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ABSTRACT 
This paper presents a new library compatible approach to gate- 
level timing characterization in the presence of RLC interconnect 
loads. We describe a two-ramp model based on transmission line 
theory that accurately predicts both the 50% delay and waveform 
shape (slew rate) at the driver output when inductive effects are 
significant. The approach does not rely on piecewise linear 
Thevenin voltage sources. It is compatible with existing library 
characterization methods and is computationally efficient. Results 
are compared with SPICE and demonstrate typical errors under 
10% for both delay and slew rate. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids, B.8.2 [Performance 
and Reliability]: Performance Analysis and Design Aids 

General Terms 
Performance, Design 

1. INTRODUCTION 
With higher clocking frequencies, longer and wider global 
interconnects and faster signal rise times, on-chip inductive 
effects are becoming more significant in today’s high- 
performance deep-submicron designs. These inductive effects are 
concerns for signal integrity and overall interconnect performance 
and must be accounted for in interconnect timing analysis. 

Existing gate-level static timing analyzers break down the path 
delay into gate delay and interconnect delay. Gate delays are pre- 
characterized in terms of input transition time and output load 
capacitance using detailed circuit simulators such as SPICE. The 
inherent incompatibility that exists between pre-characterized 
look-up tables and RC/RLC loads is resolved by finding an 
effective capacitive loading. This requires synthesizing a reduced 
order driving point model, which is then mapped to an “effective 
capacitance” value. O’Brien and Savarino [9] synthesized a pi- 
model for RC loads by matching the first three moments of the 
driving point admittance and Pillage et al. [ l l ]  presented an 
effective capacitance model for this pi-load. It has been shown 
that, with the introduction of inductance, the pi model cannot be 
synthesized [6]. A ladder type model is presented in [6], which 
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assures the realizability of a reduced order circuit by introducing a 
realizability parameter k. However, no physical explanation is 
given for k and also there is no approach to map this model to an 
effective capacitance. 

Another issue with inductance is that the driver output waveform 
may be non-monotonic and exhibits inflection points. 
Traditionally, static timing analysis tools compute delay and rise 
time at the output of a gate and approximate it with a saturated 
ramp. This ramp is then used to derive the far end response of the 
interconnect. While this approach usually works well for RC 
lines, it fails for RLC lines because the output waveform of the 
driving gate cannot always be well modeled by a single ramp [7]. 
In this paper, we propose an approach that computes the effective 
capacitance for RLC interconnects by using their driving point 
admittance moments. The idea of using driving point admittance 
moments directly (instead of mapping them to a reduced order pi 
model) was introduced in [ 11. However, unlike their approach, the 
proposed methodology is compatible with existing cell 
characterizations and does not require modeling of cells with 
piecewise linear Thevenin voltage sources. Also, our approach 
models the driver output waveform directly as compared to the 
approach in [l], which requires a SPICE or PRIMA run (with a 
piecewise linear Thevenin voltage and series resistance driving an 
RLC line) to compute the driver output response. We also show 
that with dominant inductive effects, a single ramp cannot model 
the entire driving point waveform accurately and at least two 
ramps should be computed to capture both the delay and slew. It 
must be noted here that with significant resistive shielding, even 
RC lines cannot be modeled as single ramps and a gate resistor 
model is used to capture its long exponential tail [l 11. However, 
inductive cases are unique since the output waveform of the 
driver exhibits a kink (and sometimes a flat plateau) due to 
transmission line effects. This kink, which causes a clear slope 
change, occurs in inductively dominated lines and can be captured 
by the proposed two-ramp model based on transmission line 
theory. We synthesize this two-ramp waveform by finding two 
effective capacitances. In the process, we propose a new criterion 
for evaluating the importance of on-chip inductance. Our method 
compares rise time at the driver output with the time of flight 
instead of simply taking the rise time at the input to the driver [5]. 

The paper is organized as follows. We begin by reviewing some 
basic properties of the inductive lines and the transmission line 
theory in the following section. Sections 3 and 4 present our 
modeling approach to capture the inductive waveforms at the 
driver output. Section 5 summarizes our modeling flow. Section 6 
shows the experimental results and we conclude in Section 7. 

2. DRIVER OUTPUT WAVEFORM WITH 
INDUCTANCE 
It is known that with significant inductance the driver output 
waveform is no longer smooth as in RC cases and exhibits 
inflection points. Figure 1 shows the driver output waveform of a 
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This causes reflections to come back to the source end even 
before the output has risen to the initial step. Thus the waveform 
resembles an RC line and the transmission line effects are not 
significant. However, for fast drivers, the initial step is high and a 
clear kink and plateau is seen in the waveforms. 
Based on the transmission line theory above, non-monotonic 
driver output waveforms should ideally be modeled as multi- 
piecewise linear waveforms to capture plateaus and multiple 
reflections. However, it is shown in [2] that reflections and other 
transmission line phenomena become important only when the 
source impedance of the driver is less than or comparable to the 
characteristic line impedance. This causes the initial step to be 
greater than 50% of VDD. In such cases, modeling of just the first 
reflection is sufficient since plateaus and ramps due to later 
reflections are not visible in the driver output waveform. In order 
to model just one reflection, the driver output can seemingly be 
represented as a three-piece linear waveform. The three pieces 
will be used to model the initial ramp, the plateau, and the ramp 
due to the first reflection. For example, in Figure 1 the three 
ramps will correspond to the AB, BC, and CD portions of the 
waveform. However, we point out that the plateau often spreads 
out so it is almost unnoticeable and, even when it is prominent, it 
can be modeled along with the first reflection (CD in Figure 1) as 
a single ramp. Hence, we do not require an extra piece for the 
plateau and the driver output can be modeled sufficiently by two 
ramps. The first ramp is therefore used to model the initial step 
and the second ramp is used to model the remaining part of the 
transition. Though modeling this waveform with three or more 
pieces can fit the waveform better, it adds to the computational 
cost and does not achieve noticeably better delay and slew 
accuracy at the far end of the line. As mentioned earlier however, 
in cases with weak drivers and insignificant inductive effects a 
single ramp may be sufficient for the entire transition. 
Some important considerations in two-ramp modeling are 
determining the slopes of each ramp and finding the voltage 
breakpoint during the transition. The breakpoint is defined as the 
voltage point at which the first ramp (initial step) ends and the 
second ramp starts and it can be calculated using Equation 1. The 
slopes of the two ramps can be found using an effective 
capacitance based approach discussed later in this paper. 
Using the two-ramp approach, the driver output can be modeled 
as shown in Figure 2. The slope of the first ramp is (VDD/T~~) and 
the slope of the second ramp is (VDD/Tn). The two-ramp 
expression is given by 

0.6 
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Figure 1. Driver output waveform of a 5 mm RLC line driven 
by a 75X inverter. 

RLC line driven by a 75X inverter.' It is clear from the figure 
that the waveform is not smooth and shows kinks during the 
transition. 

This behavior can be explained based on reflections in a 
transmission line. For fast drivers, transmission line effects 
become significant since the rise time of the signal is less than or 
comparable to the signal time of flight delay. Due to these 
transmission line effects, the driver output waveform rises to an 
initial step and then it shows a plateau while waiting for the 
reflections from the far-end to return. Once a reflection from the 
far-end comes back to the driver, the waveform rises to another 
step due to this reflection. This pattern of plateaus and steps (due 
to reflections) is continued until the waveform has risen fully to 
the supply voltage. For example, in Figure 1 AB represents an 
initial ramp, BC is the plateau, and CD is the ramp due to the first 
reflection. Beyond point D, the plateaus and reflections are not 
clearly visible because the signal is near its final value of VDw 

From the above discussion, it is clear that modeling the driver 
output waveform as a single ramp or even an exponential wave 
can lead to large errors in delay and slew prediction at the near as 
well as far end. When the wires are driven by strong buffers and 
inductive effects are significant, the waveforms exhibit 
transmission line effects and a better model of the driver output 
waveform is necessary for accurate timing analysis. 

3. MODELING DRIVER OUTPUT 
WAVEFORM 
The ratio of the signal rise time to time of flight delay can be 
related to the ratio of the source resistance of the driver to the 
characteristic impedance of the line [2]. At the driver end, the 
transmission line can be modeled as a source resistance in series 
with the characteristic line impedance. In this case, we have a 
simple voltage divider and the ratio of the source resistance to the 
line impedance determines the size of the initial step generated on 
the line. 

If the driver resistance is R, and the line impedance is Zo, the 
height of the initial step during the transition is given by: 

' Here, driver size 75X means the NMOS width in the inverter is 
75 times the minimum width (=2*Lmi,=O.36p). PMOS is twice 
as wide as NMOS. 

Height of initial step = v,, * f , where f = ~ ZO 
ZO +Rs 

For weak drivers, the driver resistance is much larger than the line 
impedance and the rise time is much larger than the time of flight. 

i ...... . . .. .. . . .. . .?& . . .. . . . . . .. . . .. J 
Figure 2. Simplified two-ramp model of driver output 

waveform. 
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We use the above driver output model in this paper. Our modeling 
approach is summarized below. The details are discussed in the 
following sections. 

2. Find two effective camcitances (the first effective 1 + b,s + b,s2 

input admittance of the interconnect. We model the driving point 
admittance by the following rational function: 

(3) a,s + a2s2 + a3s3 
1. Find voltage breakpoint using Equation 1. Y ( s )  = 

. -  
capacitance models the initial step and the second effective 
capacitance models the first reflection). 
Model plateau and fit a ramp that captures both the plateau 
and first reflection. 

The above expression is similar to the admittance of an FUC ll 
load. The coefficients in Equation 3 can be obtained by matching 
the first five moments of the driving point admittance. 3. 

4. Model driver output with two ramps. 
5. Replace the driver with a voltage source consisting of two 

ramps and compute the far-end response of the interconnect. 
The above flow is compatible with existing pre-characterized cell 
tables that store only 50% delay and output transition time for 
each input slew and output capacitive load. Our model uses only 
this information and obtains the double-ramp waveform at the 
driver output. It may seem that, with the above approach, existing 
cell characterization should be changed for two-ramp input 
waveforms. However, this is not required because the far-end 
waveforms that are propagated to the next stage do not show the 
plateau effect and can be modeled by a single ramp. 

4. EFFECTIVE CAPACITANCE(S) 
The underlying principle of our effective capacitance 
methodology is similar to the approach described in Ell]. We 
calculate effective capacitance by equating the charge transfer 
required by a single capacitance to that required by the original 
RLC load. It was shown in [ 1 11 that equating the charge up to the 
50% point captures delay accurately, but fails in modeling the tail 
portion of the transition. We have observed that in RLC loads 
with dominant inductive effects, we regularly see a flattened 
second half (long tail). Thus integrating up to the 50% point is 
always inaccurate as it gives unacceptably large errors in slew 
(although it may model delay well). Also, equating the charge 
over the entire region of the transition will not address this 
problem, since this approach yields an averaged curve where both 
the delay and slew may be inaccurate. Figure 3 shows that 
equating charge up to the 50% or 100% point can cause 
significant errors in modeling driver output waveforms. The 
equations used to calculate the effective capacitance in this figure 
are derived later in this section. 
This leads us to conclude that a single effective capacitance 
cannot model the entire transition accurately. The key idea we use 
in our approach is to model the driver output as a two-ramp 
waveform as described in Section 3. We then find two effective 
capacitances, where the first effective capacitance models the first 
ramp and is obtained by equating average charge during the 
transition of the first ramp. The second effective capacitance 
models the second ramp and is calculated by equating average 
charge during the interval when the second ramp is in transition. 

i -Actual Driver Output 

i -.-.Driver Output for Ceff obtained 

0 200 400 600 

T h e  (pa) 

Figure 3. Driver output response and Cerr approximations. 
The driving point RLC interconnect is modeled using a reduced 
order approximation, obtained from matching the moments of the 

4.1 Gem Calculation 
For the first ramp of the two-ramp waveform described in 
Equation 2: 

VDD 1 V ( s )  = -- 
Tr, s2 

The current delivered to the interconnect is given by 

1 
We need to consider the cases of real and imaginary poles. Let us 
first assume that the roots of s 2  + 5, + 1 = are real. Let the 

roots be SI  and s2. Using the inverse Laplace transform, we obtain 
b2 b2 

We define C, to be the capacitance that requires the same charge 
transfer as that required by the RLC moments during the interval 
when the first ramp is in transition. From Figure 2 we know that 
the first ramp is in transition from t = 0 to t =fT,,, where f is 
calculated using Equation 1. Charge transferred to the moments 
can be calculated by integrating I(t) from 0 to jT,,. Also, the 
charge transfer associated with charging the effective capacitance 
for this interval is given by C e m $ V D D .  

Solving the above equation for Cem 

Now let us assume that the roots of s 2  + LS I - 0 are 

imaginav. Let the roots be a+jp and a-jp. 
b2 b2 

a,b2a + a, + a,a U 
U, +e" COS Pt(J - a,) + e" sin Pt( 

b2 4 P 
By equating the charge in a similar way as done for the real roots 
case, we have 

Cem can be obtained by iterating on T,,. We start with an initial 
guess of C,B equal to the total capacitance and iteratively 
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improve the effective capacitance until the value converges. T,I at 
each step can be obtained from pre-characterized cell information 
and the Trl corresponding to the final Cefl is used to model the 
first ramp. We now turn to the derivation of expressions for C e ~  
to complete the two-ramp driving point waveform model. 

4.2 Cem Calculation 
For the second part of the two-ramp waveform described in 
Equation 2: 

1.5: ' 

E 

>" 0.6: 

0.9- - 

We define CeB to be the capacitance that requires the same charge 
transfer as that required by RLC moments during the interval 
when the second ramp is in transition. Using Figure 2, the second 
ramp is transitioning from t = f T r I  to t = f T r ~ + ( I  - fi,Trz. The 
charge transfer to charge the effective capacitance for this interval 
is given by CeB. ( 1 -j. VDD, 

Ra{ (T') ' "Modified considering Ramp2 plateau afler effect 

-Actual waveform 
-. - . Proposed Model 

Ramp1 by Cew, (T,J 

By using a similar approach as C e ~  and considering the case of 
real and imaginary roots separately, we have: 

For real roots, 

C e ~  is obtained by iterating on Tr2. The final value of Tr2 
corresponding to the converged C,B is then used to model the 
second ramp. However, as described in Section 3 the complete 
modeling of the driver output requires capturing the plateau along 
with the initial ramp and the first reflection. We account for the 
plateau by modifying Tr2 in a way such that the resulting ramp fits 
both the plateau and the first reflection. The plateau is difficult to 
represent because it is not flat, and hence an intuitive approach of 
modeling the driver output by a linear ramp, a flat step, and then 
another ramp, is often inaccurate. We incorporate the effect of a 
plateau by modifying the second ramp as shown in Figure 4. The 
point where the second ramp meets VDD is shifted by the plateau 
time and a new ramp is fitted as shown in the figure. The new Tr2 
can be obtained by Equation 8. 

i '  260 . 4000 ' ' 600 

Tlme (ps) 

Figure 4. Summary of the proposed two-ramp approach. 

In Equation 8, t,is the time of flight and 2tfTr1 is the duration of 
the plateau. The idea behind this approach is that there is no 
charge transfer during plateau time (2tfTr1). Hence when we 
calculate CeB by equating the charge during the second portion of 
transition, we consider charge transfer after plateau but we fail to 
capture the delay due to the plateau effect. One solution to 
account for plateau is to have a flat step for time 2trTr1 between 
the two ramps. Another solution is to modify Tr2 as Equation 8, 
where plateau delay is accounted for by shifting the second ramp 
by the plateau time. The first solution is more accurate when a 
clear flat plateau exists and the second solution works better when 
plateau is not flat and it smears out so much that it is almost 
unnoticeable. Experimentally, we have found that the second case 
occurs more often than the flat case and hence modifying Tr2 
works better for most cases. 

5. MODELING FLOW 
The two-ramp modeling of the driver output waveform requires 
finding the voltage breakpoint (Equation I) and computing two 
effective capacitances, one for each portion of transition. Trl 
(C,) gives the slope of the initial ramp and Tr2 new ( C , )  gives 
the slope of the transition after reflection has come back to the 
output of the driver. In order to model the breakpoint, we need to 
fmd the on-resistance R, of the driver. We model on-resistance by 
a similar approach as adopted by Thevenin models [3]. We 
observe the delay between 50% and 90% points of the output 
waveform and fit an exponential between these points. The on- 
resistance calculated in this way depends on the load capacitance. 
Ideally, one should find an effective capacitance and then 
calculate on-resistance of the driver for this value of the load 
capacitance. However, we have seen that the resistance value and 
more importantly, the voltage breakpoint, do not change 
significantly by using total capacitance instead of the effective 
capacitance. Since using the effective capacitance makes this an 
iterative process, we use total capacitance to find on-resistance of 
the driver without loss of accuracy. 

When the inductive effects are insignificant; the driver output 
waveform looks like an RC waveform. In this case, one effective 
capacitance is sufficient to model the entire transition accurately. 
This effective capacitance can be calculated by equating the 
charge over the entire region of transition. We have already 
derived equations to calculate Gem; the same equations can be 
used with f = 1 to calculate this single effective capacitance. 
Usually a single ramp obtained by this capacitance can model 
such waveforms very well but if there is significant resistive 
shielding, then the gate resistor model [l 11 can be used to model 
the exponential tail of the transition. 
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We use the following criteria from [4,5] to determine the 
significance of inductive effects: 

c, <<CI 

(9) 

Here R and C are line resistance and capacitance per unit length, I 
is line length, CL is load capacitance (contributed by fan-out input 
capacitance), T, is the rise time at the output of the driver, and tf is 
the time of flight. If the above criteria are satisfied, then the 
inductive effects are significant and we use the two-ramp 
modeling approach. Otherwise, a single effective capacitance is 
used to model the driving point waveform. 

The criterion in Equation 9 are identical to those in [4] but with an 
additional condition that compares rise time with the time of 
flight. This condition is important for screening short lines. These 
lines rarely exhibit inductive behavior since their time of flight is 
normally smaller than their transition time. The authors of [5] 
consider this by comparing rise time at the input of the driver with 
the time of flight. However inductive effects are fairly insensitive 
to the input transition times and strongly dependent on the 
driver's output transition time [8]. Hence we use output transition 
times in Equation 9. This is complicated by inductive effects, 
however, as the driver output waveform rises sharply to a certain 
level and then flattens before meeting the reflections. When 
comparing the rise time at the driver output, it is the initial ramp 
that is important and should be compared with the time of flight. 
We compute this initial ramp (Til) using Cefl iterations and apply 
it to the inductance criteria. 

The outline for the overall modeling flow is as follows: 

Given the following information: 

1. Line parasitics (R, L, C) 
2. The characterized output delay table for the driver 
Perform these steps for driver output modeling: 

1. Find driving point admittance moments and compute al, a2, 

2. Find driver on-resistance (R,) and compute voltage 

3. 
4. 

a31 bl, b2. 

breakpoint (0 using Equation 1. 
Perform Cefl iterations using Equation 4 or 5 and find Trl . 
Check inductance criteria using Equation 9. 

If inductance is significant: 

0 

0 

Use Trl, and voltage breakpoint to model the 

If inductance is not significant: 
0 

0 

Perform Cefl iterations using Equation 6 or 7 and 
compute Tr2. 
Modify T12 to Tr2-new using Equation 8. 

driver output as a two-ramp waveform. 

Perform Cefiterations using Equation 4 or 5 withf= 1 
and compute TI. 
Model the output as a single ramp. If there is significant 
resistive shielding, then model an exponential tail using 
the approach of [ 111. 

6. EXPERIMENTAL RESULTS 
We tested the new two-ramp approach for varying line lengths, 
widths, and driver sizes. All experiments were performed using a 
commercial 1.8V, 0.18pm CMOS technology. 
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First, we compare the driving point waveforms obtained by our 
model with HSPICE simulations. Figure 5 shows two such 
comparisons for RLC lines driven by inverters. The inputs to the 
inverters are ramp signals having loops and 75ps transition times 
respectively. Although the two-ramp model cannot capture all 
inductive behavior (such as oscillations after the breakpoint), the 
overall shape, including the breakpoint and key delay points, 
matches well with SPICE. 

Next, we compare the waveforms of a 4mm line driven by a 25X 
inverter (Figure 6 Left). In this case, driver resistance was much 
higher than the line impedance. Inductance criteria (Equation 9) 
were not satisfied and a single C.~model was used. We see that a 
single ramp is sufficient to model the entire transition in this case. 

We also observed the far-end waveforms by applying the modeled 
two-ramp input waveform to an RLC line within HSPICE. These 
waveforms were compared with the actual far-end response. A 
good match was seen for the far end waveforms (Figure 7 Right), 
thus validating the two-ramp assumption at the near end? 

We tested the new model by sweeping line lengths from lmm to 
7mm and line widths from 0.8pm to 3.5pm. Driver strengths were 
also swept from 25X to 125X. Input transition was varied from 
50ps to 200ps. The line parasitics were extracted using an 
industry standard 3D field solver. With a 0.18pm technology, we 
found that inductive effects were particularly significant in long 
(2 3") and wider wires (2 1.6pm) driven by fast inverters (75X 
and larger). When inductive effects were dominant, the single 
ramp assumption was highly inaccurate and the two-ramp model 
provided good results. The two-ramp model results for the 165 
inductive cases we tested are shown in Figure 7. The average 
error in delay was 6% and the average error in the slew rates was 
11.1%. For delay, 48% of the cases had less than 5% error and 
83% of the cases had less than 10% error. For slew rate, 31% of 
the cases showed less than 5% error and 61% of the cases showed 
less than 10% error. 

Line length = 3 mm Wid* = 1.2 um ;:;{ / (R=56 3 Ohms L.3.2 nH C.597 R) 
Driver 7% Input Slew75 ps 

Line length = 5 mm Width = 1.6 um 
0,3/ /! (R=72.4 ohms L=5.1 nH C=l . l  pF) 

Driver loox, input Slew-100 ps 1 

Tlme (PO) Tlme Ips) 

Figure 5. Two-ramp driver output response compared to 
HSPICE. 

-HSPICE (near) 
HSPICE (far) 
Model (near) 

..... Model (far) 

1 Ramp Model 

! Line length = 4 mm Width = 0.8um 
f (R=108.9 ohms L.4.42 nH C=7C4 fF) ,{ Driver 7% Input Slew=50 ps 

Line length4 mm Width4.6 um 

0 0 4 . 7  , . , , oo*  c , , , , , 
0 250 IOD 750 tom I 75 150 ps 1Do 115 

Tlme (ps) T h e  (ps) 

Figure 6. Left: HSPICE and one-ramp model of driver output. 
Right: Near and far-end response with HSPICE and two- 

ramp model of driver output. 

The far-end waveforms from the model show higher overshoot 
due to the ramp approximation at the near-end. 



Table 1. HSPICE, one-ramp, and two-ramp model comparison results 

HSPICE Delay (PS) HSPICE Slew (ps) 

Figure 7. Two-ramp model results compared to HSPICE 

Due to space limitations, we cannot include all results - Table 1 
shows a representative set of cases with significant inductive 
effects. HSPICE delay and slew numbers are compared with the 
single ramp and two-ramp modeling results. It is clear from the 
table that as line width increases, inductive effects become more 
significant and the delay values from a one-ramp assumption are 
more inaccurate. The slew predictions for one ramp modeling 
exhibits substantial error since it cannot capture the long tail of 
the inductive waveform. Using the extended model of [l 11 may 
better capture the transition times although it is still RC-based and 
would not comprehend the nature of the tail in the inductive 
response. 

7. CONCLUSIONS 
In this paper, we presented a new approach to model the driving 
point waveform in the presence of RLC interconnect loads. Our 
approach is compatible with existing pre-characterized cell delay 
tables. We proposed a two-ramp model based on transmission line 
theory that accurately predicts delay and slew at the driver output 
when inductive effects are significant. Results show that our two- 
ramp model significantly reduces the error incurred due to a 
simple one-ramp assumption. 
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