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A Cache-Based Method for Accelerating
Switch-Level Simulation

Larry G. Jones, Member, IEEE, and David T. Blaauw, Member, IEEE

Abstract—Switch-level simulation has become a common means
of validating the behavior of MOS circuits. In this paper, we
present a new cache-based simulation method that significantly
reduces the cost of subnetwork evaluation during switch-level
simulation. The method speeds up simulation by as much as a
factor of two. While caching may require additional memory,
the structural hierarchy can be exploited to quickly identify
subnetworks computing identical functions, merge their cache
tables, and significantly reduce the memory requirements.

1. INTRODUCTION

ITH the high levels of integration now achievable in

modern MOS technologies, verifying designs through
simulation has become an indispensable part of the IC design
process. Circuit simulators, which offer accurate results, are
too slow for large-scale testing of IC’s. Logic simulators,
which operate at relatively high speeds, lack in their abilities
to model important aspects of MOS design such as charge
sharing, ratio logic, and bidirectionality of devices. As a result,
switch-level simulation [9] has emerged as a viable method of
simulating large integrated circuits while maintaining reason-
able accuracy.

Switch-level simulators such as MOSSIM II [10] and RSIM
[23] partition digital circuits into subnetworks of source/drain
connected transistors and apply an evaluation procedure to
the subnetwork which estimates the new state of the electrical
nodes within the subnetwork given their initial state and the
conductance of the transistors. While the simplified circuit
models they use make the task of computing the new states
relatively straight-forward, much of the simulation time is
spent in the evaluation procedure. Since many subnetworks
are repeatedly confronted with the same stimuli over the entire
span of the simulation, many applications of the evaluation
procedure duplicate previous evaluations and should not be
repeated. If the switch-level simulator caches results of subnet-
work evaluations and reuses these results rather than reevaluate
the subnetwork, the speed of the simulator can be improved
significantly.

We present a caching method that significantly reduces the
cost of subnetwork evaluation during switch-level simulation
of many digital circuits, without the need of a presimulation
analysis. While there is a space penalty associated with the
cache, the structural hierarchy can be exploited to reduce
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the space penalty to an acceptable level while improving the
effectiveness of caching.

II. RELATED WORK

Function caching is a common dynamic programming tech-
nique for reducing the overall cost of functions that are
expensive to compute and are called frequently with the same
arguments. The idea behind function caching is to store the
results of each computation in a database of values that
are keyed by the arguments of the function call. Whenever
the function is called, the database is searched, using the
arguments as a key. If a corresponding value is found, it is
returned to the calling procedure as the result of the function
application. If the value is not found, the function is computed,
and the new result is stored in the database as well as returned
to the calling procedure.

If the number of distinct function argument combinations
is small, it is possible to allow unlimited cache growth. In
this case, the cache is complete once all input combinations
have been encountered, and every subsequent function call
represents a simple table lookup. If the number of argument
combinations is too large to consider storing all possible
argument-result pairs, the size of the cache can be limited
by implementing a replacement policy (e.g., first-in-first-out).
If the bound on the cache is carefully chosen, it is possible to
exploit caching to reduce, if not eliminate, the cost of function
application.

Variants of dynamic programming techniques for accelerat-
ing switch-level simulation and analysis have been reported
previously. Terman [23] describes a technique for caching
the parameter calculations that are expensive to compute
and are required for the ‘final-value’ computation in the
RSIM simulator. Bryant [11] suggests caching the results
of operations for manipulating Binary Decision Diagrams
(BDD’s), a representation that has been found useful in
the analysis of switch-level circuits. Similar techniques for
reducing BDD manipulation overhead have been reported by
Karplus [18] and Brace, et al. [5].

Incremental methods that reuse computed values in order
to reduce overhead following small changes to the circuit
may also be viewed as a dynamic programming technique.
For example, incremental simulators save the state history of
nodes during a simulation run. The state history is then reused
during subsequent runs in an cffort to reduce resimulation
time following user modifications to the circuit or primary
input stimulus [13], [15], [17], [21]. Incremental methods are
distinguished by their use of information between simulation
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runs as a means of accelerating the overall process of reval-
idating a design following modifications. The main goal of
cache-based simulation, on the other hand, is to accelerate a
particular simulation run without regard to previous or future
runs of the simulator.

A number of research projects have investigated the use
of dedicated hardware accelerators. Examples of such accel-
erators for switch-level simulation are discussed in [4], [14],
[22]. In [19], the mapping of the COSMOS simulator onto a
massively parallel framework is discussed. The advantage of
hardware acceleration is that they provide very high speed
simulation. However, they often require expensive special
purpose hardware.

Recently, a number of compiled simulation approaches
have been introduced to accelerate switch-level simulation on
general purpose computers. These methods accelerate switch-
level simulation by performing a presimulation analysis of
the circuit description. During this analysis, fast evaluation
code that models the behavior of subnetworks in the circuit
is generated. This evaluation code is then compiled and
executed during the simulation. The COSMOS simulator [8]
generates a system of Boolean equations to describe the steady
state of a subnetwork. This system of equations is solved
using Gaussian elimination and is encoded with fast Boolean
operations. The SLS simulator [1] relies on a sequence of
directed transistor evaluations, which are executed repeatedly
to obtain the steady state of the subnetwork. The SNEL
simulator [3], identifies higher-level constructs in the circuit,
which are used to improve the efficiency of the generated
evaluation code.

Cache-based simulation differs from compiled simulation
in that it does not rely on presimulation analysis and com-
pilation. The caching mechanism stores the simulation re-
sults of a subnetwork evaluation in a cache, which is then
accessed during future simulation cycles. The cache store
develops as the simulation progresses. Therefore, there is
no start-up overhead associated with cache-based simulation.
Furthermore, cache-based simulation is independent of the
subnetwork evaluation procedure. The caching mechanism
forms a shell around the subnetwork evaluation procedure
and only invokes this procedure in the case of a cache
miss. The independence of the caching mechanism from
the evaluation procedure allows caching to be used with
any existing subnetwork evaluation method. Caching can,
therefore, be implemented on a wide range of switch-level
simulators. The effort involved in implementing caching is also
quite low since it requires no modifications of the evaluation
procedure. In this paper, caching was implemented for a
simulator based on the MOSSIM II evaluation procedure. The
cost of adding the caching mechanism to the simulator was
only two days of programming, yet it produced a significant
simulation speedup. Function caching is, therefore, a practical
and efficient approach to increase the speed of both existing
and new switch-level simulators.

The remainder of this paper is organized as follows: Section
III presents an overview of the switch-level model and subnet-
work partitioning methods. Section IV presents the algorithms
for cache-based switch-level simulation. Section V shows
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how the structural hierarchy can be exploited during cache-
based simulation to reduce the size of the cache. Section VI
presents the performance results of cache-based simulation for
a variety of switch-level circuits. Section VII offers some final
conclusions.

III. THE SWITCH-LEVEL MODEL

In the MOSSIM II [10] approach to a switch-level simu-
lation every electrical node is assigned a discrete size rep-
resenting its capacitance to ground. A node also has a state
(0,1, X)) representing the voltage across the capacitor at that
time (0 for no charge, 1 for fully charged, and X for unknown
or in between). Each transistor is given a strength representing
the conductance of the transistor when closed. A transistor is
considered conducting, possibly conducting, or nonconducting
depending on the state of the node connected to the gate of
the transistor (for nMOS devices this is 1, X, 0, respectively).
At any moment in time the circuit network can be partitioned
into channel-connected subnetworks consisting of electrical
nodes that are connected via source/drain paths of conducting
and possibly conducting transistors. The target state of the
nodes within a given subnetwork is determined by holding
the conductance of transistors within the subnetwork steady
while applying an evaluation procedure to the subnetwork.
The evaluation procedure considers the state of the nodes
within the subnetwork, the sizes of the nodes, and the stengths
of the transistors to derive the sready-state response of the
subnetwork. This computation involves the traversal of the
transistors in the subnetwork and is described in detail in [10].

The circuit network can be either partitioned into static
subnetworks, prior to simulation, or into dynamic subnetworks,
during the simulation. The dyramic subnetwork containing
node z is the largest subnetwork containing all electrical
nodes connected to z via a source/drain path of conducting
and possibly conducting transistors. The static subnetwork
containing node z is the largest subnetwork containing all
electrical nodes connected to z via a source/drain path of
transistors regardless of the conductive state of the transistor.
The dynamic subnetwork of a node is always contained within
the static subnetwork. Therefore, the state of any node may be
determined by applying the evaluation procedure to either the
dynamic or static subnetwork partitions. If there is a large
difference in subnetwork size, evaluating the dynamic subnet-
work is faster than evaluating the static subnetwork. For small
subnetworks, however, the dynamic subnetwork is nearly as
large as the static subnetwork. In this case, it is more efficient
to evaluate the entire static subnetwork and avoid the overhead
of the dynamic partitioning. During simulation, the size of
the static subnetwork containing a node requiring evaluation
is, therefore, tested against a system defined threshold which
can be tuned by the user. If the static subnetwork is smaller
than the threshold, the evaluation procedure is applied directly
to the static subnetwork. Otherwise, the dynamic subnetwork
is computed, and the evaluation procedure is applied only
to it. Similar strategies for reducing the cost associated with
subnetwork partitioning are described in [12], [20].
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IV. CACHED SWITCH- LEVEL SIMULATION

Any time a node driving a gate of the subnetwork changes
state, the evaluation procedure is applied to the subnetwork.

Application of the evaluation procedure can account for a
substantial portion the simulation time. However, if the target
states resulting from application of the evaluation procedure
are cached for each statically partitioned subnetwork, it is
possible to virtually eliminate the cost of evaluating these
subnetworks.

Implementation of function caching requires only minor
modifications to the simulator. Specifically, whenever the
simulator determines that an evaluation of a statically parti-
tioned subnetwork is necessary, a keyword is constructed that
uniquely encodes the state values of the nodes that control
the subnetwork. The cache data structure is searched for a
corresponding tuple, (keyword, actionword ), that matches the
constructed keyword. If such a tuple is found, no evaluation
is necessary, the actionword is decoded, and each node in the
subnetwork is assigned the appropriate state. If no such tuple
is found (a cache-miss), the simulator proceeds with the usual
subnetwork evaluation. Following a subnetwork evaluation, a
new tuple is constructed from the keyword and the results of
the evaluation. The tuple is then inserted into the cache data
structure.

The keyword not only encodes the states of nodes driving
the gates of transistors in the subnetwork, but also encodes
the states of dynamic storage nodes within the subnetwork
since these may affect the target states. As each node may
be in one of three states, the state of each node is encoded
using two bits. Prior to simulation, an (arbitrary) ordering
among the driving and dynamic nodes within the subnetwork is
established for each static subnetwork, guaranteeing keywords
will be constructed consistently throughout simulation. The
keyword is constructed by shifting the state of each node into
the keyword in the established order. Similarly, the state of
target-nodes are encoded/decoded in the action word.

The cache table for each subnetwork is implemented using
a simple lookup tree mechanism. Each nonleaf in the tree
contains a subkey and a list of subtrees rooted. The subkey
is a selection of 2k bits of the complete keyword that fit into
a single machine word, where k is a user definable limit that
is used to control the branching factor of the lookup trees.
Each leaf contains a subkey and an actionword. The subkey
in a leaf consists of the remaining keyword bits not appearing
as nonleaf subkeys. A concatenation of the subkeys from the
root to the leaf containing a particular actionword forms the
keyword for the actionword. The depth of the lookup tree for
subnetwork ¢ having K; driving and dynamic nodes is

=[]

As subnetwork i may have up to 3%¢ distinct tuples, for large
subnetworks it is not feasible to keep all possible combinations
in the table. This is handled by two distinct mechanisms. First,
for very large subnetworks, a caching threshold is defined
by the user prior to simulation. Subnetworks whose keyword
size is above the caching threshold are not cached; i.e., all
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Fig. 1. Cache lookup tree for the 3-input NAND gate example with k = 2.

evaluations require application of the evaluation procedure.
Second, even for moderate size subnetworks below the caching
threshold, many tuples may be used infrequently, and so a user
definable limit (b) is imposed on the length of each subtree
list and the last subtree in a list is deleted if an insertion
puts the length of the list over the limit. New subtrees will
be inserted at the front of tree lists as they are required.
This effectively implements a FIFO cache replacement policy.
Although other replacement policies are possible, the FIFO
policy was found to be effective and easily implemented. Fig.
1 illustrates the cache lookup tree for a 3-input static CMOS
NAND gate following evaluations for input combinations 1X0,
110, 111, 001, and 000. For the purposes of illustration we
have chosen a small subkey size, & = 2.

We estimate the additional memory required for implement-
ing the above caching scheme as follows. Let S be the number
of static subnetworks in the circuit that have been selected for
caching (i.e., those having keyword size below the caching
threshold). Each nonleaf element requires three machine words
containing a (one word) subkey, a (one word) subtree pointer,
and a (one word) pointer to the next subtree in the list. Subtree
lists are bounded by min (3%,b); however, after initialization
the X state usually occurs infrequently and B = min (2¥,b) is
a more likely estimate on the subtree lists sizes. It follows that
the memory associated with nonleaves of subnet i is given by

D;-1
. . ; (1 - BP9
=3 B =3{——F~=1}.
N Lmem (3) ]Zl ( )
Let M; be the number of nodes in subnetwork ¢ and m the
number of bits in a machine word. Encoding each node re-
quires two bits making the number of machine words required

for the actionword of subnet ¢

M;
o]

Each leaf element requires a (one word) subkey, an (a; word)
actionword, and a (one word) pointer to the next leaf in the
list. The subkey in a leaf consists of the remaining keyword
bits not covered by the nonleaf subkeys, thus for subset i, the
subkey of the leaves requires K;—k(D;—1) bits. It follows that
the memory associated with the leaves of subnet i is given by

Lmem (i) = (a; + 2)(BP ™) min (b, 2K:~KP:=1),
Finally, each cached subnetwork requires a (one word) pointer
to the first subtree at the root list. The total additional memory
required by caching can now be estimated by

s
Cstat = 5+ Z(NL mem (z) + L mem (2)).

i=1
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Typically many subnetworks in a design are small, e.g.,
NAND’s, NOR’s, and inverters, If, in such cases, we assume
K; <kja; =1, and 2K: < b, then D; = 1, and the cache is
a linear list of size 3(2Kj).

Csat is only an approximation since, in general, the X
state may occur in the cache causing an undercount. Due to
the logic surrounding a subnetwork, some input combinations
may never occur causing an overcount. The parameters b
(subtree list size) and k (subkey size) provide a mechanism
for controlling cache size and access time. The choice of b is
determined as a compromise between two concerns: First, b
should be large enough to reduce the chance of a cache-miss,
minimizing the number of hard evaluations; Second, b should
be small enough that the cache does not use excessive space
and that the access time is shorter than a hard evaluation.
After circuit initialization, the X state occurs infrequently in
most circuits. Therefore, many tuples created during the initial
stages of simulation will not be used again. By setting the
bound b to 2*, such unused tuples will gradually be discarded
from the cache. The choice of k is also a compromise.
Choosing a small & increases the depth of the lookup tree
and reduces the average access time. Choosing a large k may
increase the average access time, but will reduce the number of
nonleaf nodes. In many circuits the majority of subnetworks
are relatively small and k = 8,b = 2 = 256 works well,
yielding flat lookup trees for small subnetworks.

V. EXPLOITING THE STRUCTURAL HIERARCHY

The technique given above builds a unique cache table for
each cacheable subnetwork in the transistor netlist. As the
size of each cached subnetwork is bounded by the caching
threshold, the additional space required to maintain the cache is
linear in the size of the netlist. However, many subnetworks in
a large MOS design compute the same function (for example,
inverters, 2, 3, and 4 input NOR’s and NAND's, eic.) By
grouping subnetworks according to their function and using a
shared table for each group, it is possible to lower the memory
overhead due to function caching.

One method of grouping subnetworks by function is to use
a presimulation analysis that computes a canonical represen-
tation of each static subnetwork and compares representations
(e-g., [2]). In this section we give an alternative approach
and show that, if the structural hierachy is given, shared
definitions appearing in the hierarchy can be exploited too
quickly and automatically identify subnetworks computing
the same function without any knowledge of the nature of
the function and without a Boolean analysis of the network.
The grouping obtained by the method we present may not
always be the smallest achievable for a given problem as only
subnetworks derived from the same definition and used within
the same local context are grouped together. However, the
grouping is a simple byproduct of netlist compilation, requires
no network analysis, may be applied to arbitrarily complex
subnetworks, and produces a significant space savings.

A hierarchical representation consists of a set of schematics.
Each schematic represents the design of an abstract component
and consists of a set of simpler subcomponents and a set of
wires connecting the pins of the subcomponents. An abstract
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Fig. 2. Schematic hierarchy of a 2™-input AND circuit.

component can be used as a subcomponent in any number
of higher-level schematics, facilitating modular design and
design reuse. Each use of this abstract component can appear
in a different context with regard to the pins (wires) of the
abstract component. For example, depending on the particular
instance of the abstract component, input pins may be driven
by transistors of different strengths and output pins may drive
any number of transistor gates, leading to different capacitive
loadings. Prior to simulation, the netlist compilation traverses
the hierarchy constructing a flattened version of the design
consisting only of MOS transistors connected by electrical
nodes. A netlist is obtained from a hierarchical description
by an enumeration of all paths through the directed acyclic
graph formed by the hierarchy. Under reasonable assumptions
about hierarchical design, the size of a netlist is exponential
in the size of the hierarchical descriptor.!

Consider the simple schematic hierarchy given in Fig. 2
describing the design of a 2"-input AND circuit implemented
as a tree of 2-input NAND “gates.” Each 2-input AND gate
is built from a single 2-input NAND gate fed into a single
inverter (INV), where NAND and INV are implemented using
standard static CMOS techniques. On netlist compilation, the
2-input AND gate tree constructed by expansion of AN D(n)
will contain 2™ — 1, 2-input NAND gates and 2™ — 1 INV gates. If

See [16] for details concerning hierarchical representations and netlist
compilation.
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the cache-based simulation method presented in the previous
section is used each subnetwork would require its own cache
table. Assuming & > 2 and b > 4, the estimated cache
saturation size is

Csat =[(2" — 1) + (2" — 1)3(2%)]
+[(2" —1) + (2" — 1)3(2Y)] = 20(2" - 1).

For n = 6 (a 64-bit AND circuit) the cache will require an es-
timated 1260 machine words. While this memory requirement
is exponential in the size of the hierarchical description, it is
linear in the size of the underlying netlist.

In the above example, the subnetworks for all NAND gates
should ideally share the same table, as should those of all INV
gates. For this example, it is easy to see how such sharing can
be accomplished. All NAND and INV gates are implemented
using static CMOS logic, and all signals crossing hierarchical
boundaries represent a simple connection from the output of
one subnetwork to the input of another subnetwork. In general,
the subnetworks of a design may be built using dynamic
logic sensitive to capacitive loading or the hierarchy may split
subnetworks at nodes other than output nodes. Although we
use the above simple example to illustrate the concepts and
the potential of our method for exploiting the hierarchy, the
reader should keep in mind that the method we present works
for arbitrarily complex subnetworks.

Each use of an abstract component in a hierarchical design
represents a different context that could potentially affect
the functionality of the component. In order to guarantee
that two subnetworks in the flat netlist that arise from the
same abstract component compute the same function, we
must guarantee that they operate in an identical context. The
transistors and interconnect enclosed within each use of an
abstract component, X, are all isomorphic. It follows that each
subnetwork completely contained within one instance of X (a
subnetwork in X that does not include any pin of X) has
an isomorphic counterpart in every other instance and all of
these are guaranteed to compute the same function. On the
other hand, subnetworks that cross the boundaries of X (those
that include the pins of X) may appear in a different context
for each use of X, may be nonisomorphic, and may compute
different functions.

For each subnetwork we choose a hierarchical represen-
tative which is a single wire appearing in the schematic
hierarchy with the property that every subnetwork that includes
an electrical node identified with this wire is isomorphic. Given
a subnetwork in the flat netlist we choose from the hierarchy
the highest level schematic having at least one wire identified
with the subnetwork. This schematic is unique and it com-
pletely encapsulates the subnetwork since the existence of any
other schematic at the same level would require a connection
between the two and imply the existence of an even higher
level schematic having a wire identified with the subnetwork.
The schematic may contain more than one wire representing
nodes of the subnetwork. From this set we choose one partic-
ular wire using a unique and repeatable way of breaking ties.
This wire is the hierarchical representative. Every subnetwork
having the same hierarchical representative must arise from
an instantiation of the encapsulating schematic. Since no wire
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identified with the subnetworks crosses the hierarchical bound-
ary of the encapsulating schematic, each of these subnetworks
appear in exactly the same local context and are isomorphic.

Determining the hierarchical representative for each subnet-
work is a simple process incorporated into the netlist compiler.
For each subnetwork, a pointer is created to its hierarchical
representative. Once all the hierarchical representatives are
identified and links from the subnetworks are established, the
hierarchy can be discarded. We estimate the additional memory
required for implementing the hierarchical caching scheme
as follows. Let S be the number of cacheable subnetworks
in the circuit and H be the number of distinct hierarchical
representatives of these subnetworks. Normally we can expect
H to be O(log S). Each cacheable subnetwork requires a
(one word) pointer to its hierarchical representative. Each
representative requires a (one word) pointer to the first element
of the cache list. We define HCsat as

H

HCsat =S+ H+»_(NLmem (i) + Lmem (i)).

i=1
Hierarchical function caching still requires a number of words
that is linear in the size of the underlying netlist; however, the
only linear factor is the pointer from each subnetwork to the
hierarchical representative requiring a single machine word
per cacheable subnetwork.

In the above AND tree example, every NAND appears in the
same context and is completely encapsulated in AND (1), so
only one cache table is required for all NAND subnetworks.
The inverters, on the other hand, appear in a number of
different contexts because their outputs cross the hierarchical
boundaries. For each AND(n) schematic, n > 1, there are two
distinct inverters, as well as a distinct inverter at the final
output on the uppermost level. This design, therefore, requires
one table for all NAND subnetworks, and 2(n — 1) + 1 tables
for the various INV subnetworks. Using the above definition
for HC sat and assuming k& > 2,b > 4 the estimated cache
saturation size using hierarchical function caching is

HCsat =2(2") + 14n + 4.

For n = 6 (a 64-bit AND circuit) hierarchical function caching
requires an additional 216 machine words (compared with an
additional 1260 machine words used in the non-hierarchical
method). Ideally, all INV gate subnetworks would also share
one cache table, reducing the number of representative pointers
to S = 2(2") + 18 = 146. By exploiting the hierarchy and
without any Boolean analysis of the circuits, we have, there-
fore, come relatively close to the ideal cache table memory
requirements.

VI. PERFORMANCE RESULTS

The cache-based simulation approach was implemented
and tested on a number of circuits, including the ISCAS-85
combinational benchmark circuits [6], the ISCAS-89 sequen-
tial benchmark circuits [7], some simple static combinational
circuit blocks, and two commercial microprocessors. For all
circuits, the correctness of the cache-based simulation algo-
rithm was verified. The circuits were simulated both with
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TABLE 1 TABLE 1I

PERFORMANCE OF H IERARCHICAL CACHE PERFORMANCE OF H IERARCHICAL AND NON

-BASED AND N ON-CACHED SIMULATION -HIERARCHICAL C ACHE-BASED SIMULATION

Subnet Simulation Time _— . Cache Size . Simulation .
Circuit  # Size Cach;able Hit (CPU s) Cache Circuit # Dgpth Size (Kbytes) Size Time (CPU s) Sim
Name Trans A Su Ratio Non- Hier  Speedup Name Trans Hier (Kbytes) Flat Hierarch Flat HierarchSpeeduP

vg Max Evals

Cached  Cached c880 1790 2 1200 296 195 1.52 3324 3264 1.02

c830 1790 2.9 8 100.00% 99.68% 55.44 32.64 170 c1355 2264 2 1478 332 253 131 3651 3621 1.01
c1355 2264 3.3 7 100.00% 99.60% 63.33 36.21 175 2670 5157 2 3483 849 49.7 1.71 9240 96.69 0.96
€2670 5157 25 7 100.00% 99.75% 144.15 96.69 1.49 c6288 10112 2 6517 121.8 109.4 1.11 179.04 175.63 1.02
c6288 10112 3.7 4 100.00% 99.61% 304.79 175.63 1.74 c7552 14884 2 9752 2274 1441 1.58 257.96 266.55 0.97
c7552 14884 2.8 8 100.00% 99.72% 390.67 266.55 1.47 5208 408 2 276 4.0 38 1.06 434 434 1.00
5208 408 2.8 6 100.00% 99.62%  8.21 4.34 1.89 8953 1801 2 118.6 193 16.1 1.19 2306 2278 1.01
$953 1801 3.2 9 100.00% 99.62% 42.01 22.78 1.84 51238 2600 2 1686 421 257 1.64 44.67 4409 1.01
s1238 2600 3.2 9 100.00% 99.67% 74.90 44.09 1.70 s5378 9634 2 6349 106.8 1069 1.00 121.58 118.52 1.03
s5378 9634 2.8 9 100.00% 99.54% 135.37 118.52 114 51320728379 2 18825 312.1 2640  1.18 44939 387.69 1.16
513207 28379 2.6 8 100.00% 99.69% 540.00 387.69 1.39 s15850 34668 2 2301.9 376.0 3222 1.17 524.87 50694 1.04
515850 34668 2.6 8 100.00% 99.72% 747.57 506.94 1.47 s38417 80435 2 5331.2 861.8 774.1 1.111067.35 1049.60  1.02
538417 80435 2.7 8 100.00% 99.64%1817.73  1049.60 .73 $38584 87910 2 5767.8 1034.1 670.7 1.541593.18 1250.44  1.27
538584 87910 2.9 8 100.00% 99.75%1963.15  1250.44 1.57 adderLA 870 4 579 133 6.7 1.98 113.83 11094 1.03
adderLA 870 3.4 6 100.00% 99.97% 214.48 110.94 1.93 adderRC 512 5 346 7.1 24 3.02 7597 7542 1.01
adderRC 512 3.5 6 100.00% 99.98% 147.26 75.42 1.95 mult 8960 4 5704 121.7 339 3.591260.01 1255.87 1.00
mult 8960 4.6 10 100.00% 99.98%2295.30  1255.87 1.83 RAM 2112 4 1294 15.2 2.6 5.82 427.57 42548 1.00
RAM 2112 5.3 82 73.14% 73.13% 445.16 425.48 1.05 procl 20177 2 1171.5 2456 1322 1.86 10220 99.75 1.02
procl 20177 6.0 1040 93.69% 91.82% 155.26 99.75 156 proc2 41065 124710 2765 307.6  0.90 24033 241.24 1.00
proc2 41065 53 753 99.42% 98.32% 497.36 241.24 2.06

and without caching, and the resulting output signals were
compared. For all test cases, the output signals were identical
in logic state.

All simulations were performed on SUN SPARC-2 work-
stations. Table I shows the performance of hierarchical cache-
based simulation for four sets of circuits. The first and second
set are, respectively, the ISCAS combinational benchmark
circuits (c880 through ¢7554) and sequential benchmark cir-
cuits (5208 through s38584). Due to the large number of
test cases in these benchmark sets, simulation results are
only shown for a select subset of circuits. The selected
circuits include those for which the cache-based simulation
was most, as well as least, effective. Logic gates in the ISCAS
benchmark circuits were implemented using domino CMOS
logic techniques. The third set consists of a number of common
circuit blocks implemented in static CMOS. Circuits adder LA
and aedder RC' are 16-bit adder circuits of, respectively, carry
look-ahead and ripple-carry design. Circuit mult is a 16-
bit array multiplier and circuit RAM is a 16-by-16 static
memory bank. The fourth set contains two commercial CMOS
microprocessor designs (procl and proc2). With the exception
of proci and proc2, all circuits were simulated for 10 000
cycles with randomly generated test patterns. Circuit RAM
required additional non-random control signals for correct
operation. For circuit proc] and proc2, functional test patterns
developed during the design of the processors were used.
This gives these test cases the advantage that they realistically
reflect the demands place on logic simulation during the design
process.

Cached simulation was performed with a caching threshold
of 64, a subkey size (k) of 8, and a subtree list size (b)
of 256. For each circuit in Table 1, both the average and
maximum subnetwork size in transistors is shown (subnet
size). The column cacheable sub evals shows the percentage
of subnetwork evaluations with a key size less than the key

threshold. The hit ratio gives the probability of finding a
requested key present in the cache.

Table I gives the simulation time in CPU seconds for
simulation with hierarchical caching and without caching. A
simulation speedup between 1.05 and 2.05 was obtained with
the cache-based simulation approach. Circuit RAM produced
the lowest simulation speedup. This is due to the large data
and select lines in the RAM circuit, which are not cached.
During a normal read or write cycle, only one memory cell is
accessed. However, all select and data lines are activated in
this process. The evaluation of data and select lines, therefore,
constitute most of the needed evaluation time, and reduce the
obtained simulation speedup. It should be noted, however, that
with the more diverse circuits proc! and proc2, a significant
simulation speedup was obtained, despite the large range of
subnetwork sizes in these circuits.

Table II compares the performance of hierarchical and non-
hierarchical cache-based simulation. For each circuit, Table
II shows the circuit size in transistors (# frans), the depth
in the hierarchy of the circuit description (depth hier), and
the required storage space of the circuit description for non-
cached simulation in Kbytes (size). As can be seen, the
simulation speedup of hierarchical cache-based simulation
over nonhierarchical (flat) cache-based simulation is usually
negligible. However, a significant reduction in cache size,
ranging between 1.11 and 5.82, is obtained for hierarchically
specified designs. In Fig. 3, the normalized simulation time
and space requirement for non-cached simulation, flat cached
simulation, and hierarchically cached simulation are compared
for the three largest hierarchically specified designs. The
simulation time was normalized by the number of transistors
in the design and the number of simulation cycles. The
simulation space was normalized by the number of transistors
in the design. It should be noted that the total cache size
is quite modest compared to the storage size of the circuit.
For all circuits, the space penalty was less than 25.0% for
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from O to 80. The maximum subtree list size determines the
amount of information that is retained in the cache. With a
maximum subtree list size of 0, no information is stored in the
cache, and the simulation performance is equivalent to that
of non-cached simulation. As the maximum subtree list size
increases, the cache becomes more effective and the simulation
time decreases. Fig. 4 shows that for maximum subtree list
sizes over 15, the gain in simulation speed is small. This is
due to the fact that with a maximum subtree list size of 15,
the cache already contains an effective working set of the key
requests generated during the simulation. The cache, therefore,
performs a near optimum efficiency, and adding more length to
the chain adds only slight simulation improvements. The total
cache size also increases as the maximum subtree list size
increases. The cache size and the simulation speed therefore
represent a trade-off.

In order to determine the effectiveness of cache-based
simulation for large subnetworks, circuit proc! was simulated
for a range of caching thresholds. The graph in Fig. 5 shows
the normalized simulation time and total cache size as the
caching threshold is varied from 0 to 256. The simulation time
initially decreases rapidly as the key threshold is increased
and then slowly flattens out and finally increases slightly. This
behavior is caused by two factors. First, large subnetworks
occur much less frequently in a design than small subnetworks.
As the caching threshold grows larger, the additional amount
of cached circuitry decreases, as does the impact on the
simulation time. Second, caching is less efficient for larger
subnetworks than for smaller subnetworks. As mentioned, this
1s due to the low hit rate observed in large subnetworks.
Caching of large subnetworks, therefore, adds little to the
efficiency of the simulation. Fig. 5 shows that the simulation
time, in fact, increases for caching thresholds larger than
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Fig. 4. Simulation performance of procl as a function of maximum subtree
list size.

80. This is caused by the overhead involved in the caching
mechanism. Fig. 5 also shows that the total cache space
increases as the caching threshold increased. In order to
balance the size of the cache with the obtained speedup,
the caching threshold was set at 64 for all simulations. For
thresholds above 64, the simulation acceleration diminishes
while the space penalty rapidly increases.

VII. CONCLUSIONS

We have presented a caching scheme for avoiding subnet-
work evaluation during switch-level simulation. The scheme
speeds up simulation by as much as a factor of two on
a commercial circuit using actual simulation patterns, while
encurring a space penalty of only about 18% on average.
If the structural design hierarchy is available, the space re-
quirement can be reduced by sharing cache tables between
subnetworks arising from the same hierarchical definition. The
effort involved in implementing caching is quite low since no
modifications of the evaluation procedure are required. Func-
tion caching is, therefore, a practical and efficient approach
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Fig. 5. Simulation performance of procl as a function of caching threshold
size.

to increase the speed of both existing and new switch-level
simulators. The techniques we have presented for exploiting
hierarchy for identifying functionally equivalent subnetworks
are likely to be useful in reducing overhead in systems which
use boolean analysis and isomorphism techniques for the
identification of functionally equivalent subnetworks [2].
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