
Bubble Razor: Eliminating Timing Margins in an ARM

Cortex-M3 Processor in 45nm CMOS Using Architecturally

Independent Error Detection and Correction

Matthew Fojtik
1
, David Fick

1
, Yejoong Kim

1
, Nathaniel Pinckney

1
, David Harris

2
, David

Blaauw
1
, Dennis Sylvester

1

University of Michigan
1
, Harvey Mudd College

2

Abstract

We propose Bubble Razor, an architecturally independent approach to timing error detection and

correction that avoids hold-time issues and enables large timing speculation windows. A local

stalling technique that can be automatically inserted into any design allows the system to scale to

larger processors. We implemented Bubble Razor on an ARM Cortex-M3 microprocessor in

45nm CMOS without detailed knowledge of its internal architecture to demonstrate the

technique’s automated capability. The flip-flop based design was converted to two-phase latch

timing using commercial retiming tools; Bubble Razor was then inserted using automatic scripts.

This system marks the first published implementation of a Razor-style scheme on a complete,

commercial processor. It provides an energy efficiency improvement of 60% or a throughput

gain of up to 100% compared to operating with worst case timing margins.

Index Terms – Adaptive circuits, dynamic voltage and frequency scaling (DVFS), error

correction, time borrowing, variation tolerance.

I. INTRODUCTION

 Conventional synchronous digital systems require substantial timing guard bands to ensure

proper operation across manufacturing and environmental variations. While manufacturing

guard bands can be reduced by testing a part after production and adjusting voltage or frequency,

this process is costly and still does not eliminate the guard bands for dynamic environmental

variation. Traditional approaches to reduce margining at runtime include mimicking critical path

delays with “canary” circuitry and using error prediction [11-13, 15-18]. The Razor system [5,

7] proposed reducing these margins by employing in-situ timing error detection latches, and

dynamically tuning the supply voltage during run time to the point where the circuit is on the

edge of failure. Occasional timing failures are then corrected by replaying the operation with

greater margin. By always operating at the edge of failure, manufacturing and environmental

guard bands are reduced to a minimum.

Multiple timing error detection techniques have been proposed, including Output Waveform

Analysis [8], Time-Redundant Latches [9], Razor I latches [5, 7], Razor II latches [3], Transition

Detector with Time Borrowing (TDTB) [4], and Double Sampling with Time Borrowing (DSTB)

[4]. All focus on detecting data that arrives shortly after the clock edge and flagging it as an error.

The earlier references focused on SEU detection and the later on Razor-style voltage tuning to

eliminate margins.

 Razor II, DSTB, and TDTB provide higher performance at lower cost than the earlier work.

By reducing guard bands, they have demonstrated better than 30% energy savings [3, 4]. They

also move metastability issues out of the datapath and into the error path, simplifying mitigation

of this effect. These techniques have timing issues similar to pulsed latches in that they achieve

high performance at the expense of a long hold time, increasing the risk of race failure. These

significant hold time constraints are even more difficult to meet given worsening timing

variability due to the link between speculation window and minimum delay. In addition, none of

these methods have been applied to a complete commercial processor due to their architectural

invasiveness.

 To address these two issues we propose Bubble Razor, which uses a novel error detection

technique based on two-phase latch timing and a local replay mechanism that can be inserted

automatically in any design. The error detection technique breaks the dependency between

minimum delay and speculation window, restoring hold time constraints to conventional values

and allowing timing speculation of up to 100% of nominal delay. The large timing speculation

makes Bubble Razor especially applicable to low voltage designs where timing varies

exponentially with operating conditions.

 The remainder of this paper is organized as follows. In Section II we review prior Razor

approaches and their timing constraints. Section III presents the proposed Bubble-Razor

approach. Section IV discusses a number of specific implementation issues in the Bubble-Razor

method. Section V presents the silicon implementation of Bubble-Razor on an ARM Cortex-M3

processor, including silicon measurements. Finally, Section VI presents concluding remarks.

II. REVIEW OF PRIOR RAZOR METHODS

A. Conventional Razor System Timing

 In all conventional Razor-style systems [1-5, 7, 14], there is a fundamental tradeoff between

speculation window and short path, or minimum delay, constraints (Fig. 1). In a system that

allows 100ps of timing speculation, when data arrives within 100ps after the positive edge of a

flip-flop or pulsed latch’s clock, that data must be guaranteed to be from a long path launched

from the previous clock edge. In order to ensure this, all short paths must be longer than 100ps

such that no short path can falsely trigger an error. This timing constraint must also be margined

for any degree of timing variation. As Razor-style systems are targeted for situations with large

timing variations, this constraint can be difficult to meet and causes large area and power

increases due to buffers and other delay elements that are added to lengthen short paths. Further

discussion of the timing constraints of conventional Razor-style systems is included in the

Appendix.

B. Conventional Razor Error Correction Schemes

 Upon detection of an error, some mechanism needs to correct for that error and allow the

system to continue. Razor I [5] proposes two different styles of error correction, global clock

gating and counterflow pipelining. Global clock gating involves stalling the entire processor and

reloading each Razor flip flop with the correct value stored in its shadow latch. Counterflow

pipelining has the error detecting stage send a bubble to downstream pipeline stages and a flush

to upstream stages, which was propagated throughout the circuit one stage every clock cycle.

Razor II [3] proposes another local signaling technique using architectural replay to flush the

processor pipeline and replay the failing instruction, similar to how mispredicted branch

instructions are handled. In order to guarantee forward progress the processor must be slowed

during replay to ensure the same instruction does not repeatedly cause a timing error. In both

counterflow pipelining and architectural replay, the architecture is designed with Razor in mind

and the correction mechanism is built into the RTL of the design.

 Razor I’s global clock gating technique is architecture independent, but its scale is limited to

small designs without aggressive clock periods, as communicating a stall to the entire chip

within one cycle can be impossible for large high performance designs. In all conventional

Razor systems, if architecture independent stalling is used to correct for errors, it needs to be

done at the global level. This is because the datapaths are based on edge-triggered flip-flops or

pulsed latches, which have similar timing constraints to edge-triggered flip-flops. If one pipeline

stage in a conventional Razor style system stalls, by gating its clock, the instruction held in the

previous stage is lost, as every pipeline stage holds an instruction during every cycle and all of

them update their state concurrently.

III. PROPOSED BUBBLE RAZOR APPROACH

A. Bubble Razor Timing

 Unlike conventional Razor style systems, Bubble Razor uses a two-phase latch based

datapath instead of a flip-flop based datapath. This has two main benefits: (1) it breaks the

dependency between short path constraints and speculation window, enabling large speculation

windows and (2) it allows for architecture independent local correction, which can scale to large

high performance systems. A flip-flop based datapath can be converted into a two-phase latch

based datapath by breaking the flip-flops into their constituent master and slave latches. By

using commercial retiming tools to move the latches throughout the datapath, logic delay in each

phase can be balanced such that no time borrowing occurs during error-free operation. Retiming

can be performed to the same timing constraints, though the number of latches in the design may

change due to retiming across gates with unequal fanins and fanouts.

 During normal (error-free) operation data arrives at a latch input before the latch opens and

no time borrowing occurs. If data arrives after the latch opens due to operating at the edge of

failure, Bubble Razor flags an error. Unlike with flip-flop based systems, these errors are

guaranteed to be caused by long paths taking more than a clock phase instead of by short paths,

breaking the link between speculation window and short path constraints (Fig. 1). With a flip-

flop based system, a flip-flop in one pipeline stage is clocked at the same time as the flip-flops in

the preceding pipeline stage, creating the possibility of short paths being falsely flagged as

timing errors. With two-phase latches, when one latch is opening the latches in the preceding

stage are already closed. Thus, since new data is not being launched at that time, there is no

possibility of short paths being falsely flagged as timing errors. The short path constraints in a

Bubble Razor system are thus the same as in a conventional two-phase latch based system, which

are easy to meet with non-overlapping clocks. This enables large speculation windows, up to

100% of circuit delay.

B. Bubble Razor Error Correction

 Regarding error correction, the key observation is that errors do not immediately corrupt

processor state as they borrow time from later pipeline stages. A failure will occur when data

arrives after a latch closes, which can arise if the time borrowing effect is not corrected and

compounds through multiple stages. Upon detection of a timing error, it is critical to recover

quickly before time borrowing accumulates to a point of failure. Error clock gating control

signals (bubbles) are propagated to neighboring latches (Fig. 3). A bubble causes a latch to skip

its next transparent clock phase, giving it an additional cycle for correct data to arrive.

 Unlike with flip-flop based systems, error correction can be accomplished by local stalling

(Fig. 2). When a flip-flop stalls, data is immediately lost as its neighboring flip-flops transition

their state at the same point in time. With two-phase latches, if a latch stalls, data is not

immediately lost because its neighboring latches operate out of phase. In order to not lose data,

neighboring latches must stall one clock phase later. Because of this time difference, the stalling

can be distributed in time and only needs to be communicated to neighboring stages, stages with

which data is already being communicated. Because stall signals need only be distributed to

neighboring stages in the same amount of time given to communicate data, the system is scalable

to processors of arbitrary size.

 A key challenge lies in how to prevent bubbles from propagating indefinitely along loops and

forwarding paths and bring the circuit back to a consistent, bubble-free state. To address this, we

propose a novel bubble propagation algorithm: (1) a latch that receives a bubble from one or

more of its neighbors stalls and sends its other neighbors (input and output) a bubble one half-

cycle later; (2) a latch that receives a bubble from all of its neighbors stalls but does not send out

any bubbles (Fig. 4). Despite the fact that latches stall at different times, the system maintains

correct operation with every latch in the design stalling exactly once. The stalling technique is

agnostic to state machine architecture or structure, allowing bubble clock gates and control logic

to be automatically inserted. The only change to the external behavior of the system is an

occasional single stall cycle on the inputs and outputs.

 Other key questions include how the system behaves in the presence of multiple timing errors

during the same cycle, the presence of multiple bubble sequences in flight at the same time, and

whether forward progress is maintained during high error rates. The bubble algorithm does not

need to be modified to address any of these concerns. Multiple errors during the same cycle will

cause multiple bubble stalling sequences to take place at the same time, but when stall events

collide they combine. The latches receiving bubbles are not aware of where the initial error

occurred and they do not need to, as the stalling constraints from each error sequence overlap. It

is beneficial to have multiple bubble sequences combine as multiple timing errors can be

corrected by a single stall cycle, reducing correction overhead. The algorithm is also guaranteed

to make forward progress as a latch will never stall indefinitely. A latch stalls when sent a

bubble by one or more neighbors and then sends a bubble to its other neighbors. An equivalent

definition for bubble propagation is for the latch to send a bubble to all its neighbors but ignore

bubbles if it stalled in the previous cycle. Since a latch will never stall two cycles in a row, it

will always make forward progress. We have shown that the system operates correctly even with

every latch reporting a timing error during every cycle. In this case, every latch spends exactly

50% of its cycles stalling.

IV. BUBBLE RAZOR IMPLEMENTATION ISSUES

A. Speculation Window Selection

 A Razor-style system can be tuned such that it is running error-free but with no timing

margins in order to increase system performance. At this point, the circuit is susceptible to

timing errors if logic delay suddenly increases due to a voltage droop, temperature spike, or other

transient event. The speculation window determines the amount this logic delay is allowed to

increase such that the system can still detect and correct errors and maintain correct operation.

With Bubble Razor, as with other Razor systems, the speculation window can be limited by

either the technique or the amount and location of latches with error checking. The maximum

allowed speculation window is a full clock phase minus the delay of the error propagation

circuitry. The theoretical maximum is therefore 100% of circuit delay, meaning correct operation

could be maintained even if circuit delay suddenly doubles, although in practice the error

correction circuits have non-zero delay. Because of the large allowable speculation windows, it

is possible to tradeoff between speculation window and allowable time borrowing. Allowing

some time borrowing can improve variation tolerance due to mismatch between stages, as well

as reduce area overhead by limiting the number of latches introduced by retiming.

 Placing error detection on every latch in the design is very costly in terms of area and power,

and is not desirable. In addition, error detection is not required on all latches; if the critical path

feeding into a latch is less than 50% of a clock phase, that latch will never experience a timing

error even with a doubling of circuit delay.

 Because the datapath is two-phase latch based, removing error detection from certain stages

could allow time borrowing to occur without generating errors, complicating speculation window

analysis. Fig. 5 shows an example of a system with a 30% speculation window. During error-

free operation near the point of first failure (PoFF), the delay from Latch B to C is a full clock

phase, 50% of a clock cycle, and the delay from C to D is only 20% of a clock cycle. Due to a

voltage droop or other event, circuit delay becomes 130% of its nominal value such that the

design is now operating at the edge of its speculation window. In this case, data does not arrive

at C before it opens, however when looking at the combined path from B to D, the delay is only

91% of a clock period and data still arrives before Latch D opens. Because of the small delay

between C and D, the path from B to C is able to borrow time and the timing error corrects itself

without any need for bubbles. This would imply that error detection is not needed on C or D.

 However, this analysis assumes that data is launched from Latch B at its opening edge. If the

delay from A to B was nominally 50% of a clock cycle, and 65% after a voltage droop, then data

arrives at B late and pushes back all the subsequent stages such that data arrives late at D. This

multi-phase analysis is complex, even for the simple in-order pipeline shown. For a general

finite state machine with loops and forwarding paths the analysis is substantially more

complicated.

 To simplify the process of determining where error detection is needed, we propose

disallowing all undetected time borrowing. Thus, a latch assumes that data is launched at the

opening edge of the latches preceding it, and determines that error detection is needed if its data

arrives late under worst case conditions. In the above example, Latches B and C add error

detection because the worst-case delay of their critical inputs paths are 65% of a clock cycle,

which is greater than a clock phase. This analysis only requires looking at one path at a time,

though it can produce a larger set of latches with error checking than strictly necessary.

B. SRAM Interface

 The Bubble Razor algorithm works seamlessly for two-phase latches but adjustments need to

be made when dealing with edge triggered peripherals such as SRAM. If speculative state was

incorrectly written to memory that error could not be corrected for. SRAMs were treated as

positive latches for the purpose of the Bubble Razor algorithm and wrapper logic was placed

around SRAMs to make them behave similarly to level-sensitive latches when given a stall cycle

(Fig. 6). In this implementation, the register file was synthesized logic and was transformed to

two-phase latches along with the rest of the processor.

 When retiming the design, negative latches are first placed on the outputs of the processor

interface to memory such that the circuit is of legal configuration: all neighboring latches of the

positive SRAM are negative latches. Assuming error checking occurs on the negative latches in

the fanout of the SRAM, reads are constrained to operate in one clock phase. Depending on the

configuration of the processor, this may introduce a tighter timing constraint. In the Cortex-M3

implementation timing was unaffected as SRAM was already operating in approximately 50% of

a clock cycle with the other 50% of a clock cycle being used by combinational logic between the

processor’s inputs and first flip-flops.

 To avoid writing incorrect data to SRAM, the system uses a commercial two-port, high-speed

SRAM that separates read and write ports. Writes are clocked on the negative edge of the clock,

after the speculation window, when data is guaranteed to be error free. A single entry store buffer

could alternately be used to stabilize writes. Writes are disabled when the SRAM receives a

bubble.

 Since reads cannot be delayed without reducing system performance, they continue

speculatively at the positive edge. If the read inputs to SRAM such as address arrive late, the

SRAM would capture incorrect values at the positive edge of the clock and return the wrong

data. Unlike with a level sensitive latch, this error will not automatically be corrected when

given more time. Fortunately, due to the nature of the Bubble Razor algorithm, in all cases

where the SRAM receives late inputs it will receive a bubble during the next cycle. Upon

receiving this bubble, the SRAM uses the available cycle to repeat the read with the correct

inputs that were captured by a bank of flip-flops on the negative clock edge. These approaches

to handling SRAM can be automatically added to any system.

C. Latch Clustering

 To reduce the logic area overhead of bubble propagation, latches that share neighbors were

automatically grouped together into clusters. Latches in each cluster share a gated clock and

combine their error signals into a common cluster error signal. A cluster then behaves as a single

latch for the purpose of the Bubble Razor algorithm. It is possible for the designer to manually

assign latches into clusters such as grouping together pipeline stages. Alternatively, we proposed

an automated approach to assigning clusters. A positive and negative graph was extracted based

on latch connectivity (Fig. 9). In each graph, the vertices represented the latches and the edge

weights represented the number of paths through opposite polarity latches that connect the two

vertices. Each latch was then assigned a cluster by inputting the graphs into a hypergraph

partitioning tool [6].

 Although the assignment of clusters is performed automatically, the designer choses the

number of both positive and negative clusters. A tradeoff exists between the size of the OR gates

needed to combine error signals within a cluster into a cluster error signal and the size of the OR

gates needed to combine bubbles from neighboring clusters. With many clusters, the size of each

cluster is small but each cluster has many neighbors. Alternatively, with few clusters each

cluster has few neighbors but a large number of members. In the implemented design, 100

negative clusters and 70 positive clusters was chosen to balance the size of these competing OR

gates.

V. SILICON VERIFICATION

 To demonstrate the automated and architecture independent nature of the Bubble Razor

technique, it was implemented on an ARM Cortex-M3 microcontroller, a processor with which

we have no knowledge of its internal architecture. Flip-flops in the M3 were split into latches

and the design was retimed and modified using scripts and automatic tools.

A. Retiming the Cortex-M3

 Retiming the M3 was achieved by holding the positive latches in place and moving negative

latches. Under ideal circumstances, this retiming can be performed with no performance penalty

without modifying the combinational logic. In practice, the additional area resulting from the

changing number of latches causes a small performance penalty for the design. Fig. 7 shows the

results of topographical synthesis performed at various timing constraints. As the synthesis and

retiming software uses heuristic based optimizations on large datasets, it is possible for it to

produce non-optimal outputs as well as non-monotonic results when sweeping a variable such as

target clock period. This effect is more pronounced when the software is unable to meet the

target clock period and is seen in the rightmost datapoints of Fig. 7. The maximum possible

operating frequency for the latch-based M3 is 7% lower than the flip-flop based M3 due to this

area increase. At a reasonable design point, the latch based M3 meets the same timing as the

flip-flop based M3 but with an 8% area overhead. This operating point was chosen for further

overhead analysis.

B. Speculation Window Selection for the Cortex-M3

 The selection of latches which require error detection can be determined by examining the

critical paths at the input of each latch. Fig. 8 shows the distribution of critical path delays for

flip-flops in the original design and latches in the retimed design. As a result of only moving

negative latches, 64% of the latches in design are negative. In addition, many negative latches

have very low critical path delays. These low delays result from flip-flops in the original design

with critical paths below 50% of a clock period, where latches do not need to be moved to meet

timing.

 We propose three different methods for selecting paths with error checking which make use

of these timing characteristics: checking a subset of all latches, only positive latches, or only

negative latches. When checking all latches, the maximum possible speculation window is 100%,

while checking all positive or all negative latches would yield a speculation window of 50%

since every other latch in a timing path has no error detection.

 Fig. 8 shows the area overhead and speculation window results for these three techniques

when applied to the Cortex-M3. When only checking positive latches, since most latches are

near critical, most of the area overhead is present with small speculation windows, but futher

pushing speculation window comes at low area cost. When only checking negative latches, area

overhead drastically increases once the large number of latches with small critical paths require

checking. Depending on the desired speculation window, either of the three techniques may be

optimal. For a good design point, 30% speculation can be achieved with a retiming and error

checking area overhead of 20%.

C. Implementation Circuitry

 Error detection was performed using the Bubble Razor Latch, similar in design to the error

detection flip-flop in [5]. A shadow latch captures data as the main datapath latch opens (Fig.

10). An XOR compares the two values and will flag an error if data arrives late and changes the

value in the main latch. The Bubble Razor algorithm is not dependent on the type of error

checking latch, and hence transition detectors based on [3] could also be used.

 Errors and bubbles are combined using wide dynamic OR gates, in our implementation made

up of trees of 16 input dynamic ORs. Latches are used after trees of OR gates to hold the

resulting values during the dynamic precharge phase.

 Clock gating and bubble propagation is handled by the Cluster Control Logic blocks. This

logic is based on the alternate definition of the Bubble Razor algorithm: when sent a bubble by

one or more neighbors: stall and send a bubble to all neighbors if and only if you did not stall in

the previous cycle. By using this approach, latches do not need to store which neighbors they

received bubbles from, drastically reducing implementation area. Additionally, it was noted that

upon initiating the bubble propagation sequence after detecting a timing error, the first clock

gating event is optional, so clock gating does not take place during the first bubble.

 Although the design uses dynamic cells and latch-based timing, the models given to

synthesis, placement, and routing software are fully static and edge-based. Since the dynamic

ORs are always followed by more ORs or a latch, the ORs are modeled as static and the latch is

modeled as a flip-flop. Latches in the datapath are modeled as flip-flops, since time borrowing

during error-free operation is disallowed. The resulting design appears to the tool chain as a

standard, flip-flop based design with clock gating, allowing fully automated, standard integration

with no designer intervention.

D. Silicon Test Chip

 Bubble Razor was applied to the Cortex-M3 processor, a 1.25 DMIPS/MHz microcontroller

[21], and implemented in a 45nm SOI process. This silicon test chip is the first published Razor-

style implementation to demonstrate a transformed commercial processor operating correctly

under the presence of timing errors. Several robust design decisions were made resulting in large

area overheads for the silicon test chip. Timing error checking was added to all latches, even

those which are not capable of failing timing, in order to allow us to find the maximum possible

speculation window: one clock phase minus the propagation delay of the error detection circuits,

which provides ~55% timing speculation in this implementation. All latches in the design had an

asynchronous reset although it is only strictly required for either all positive or all negative

latches. Robust short path constraints were also put in place, and were met through buffer

insertion.

 These design decisions, when combined with retiming overhead, resulted in an artificially

large cell area overhead of 87% for the latch based M3 compared to the original flip-flop based

M3. This comprised a 21% increase in combinational logic area and a 280% increase in

sequential area. The additional cluster control logic added 16% area compared to the original

flip-flop design, resulting in a total area overhead over the flip-flop design of 103%. The number

of gates increased from 32,805 to 36,206 when transforming to Bubble Razor, with the majority

of the new cells comprising new latches as each flip-flop became an average of 3 latches after

retiming. Estimated clock loading increased by 230% with 88% of the loading coming from the

Razor latches and the remainder coming from flip-flops in the JTAG test harness, latches in

cluster control logic, and dynamic OR gates. Reducing the number of latches with error

detection would drastically reduce the increase in sequential area, additional cluster control area,

total area, and clock loading.

 Synthesis results since the silicon implementation are shown in Section V.A and V.B, which

meet short path constraints with nonoverlapping clocks, only resets positive latches, and only

uses Razor latches in timing critical locations. It is shown that error detection with a 30%

speculation window can be achieved with 20% area overhead, which increases to approximately

25% when the additional cluster control logic is added. This area increase is for the core logic

only and reduces when amortized over cache area.

E. Silicon Measurement Results

 Because of the robust design decisions mentioned in Section V.D, a silicon comparison was

not made between a conventional M3 and the test chip, so the silicon test chip compares against

itself operating at worst case margins when calculating performance increases and energy

savings. Synthesis results show the implemented test chip can operate at the same frequency as a

conventional flip-flop based Cortex-M3 when designed to the same timing constrain, however

the addition of Bubble Razor will come at a cost of area and power which is highly dependent on

the desired speculation window as discussed in Sections V.A, V.B and V.D. Additionally, if DFT

is added to a design it will come at a higher cost for the latch based Bubble Razor

implementation as the scan chain will contain twice as many elements. These costs must be

taken into account when calculating the energy savings from using Bubble Razor.

 The silicon test chip was programmed to perform software FFT computations. At 85°C with

10% supply drop, 2σ process variation, and 5% safety margin, the maximum operating frequency

of the M3 design is measured as 200 MHz, setting a frequency ceiling for a conventional

margined design. With Bubble Razor the design can be tuned to the point of first failure (PoFF)

which was 290/333/363 MHz for three shown chips, increasing throughput by 45, 67, and 82%

(Fig. 11). Alternatively, supply voltage can be lowered at iso-performance, reducing M3 energy

consumption by 43, 54, and 60%, respectively.

 Fig. 12 shows system behavior when sweeping frequency or voltage beyond the PoFF. As

clock frequency linearly increases, throughput initially linearly increases. As timing errors

become more prevalent at higher frequencies, throughput improvement slows down and

eventually reverses due to stall cycles consuming a large portion of processor runtime. Similarly,

voltage scaling reduces energy consumption until timing errors become too common. When

running at a voltage substantially lower than the PoFF, the large number of stall cycles cause the

program to take longer to execute which increases total energy consumption. If frequency or

voltage is scaled too far, the system will begin operating outside of its speculation window,

timing errors will not be properly corrected for, and the system will fail. All points in Fig. 12.

represent the system executing its program correctly with the rightmost throughput and leftmost

energy points representing limits of frequency and voltage scaling. Overall, an additional 22%

performance or 17% energy reduction is obtained from running beyond the PoFF. This is

significantly better than previous Razor approaches since only a single cycle is lost per corrected

error, allowing beneficial operation at relatively high error rates. The combination of eliminating

margins and running beyond the PoFF allows for a 100% throughput increase or 60% energy

reduction when compared to operating with worst case timing margins.

 We used ring oscillators on each chip as “canary” circuits to provide for a comparison of

energy/performance gains from canary circuits and with Bubble Razor. Canary circuits allow

some timing margins to be reduced, but cannot eliminate all margins as there may be mismatch

between the canary and datapath. In addition, canary circuits can only adapt to slow changing

operating conditions due to the time required to change the processor clock frequency, and thus

canary circuits cannot eliminate the margins for supply droop. Adding margin for 3σ of

mismatch between the canary frequency and processor frequency, a margin for 10% supply

droop, and an additional 5% safety margin, the design can be tuned to 217/250/272 MHz for the

three shown chips. Running with Bubble Razor at the optimal throughput point provides gains of

70%, 63%, and 56% respectively when compared to running with canary circuits. Equivalently,

Bubble Razor at the optimum energy point provides gains of 46%, 41%, and 41% over canary

circuits.

VI. CONCLUSION

 A novel Razor style technique was proposed that breaks the link between speculation

window and minimum delay constraints, allowing large speculation windows. In addition, a

local stalling technique was proposed that is independent of design architecture and scalable to

designs of arbitrary size. Bubble Razor was successfully applied to the ARM Cortex-M3

microprocessor, the first Razor style implementation of a complete commercial processor. A test

chip was fabricated in 45nm CMOS to validate the technique and showed a 100% throughput

improvement or 60% energy savings over running with worst-case timing margins.

APPENDIX

This appendix compares the timing constraints of prior Razor-style systems to Bubble Razor.

A. Conventional System Timing

 The timing constraints of timing error detection sequencing systems have many similarities

to conventional systems. The maximum logic delay (propagation delay tpd), minimum logic

delay (contamination delay tcd), and maximum allowable time borrowing tborrow for three

conventional synchronization systems are summarized in Table 2 [19].

 Two phase latch and pulse latch systems allow for time borrowing to help deal with

unbalanced delays and clock skew. In all three systems, contamination delay is small and

manageable, though in the pulse latch system it is proportional to tpw, which creates a tradeoff

between time borrowing and contamination delay.

B. DSTB Timing Constraints

 This section explains the timing constraints for DSTB [4]. TDTB has similar timing, with the

setup time of the flip-flop analogous to the setup time of the TD. Figure 14 shows the timing

diagram for a DSTB system.

 The primary datapath resembles an ordinary pulse-latched sequencing system [20]. Each

pipeline stage contains a pulsed latch followed by combinational logic. However, the data input

D is also sampled by a flip-flop on the rising edge of the pulse p. If D misses the flip-flop, it is

considered late. If D is slightly late, as shown in the gray region, the pulsed latch will sample D

correctly even though the flip-flop misses D. The difference is detected by the XOR, which

generates an error signal. If D is too late, both the pulsed latch and flip-flop will miss the data

and an undetected error will occur. The latch, flip-flop, and XOR together form a DSTB register.

Errors from each register are combined to produce error signals for each pipeline stage and for

the overall system.

1. Detection Window

 D must stabilize at least tsetupf before the rising edge of p to be sampled correctly by the flip-

flop. But as long as it stabilizes tsetupl before the falling edge of p, the late data will be detected.

In summary, DSTB has a detection window tdetect in which it can detect late-arriving data:

  detect pw setupf setuplt t t t   (1)

 Notice that this detection window grows with the pulse width. The detection window should

be as wide as possible (e.g 25-30% of the cycle) to eliminate large guard bands.

2. Propagation Delay

 In normal operation, there should be no late data. Hence, D should arrive safely before the

rising clock edge and will propagate through the latch upon the rising edge of the clock. It will

then propagate through the logic and setup at the next flip-flop before the next rising clock edge.

The maximum logic delay in a cycle is

 pd c pcql setupft T t t   (2)

This is similar to the logic delay in a flip-flop based system.

3. Contamination Delay

 The input to the next pulsed latch must not change until at least a hold time after the end of

the pulse. The minimum logic delay is

 cd pw holdl ccqlt t t t   (3)

 Note that the contamination delay grows with the pulse width. This is the same as the hold

time constraint in a pulsed-latch based system. Contamination delay problems are difficult to

solve and catastrophic if they occur, so the pulse is normally made quite narrow (ideally to

permit tcd = 0). This runs contrary to the desire for a wide detection window.

4. Clock Skew

 Clock skew reduces the maximum propagation delay and increases the maximum

contamination delay by tskew in EQs (2) and (3) [20].

5. Time Borrowing

 Because the flip-flop samples on the same edge that the latch becomes transparent, no time

borrowing is possible. If the clock to the flip-flop were delayed by td, the time available for

borrowing (or skew tolerance) would become

 borrow d setupft t t  (4)

The detection window reduces by this delay:

 detect pw setupf setupl d pw setupl borrowt t t t t t t t       (5)

The delay also makes it possible to hide the flip-flop setup time from the critical path:

  max ,0pd c pcql setupf dt T t t t    (6)

C. Razor II Timing Constraints

 This section explains the timing constraints for Razor II [3]. Figure 15 shows the timing

diagram for a Razor II system. As with DSTB, the primary datapath resembles a pulse-latched

system. The error path involves feeding the internal latch node N into a transition detector TD

which is enabled by a detection clock DC. The transition detector is always enabled except for a

small window tdc in which N transitions during normal operation. If a transition on N occurs

outside of this small window, an error is flagged. tdc plays a role analogous to td. DC is kept high

even when the latch is opaque in order to detect soft errors. If D arrives too late and misses the

latch, the error will go undetected even though DC is high.

1. Detection Window

 To ensure that normal transitions are not flagged as errors, tdc must be greater than the longest

clock-to-N delay, tpcnl. The difference between these two values is the amount of time borrowing

allowed by the system.

 borrow dc pcnlt t t  (7)

A transition on D within tborrow after the rising edge of p will not be flagged as an error.

To be correctly sampled by the latch, D must stabilize at least tsetupl before the falling edge of p.

Razor II therefore has a detection window tdetect:

 detect pw setupl borrowt t t t   (8)

As with DSTB, this window grows with pulse width and shrinks with time borrowing.

2. Propagation Delay

 In normal operation with no late data, D will arrive as the clock edge is rising, so the

maximum logic delay in a cycle is

 pd c pcqlt T t  (9)

3. Contamination Delay

 The contamination delay for Razor II is identical to DSTB:

 cd pw holdl ccqlt t t t   (10)

4. Clock Skew

 Clock skew increases the maximum contamination delay by tskew as with DSTB, but tskew <

tborrow can be tolerated for propagation delay.

5. System Operation

 Suppose that the system normally operates correctly at some clock period T1. However,

under unusual circumstances, the worst-case period required is T2. As long as tdetect > T2 – T1, the

system can be clocked at T1 and yet catch and replay the unusual timing errors.

 Some systems offer time borrowing to balance logic between uneven pipeline stages and to

opportunistically compensate for variations and skew [19]. However, both DSTB and Razor II

have the poor hold time constraints of a pulsed-latch system. The detection window suffers from

an unpleasant tradeoff between contamination delay and the detection window because both are

linked to the pulse width. This severely limits the detection window.

D. Bubble Razor Timing Constraints

 This paper proposes adding a mid-cycle latch to the DSTB system and using clocks with

roughly 50% duty cycles. In the same way that two-phase latches eliminate the hold time

problems in pulsed latch systems and provide time borrowing [20], the proposed sequencing

methodology increases the detection window, eliminates or greatly simplifies hold time

problems, and permits time borrowing to balance logic and compensate for further variation.

The improvements come at the cost of the added latches in each pipeline stage.

1. Two-Phase Timing Diagram

 Figure 16 shows a timing diagram for the proposed system. In the most general case, the

latches are controlled by two-phase non-overlapping clocks that are high for tphase = Tc/2 –

tnonoverlap and the flip-flop clock is delayed by td. The primary datapath now resembles an

ordinary two-phase latch sequencing system [20]. Each pipeline stage contains a 1 transparent

latch, approximately half of the combinational logic, a 2 transparent latch, and the remainder of

the combinational logic. However, D is also sampled some delay after the rising edge of phase

1. When the system is operating at low frequency, data arrives at each latch while it is opaque

and waits until the latch becomes transparent. As the frequency increases, data may arrive at

some latches after they become transparent. This is called time borrowing. As the frequency

increases further, the data will miss the setup time of the flip-flop and an error will be detected.

At even higher frequencies, both the latch and flip-flop will miss the data and an undetectable

error occurs.

2. Detection Window

 The detection window is now related to the width of phase rather than of a short pulse.

However, the delay used for time borrowing cuts into the detection window:

  detect phase d setupf setuplt t t t t    (11)

This detection window can be substantially wider than in Razor II because it does not trade

against contamination delay.

3. Propagation Delay

 In normal operation at maximum frequency, data arrives at each latch while it is transparent

so it does not have to wait. In the absence of time borrowing, the sum of the propagation delays

through the two blocks of logic, tpd = tpd1 + tpd2, must be less than one cycle minus the two latch

delays. Hence, the maximum logic delay in a cycle is

 1 2pd c pdql pdqlt T t t   (12)

This is analogous to the logic delay in a two-phase latch based system and is similar to the

performance of DSTB. The system faces the same issues of balancing logic between phases that

an ordinary two-phase latch based system has.

4. Contamination Delay

 A pipeline stage has two hold time constraints, one at each latch. The data may depart a latch

on the rising edge of the phase and arrive at the next latch after the contamination delay of the

latch. This arrival time must be at least a hold time after the following latch became opaque:

1 2 1

2 1 2

cd holdl ccql nonoverlap

cd holdl ccql nonoverlap

t t t t

t t t t

  

  
 (13)

This is identical to the hold time constraint in an ordinary two-phase latch based system. Even if

the two phases are complementary clocks with zero nonoverlap, the constraint is relatively easy

to meet.

5. Time Borrowing

 The system may only borrow time past the rising edge of 1 until the flip-flop misses its

setup time:

 borrow d setupft t t  (14)

Hence, the detection window and time borrowing directly trade off against each other as with the

other techniques.

 detect phase setupl borrowt t t t   (15)

In an ordinary two-phase latch based system, no detection window is provided, so all of the time

is available for borrowing. In this adaptive two-phase system, part of the phase is allocated for

detection and part for time borrowing.

The system may only borrow substantially more time past the rising edge of 2.

 borrow midcycle phase setuplt t t   (16)

However, the designer should not exploit this full amount of time borrowing because a late input

to a phase 2 latch cannot be detected. Specifically, the maximum borrowing should be reduced

by tdetect so that timing errors detectable at the phase 1 latch do not result in undetected errors at

the phase 2 latch. Subtracting EQ (11) from (16) gives a more conservative borrowing limit that

allows the full use of the detection window.

 borrow midcycle d setupft t t   (17)

Note that this is exactly the same as the borrowing past the rising edge of 1 given in EQ (14).

6. Clock Skew

 As with Razor II, if tborrow > tskew, clock skew can be tolerated so that it does not cut into the

propagation delay. Skew does increase the contamination delays necessary in each phase.

7. Summary

 In summary, two-phase adaptive latches are much like regular two-phase latches. Their

performance is better than flip-flops because they can tolerate some skew, but worse than pulsed

latches because they have a second latch in the critical path. Their hold time difficulties are

minor compared to pulsed latches. The first phase is divided into a first portion available for

time borrowing and a second part portion for detecting late inputs.

References

 [1] D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner, D. Blaauw, "A power-efficient 32b

ARM ISA processor using timing-error detection and correction for transient-error tolerance and

adaptation to PVT variation," IEEE J. Solid-State Circuits, Jan 2011.

[2] K. Bowman, J. Tschanz, S. Lu, P. Aseron, M. Khellah, A. Raychowdhury, B. Geuskens, C.

Tokunaga, C. Wilkerson, T. Karnik, V. De, "A 45 nm Resilient Microprocessor Core for Dynamic

Variation Tolerance," IEEE J. Solid-State Circuits, Jan 2011.

[3] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. Bull, D. Blaauw, "RazorII: In

Situ Error Detection and Correction for PVT and SER Tolerance," IEEE J. Solid-State Circuits,

Jan 2009.

[4] K. Bowman, J. Tschanz, N. Kim; J. Lee, C. Wilkerson, S. Lu, T. Karnik, V. De, "Energy-

Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance," IEEE J.

Solid-State Circuits, Jan 2009.

[5] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K.

Flautner, T. Mudge, "Razor: a low-power pipeline based on circuit-level timing speculation,"

MICRO, 2003

[6] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, "Multilevel hypergraph partitioning:

applications in VLSI domain," DAC, 1997

[7] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, T. Mudge, K. Flautner, “A self-

tuning DVS processor using delay-error detection and correction”, IEEE J. Solid-State Circuits,

April 2006.

[8] P. Franco, E. McCluskey, "Delay testing of digital circuits by output waveform analysis,"

Proc. IEEE Intl. Test Conf., 1991

[9] M. Nicolaidis, "Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer

Technologies," Proc. IEEE VLSI Test Symp., 1999

[10] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, D. Sylvester, “Bubble Razor:

An Architecture Independent Approach to Timing Error Detection and Correction”, Proc. ISSCC

2012

[11] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, V. De, “Tunable replica

circuits and adaptive voltage-frequency techniques for dynamic voltage, temperature, and aging

variation tolerance,” IEEE Symp. VLSI Circuits Dig., Jun. 2009.

[12] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M. Floyd, V.

Pokala, “A distributed critical path timing monitor for a 65 nm high-performance

microprocessor,” Proc ISSCC 2007

[13] K. Hirairi, Y. Okuma, H. Fuketa, T. Yasufuku, M. Takamiya, M. Nomura, H. Shinohara, T.

Sakurai, “13% Power Reduction in 16b Integer Unit in 40nm CMOS by Adaptive Power Supply

Voltage Control with Parity-Based Error Prediction and Detection (PEPD) and Fully Integrated

Digital LDO”, Proc ISSCC 2012

[14] R. Pawlowski, E. Krimer, J. Crop, J. Postman, N. Moezzi-Madani, M. Erez, P. Chiang, “A

530mV 10-Lane SIMD Processor with Variation Resiliency in 45nm SOI”, Proc ISSCC 2012

[15] T. Burd, T. Pering, A. Stratakos, R. Brodersen, “A dynamic voltage scaled microprocessor

system,” IEEE J. Solid-State Circuits, Nov. 2000.

[16] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo, A. Hashiguchi, H. Kawahara, K.

Kumano, and M. Shimura, “Dynamic

voltage and frequency management for a low power embedded microprocessor,” IEEE J. Solid-

State Circuits, Jan. 2005.

[17] K. Nowka, G. Carpenter, E. MacDonald, H.Ngo, B. Brock, K. Ishii, T. Nguyen, J. Burns, “A

32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic

frequency scaling,” IEEE J. Solid-State Circuits, Nov. 2002.

[18] S. Dhar, D. Maksimovic, B. Kranzen, “Closed-Loop Adaptive Voltage Scaling Controller

For Standard-Cell ASICs,” ISLPED 2002.

[19] D. Harris, Skew-Tolerant Circuit Design, San Francisco, CA: Morgan Kaufmann, 2001

[20] N. Weste and D. Harris, CMOS VLSI Design, 4th Ed., Boston: Addison-Wesley, 2010.

[21] “ARM Cortex-M3” http://www.arm.com/products/processors/cortex-m/cortex-m3.php

Additional Contributions Compared to Conference Paper

Our conference paper is:

[10] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, D. Sylvester, “Bubble Razor:

An Architecture Independent Approach to Timing Error Detection and Correction”, Proc. ISSCC

2012

Additional contributions are as follows:

1. Enhanced discussion of prior work and detailed explanation of hold time and speculation

window link in Section 2.

2. Explanation of Bubble Razor algorithm in Section 3 with details of how it addresses

issues with prior work in Section 3.

3. Addition of Speculation Window Selection and Latch Clustering sections in Section 4.

4. Further discussion of SRAM interface in Section 4.

5. Addition of Retiming and Speculation Window Selection sections in Section 5.

6. Additional Silicon measurements comparing with canary circuits in Section 5-E

7. Appendix comparing the timing constraints of prior Razor-style systems with Bubble

Razor

8. Figures 1, 2, 5, 7, 8, 9, 14, 15, 16

Figure Captions

Fig. 1. By using two-phase latch based timing, minimum delay constraints are restored to their

conventional values allowing for large speculation windows.

Fig. 2. In a two-phase latch based system, instructions can stall without immediately being

overwritten.

Fig. 3. Timing errors are corrected by propagating bubbles which gate off clock pulses

throughout the circuit.

Fig. 4. Bubbles are communicated to neighboring latches. Upon error resolution, every latch

has stalled for exactly one cycle.

Fig. 5. When determining where error detection is needed for a given speculation window, time

borrowing can complicate analysis.

Fig. 6. Wrapper logic is placed around the SRAM such that it can be treated as a positive latch.

Fig. 7. Transforming the Cortex-M3 to two-phase latches can incur an 8% area penalty or 7%

performance penalty.

Fig. 8. Error checking can be added to a subset of latches, or a subset of only positive or only

negative latches, yielding different area overheads. This is due to the distribution of critical path

delays at the inputs of each latch.

Fig. 9. Clustering was performed automatically by building two graphs based on latch

connectivity. A tradeoff exists between the size of OR gates which is balanced by the choice of

the number of clusters.

Fig. 10. Bubbles are combined using dynamic OR gates. A cluster ignores bubbles if it stalled in

the previous cycle.

Fig. 11. By running the system under nominal conditions instead of with worst case margins,

performance or energy can be improved.

Fig. 12. Due to only a single cycle penalty for fixing timing errors, an additional 22%

performance gain or 17% energy reduction can be made by running beyond the Point of First

Failure.

Fig. 13. Die photo and system information.

Table I. Terminology

Table II. Timing Constraints for Conventional System

Fig. 14. Timing diagram for DSTB system

Fig. 15. Timing Diagram for Razor II System

Fig. 16. Timing Diagram for Bubble Razor System

Fig. 1. By using two-phase latch based timing, minimum delay constraints are restored to their

conventional values allowing for large speculation windows.

Fig. 2. In a two-phase latch based system, instructions can stall without immediately being

overwritten.

Fig. 3. Timing errors are corrected by propagating bubbles which gate off clock pulses

throughout the circuit.

Fig. 4. Bubbles are communicated to neighboring latches. Upon error resolution, every latch

has stalled for exactly one cycle.

Fig. 5. When determining where error detection is needed for a given speculation window, time

borrowing can complicate analysis.

Fig. 6. Wrapper logic is placed around the SRAM such that it can be treated as a positive latch.

Fig. 7. Transforming the Cortex-M3 to two-phase latches can incur an 8% area penalty or 7%

performance penalty.

Fig. 8. Error checking can be added to a subset of latches, or a subset of only positive or only

negative latches, yielding different area overheads. This is due to the distribution of critical path

delays at the inputs of each latch.

Fig. 9. Clustering was performed automatically by building two graphs based on latch

connectivity. A tradeoff exists between the size of OR gates which is balanced by the choice of

the number of clusters.

Fig. 10. Bubbles are combined using dynamic OR gates. A cluster ignores bubbles if it stalled in

the previous cycle.

Fig. 11. By running the system under nominal conditions instead of with worst case margins,

performance or energy can be improved.

Fig. 12. Due to only a single cycle penalty for fixing timing errors, an additional 22%

performance gain or 17% energy reduction can be made by running beyond the Point of First

Failure.

Fig. 13. Die photo and system information.

TABLE I. TERMINOLOGY
Symbol Description Symbol Description

Tc Clock Period tsetup(f,l)
Setup time for

(flip-flop, latch)

tpcq(f,l)
Clk-Q propagation delay for (flip-

flop, latch)
thold(f,l)

Hold time for

(flip-flop, latch)

tccq(f,l)
Clk-Q contamination delay for (flip-

flop, latch)
tnonoverlap Non-overlap time for two phase latch clocks

tpdql D-Q propagation delay for latch tpw Width of pulse in pulse latch system

TABLE II. TIMING CONSTRAINTS FOR CONVENTIONAL SYSTEMS

System tpd tcd tborrow

Flip-Flop Tc - tpcqf - tsetupf tholdf - tccqf 0

Two Phase

Latch
Tc - 2tpdql tholdl - tccql - tnonoverlap Tc / 2 - tsetupl

Pulse Latch
Tc - tpdql -

max(0, tsetupl - tpw)
tpw + tholdl - tccql tpw - tsetupl

L
a

tc
h Logic

p

p

L
a

tc
h

Tc

tpw

To

ERR1

To

ERR2

p

To

next

stage

D1

D1

tholdltsetupf

tsetupltdetect

Q1 D2 Q2

Q1

tpcql

tccql

Fig. 14. Timing diagram for DSTB system

L
a

tc
h Logic

p

p

L
a

tc
h

Tc

tpw

To

ERR1

p To

next

stage
D1

D1

tholdltsetupltdetect

Q1 D2 Q2

Q1

tpcql

tccql

TDDC

N1
To

ERR2
TDDC

N2

N1

tpcnl

tccnl

DC
tdc

tborrow

tborrow

D N

Qp

p

p

Razor II Latch

Fig. 15. Timing Diagram for Razor II System

L
a

tc
h Logic 1

1

1
L

a
tc

h

Tc

To

ERR

To

next

stage

D1

D1

tholdl

tsetupf

tsetupltdetect

Q1 D2 Q2

1d

1

1d

Logic 2

2

Tc / 2

tnonoverlap

tnonoverlap

td

2

1d

tphase

Fig. 16. Timing Diagram for Bubble Razor System

