure reliability, their QTTFs are very
close to the design lifetime target. As shown in the figure,
with a four-year-target and four samples, two tuned chips fail
to meet lifetime target with QTTFs of 3.98 and 3.95 years,
respectively. Fig. 16 presents the distributions of optimized
supply voltage and the resulting performance improvement
using different numbers of samples in tuning. Both plots show
a shift to the right with increased samples, indicating the
capability to choose a more reasonable supply voltage when
more information is available.

C. Reliability Management With Measurement Noise

In this subsection, the proposed framework is applied to the
data with measurement noise. The noise model is calibrated
based on the degradation data from the degradation sensors [9],
[11], which follows a zero mean Gaussian with 30/u = 3%.
The estimation accuracy and reliability management results of
the framework are compared with two other methods.

1) Bilinear interpolation (BI) based method uses bilinear
interpolation to estimate the device oxide thickness.

2) Compressive sensing (CS) based method [13] uses com-
pressive sensing to estimate the device oxide thickness.

Both bilinear interpolation and compressive sensing utilize
the smoothness in either the spatial domain or the frequency
domain to achieve point estimate, but do not bound the
uncertainty of the estimation. Table II summarizes the oxide
thickness estimation results by the three methods under two
scenarios: sample data with measurement noise and without
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TABLE I
OXIDE THICKNESS ESTIMATION ACCURACY COMPARISON OF THE PROPOSED FRAMEWORK, BILINEAR INTERPOLATION (BI) BASED METHOD, AND
COMPRESSIVE SENSING (CS) BASED METHOD FOR SCENARIOS WITH AND WITHOUT MEASUREMENT NOISE

Without Measurement Noise With Measurement Noise
Design #dev. Average Relative Error Std. Relative Error Average Relative Error Std. Relative Error
Proposed CS BI Proposed CS BI Proposed CS BI Proposed CS BI
A 80K 0.9%/1x 1.2x 1.3x 0.7%/1x 1.2x 1.3x 2.4%I1x 1.1x 1.1x 1.6% /1x 1.2x 1.3x
B 500K 0.9%/1 x 1.1x 1.2x 0.7%/1 x 1.1x 1.2x 1.0%/1 x 1.2x 1.3x 0.7%/1 x 1.2x 1.3x
C 10M 1.0%/1x 1.1x 1.2x 0.7%/1x 1.1x 1.2x 1.0%/1x 1.2x 1.3x 0.8%/1x 1.2x 1.3x
Average 0.9%/1 x 1.13x 1.23x 0.7%/1x 1.13x 1.23x 1.5%I/1 % 1.17x 1.23x 1%/1x 1.2x 1.3x
The results are collected from 10000 chips with 25 samples per chip. The proposed method is used as baseline for comparison.
TABLE III " Performance 1o b
FAILURE RATE COMPARISON OF THE PROPOSED FRAMEWORK, BILINEAR 2 0] oo 2 6o 1 2 e
INTERPOLATION (BI) BASED METHOD, AND COMPRESSIVE SENSING (CS) I Fiii e s
BASED METHOD FOR SCENARIOS OF SAMPLES WITH AND WITHOUT g A [
MEASUREMENT NOISE 3 o 3 ol [ metos e54v
Without Measurement Noise | With Measurement Noise ff %
Design Failure After Optimization Failure After Optimization 2 .
Proposed CS BI Proposed CS BI 0 J .
A 0% 59% 63% 0% 65% 69% C;w\Zp per;t?rmanlg \mprwo%/emegg(%) 2o DBOptrm\zed s%%g\yvo\(age ) 10
B 0% 55% | 61% 0% 67% | 70% (2) )
C 0% 58% 62% 0% 63% 67% Fig. 19. (a) Performance improvement histogram and (b) optimized supply
Average 0% 57% 62% 0% 65% | 69% voltage histogram of 10000 chips for an alpha-processor-like design with
0.84M devices and 25 samples.
S ' ' ' T TABLE IV
Es
% 2 IMPACT OF MEASUREMENT NOISE ON THE RELIABILITY MANAGEMENT
[=% g 10
“é, % |:'without measurement noise RESULTS BY THE PROPOSED FRAMEWORK
5 E = “-with measurement noise
< 7 ! 55 700 360 655 3500 Without Measurement Noise | With Measurement Noise
#grids used in the spatial correlation model Design Opt. Volt. Perf. Il’l’lpl‘O. Opt. Volt. Perf. Il’l’lpl‘O.
Fig. 18. Impact of the correlation model granularity on the reliability man- Ave. | Std. | Ave. | Max. | Ave. | Std. | Ave. | Max.
agement result for design B (with 25 samples per chip). A 0.981 | 0.026 | 15% | 22% | 0.979 | 0.026 | 14% | 22%
B 0.982 | 0.028 | 15% | 26% | 0.980 | 0.028 | 15% | 26%
measurement noise. Columns 3-8 show the relative estima- C 10961]0.026 | 18% | 27% | 0.960 | 0.026 | 18% | 27%

tion error of the three methods for the scenario without
measurement noise and columns 9-14 for the scenario with
measurement noise. On average, the proposed framework
achieves around 0.9% estimation deviation for the scenario
without measurement noise and 1% deviation for the scenario
with measurement noise. On the other hand, compared with
the proposed method, the CS and BI methods show 10%-
20% more deviation and 20%-30% more deviation for the
two scenarios, respectively.

The thickness estimation is then used to compute the
chip reliability and tune the maximum supply voltage by
the algorithm in Section IV-B. After tuning, the chip that
fails to meet the target reliability for the target life time is
considered to be a failure unit. The failure rate of the optimized
designs by the three methods are presented in Table III. The
proposed method is able to achieve O failure across all the
designs for the scenarios with and without measurement noise,
while the other two methods have 60%—70% failure rate. The
large failure rate of other two methods can be attributed to
the inaccurate thickness estimation and the lack of scheme
to bound the estimation uncertainty. The reliability is expo-
nentially dependent on the oxide thickness. Due to the large
number of devices, a small amount of inaccuracy may lead to
a much larger reliability prediction error. Without a scheme to
bound the estimation uncertainty, the voltage tuning based on
such prediction tends to be aggressive and eventually causes

significant failure rate. Moreover, the measurement noise may
introduce more high frequency components and limit the
effectiveness of bilinear interpolation or compressive sensing.
Fig. 17 shows the optimized QTTF distributions of design
B for the three methods. The QTTF for the scenario with
measurement noise is more distributed than the one without
noise, as noise increases the uncertainty in the estimation and
requires a slightly larger bound to ensure the reliability target.

Table IV summarizes the performance improvement results
after reliability management. Columns 2-5 display the average
and standard deviation of the optimized voltage, the average
and maximum performance improvement (compared with the
guard-band method) for the scenario without measurement
noise and columns 6-9 display the results for the scenario
with measurement noise. For large designs, the impact of
measurement noise on the optimized performance is negli-
gible between the two scenarios, as the proposed work is
able to accurately identify and bound the uncertainty in the
estimation. Fig. 18 compares the impact of the correlation
model granularity on the performance optimization result. The
solid curve is the case without measurement noise and the
dashed curve is with measurement noise. Even with a one-
grid correlation model, the proposed method can still achieve
around 7% performance improvement on average for both
cases.
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Fig. 20. Average runtime per chip and average performance improvement for
seven different-sized designs (10000 chips for each design and 25 samples
per chip). Conventional guard band is employed as a baseline.

D. Scalability

The scalability of the proposed methodology is examined
in both its dependence on design complexity/size and run-
time. We first applied the approach to an alpha-processor-like
design, with 15 functional blocks and 0.84M devices in total.
Due to the functional block difference, the grids for spatial
correlation model have nonuniform densities, i.e., each grid
has different number of devices. We sampled 25 devices per
chip and tuned 10000 chips resulting in a performance im-
provement of 25% at maximum and 17% on average compared
with the guard-band method, as shown in Fig. 19.

We then applied the proposed method to tune 10000
chips of seven different designs and recorded performance
improvement and average runtime per chip. Fig. 20 shows
a flat curve of runtime of around 0.38 s, and a slightly
growing trend of average performance improvement from 15%
to 19% and maximum improvement from 22% to 27%. The
methodology runtime relies more on the number of grids for
spatial correlation model instead of circuit size as validated in
the figure, which is an appealing feature for modern processors
with increasingly larger designs.

VI. CONCLUSION

This paper presented a post-fabrication measurement-driven
OBD reliability prediction and management methodology.
The methodology used limited measurements to estimate
the oxides condition of a chip. The estimation was then
incorporated into a statistical model to more accurately
predict chip lifetime distribution, which is fed to an
optimization flow to trade off reliability margin and system
performance. Experimental results showed that even for a
design with up to 50 million devices, the methodology can
achieve 19% performance improvement on average and 27%
at maximum compared with conventional guard-band, while
with an average runtime of only 0.4 s.

APPENDIX

Lemma 1: V| and V; in (31) are uncorrelated.
Proof: Since z;s are standard independent Gaussians and
V1 is the weighted sum of z;, E(V}) = 0, where E(.) computes
the expected value of a random variable.

For any i, j, k, E(z;) = E(z;z;zx) = 0. Thus, it can be
derived from (30) that

E(ViVs) = Veoett E(2"2V2Z") = 0. (48)

As a result, we have E(V))E(V,)=E(V,V,), which indicates
Vi and V, are uncorrelated. [ ]
Lemma 2: X,, in (25) and v in (26) are uncorrelated.
Proof: Similar to Lemma 1, for any i, j, k, E(z;) =
E(z;zjzx) = 0 and E(ziz) = 1. Thus, it can be derived from
(27) and (29) that

EXn)E) = tchip X [Veonst +r(V)]/(m —1).  (49)
For E(x,,v), it is formulated as
EG,v) = Uchip Veonst + 2E@m V1) + EGy, V2). (50)
m—1
By definition, E(x,,V}) is
En V1) = Ucoett Vegets- (51)

Since PAP{ is a unit matrix, the equation above can be
simplified with (27) and (32)

— DO T
Ex, V)= ;(Doums:so +80[Llngx1 — M X Uehip).  (52)

With the equality of ucpip in (22), the equation in the bracket
is just 0. Thus, E(x,, V1) = 0.
Similar to Lemma 1, E(X,,V>) can be expanded to
EXnV2) = tenip E(V2) + Ucoett E(2" 2V2")

= Mchipr(V). (53)

Thus, it has been proved that E(x,,)E(v) = E(X,,v). In other

words, X,, and v are uncorrelated. |
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