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ABSTRACT
Separable allocators in on-chip routers perform switch allocation in
two stages that often make uncoordinated decisions resulting in sub-
optimal switch allocation. We propose Virtual Input Crossbars (VIX),
where more than one virtual channel (VC) of an input port is con-
nected to the crossbar. VIX improves switch allocation by allowing
more than one input VC of an input port to transmit flits in the same
cycle. Also, more input VCs can participate in the output arbitration,
reducing the chances of uncoordinated decisions. VIX improves net-
work throughput by more than 15% for the topologies studied without
affecting the router critical path.
Categories and Subject Descriptors
C.1.2 [PROCESSOR ARCHITECTURES]: Multiprocessors—Inter-
connection Architectures
General Terms
Design,Algorithms
Keywords
network-on-chip, throughput, switch-allocation

1. INTRODUCTION
Processors with 10s of cores are already available commercially. A

packet-based on-chip network with a regular topology is an attractive
solution for connecting these large number of cores and the associ-
ated on-chip structures, as they are scalable with predictable electrical
properties [7]. An efficient on-chip network design could have a sig-
nificant impact on a many-core processor’s performance and power
consumption.

Routers in an on-chip network play a central role in determining its
efficiency. A router’s crossbar (switch) connects a set of input ports to
its output ports. A key functionality of a router is to decide every cycle
which of its output ports gets allocated to which of its input ports. This
functionality is performed by the switch allocation unit of the router.
Thus, the switch allocator primarily determines the utilization of a
router’s output links and therefore has a significant impact on overall
network performance.

Optimal switch allocation for an on-chip network without virtual
channels is easier to realize: each output port has an output arbiter
which chooses from a set of input ports that are requesting for it. How-
ever, optimal switch allocation for an on-chip network with virtual
channels (VCs) is considered to be a challenging problem, and there
has been significant research to address it [14, 1, 21, 4, 15, 5].

The challenge in networks with VCs is that each input port contains
one or more input virtual channels that could each request for a differ-
ent output port. However, in conventional router designs, since there is
only one input to the crossbar per input port, only one virtual channel
in an input port can transmit a packet in a cycle. To select an input VC
for each input port, conventional router designs employ an additional
set of input arbiters.

The above two phase switch allocator is referred to as the input-
first separable allocator. In the first phase, the input arbiters choose
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one virtual channel for each input port. The winners compete in the
second phase, where the output arbiters choose one input port for each
output port. This complexity-effective design is widely assumed in
NoCs as it can meet the tight timing constraints of an on-chip router.

However, a separable allocator suffers from two problems that lead
to sub-optimal switch allocation. We consider an optimal switch allo-
cator to be one that guarantees that an output port of a router is utilized
in a cycle as long as there is at least one input virtual channel request-
ing for it.

The first problem is the sub-optimal matching problem. The input
arbiters, while selecting an input VC for each input port, fail to co-
ordinate between each other. As a result, often two input ports may
end up choosing input VCs that request the same output port, when
that output port can serve only one input in a cycle. Had one of those
two input ports selected a VC with a different output port request, both
input ports could have been profitably allocated to different output
ports.

Past work on improving switch allocation has focused on solving
the above sub-optimal matching problem. They employ iterative algo-
rithms to allocate as many output ports as possible in a cycle [14, 21].
Unfortunately, these iterative solutions come at the cost of increased
delay and area, and may not be able to operate within the tight timing
constraints of the router.

The second problem that leads to sub-optimal switch allocation is
the input port constraint that dictates that only one VC in an input port
can transmit flits in a cycle. As a result, when the only requestors for
two output ports are from one input port, it is guaranteed that one of
those outport ports would be left idle. Thus, even if we are to imple-
ment an optimal matching solution [8], we could still have sub-optimal
switch allocation, where one or more outports ports are left idle in
spite of some input VCs requesting them.

In this paper, we make a key observation that the root cause of the
above two main switch allocation problems in NoC routers lies in un-
necessarily restricting VCs of an input port from access to the crossbar
switch. Instead of over-burdening the already complex switch alloca-
tion stage to improve its matching efficiency [14, 21], we propose the
Virtual Input Crossbar (VIX) that connects to more than one VC per
input port. While this increases the number of inputs to the crossbar,
it is feasible without increasing the router’s cycle time, as the crossbar
is not in a router’s critical path.

VIX addresses both problems in switch allocation we discussed ear-
lier. As VIX connects to more than one VC per input port, it directly
addresses the input port constraint problem. VIX also improves the
matching efficiency. The probability that an output request from an
input VC gets killed in the first phase of separable allocation reduces
as we expose more input VCs to the second phase. In one extreme, if
we connect all the input VCs of an input port to the VIX, we can not
only achieve optimal matching but also guarantee optimal switch al-
location. In practice, we limit VIX to two virtual inputs per input port
in order to bound the complexity of crossbar within a router’s timing
constraints.

We study VIX and the different switch allocation techniques through
detailed cycle accurate performance simulations, circuit-level delay
analysis of routers and network power models. We model a 64 node
network-on-chip. We study statistical traffic, and also 35 different
benchmarks with multiprogrammed workloads. We find that VIX im-
proves the effectiveness of separable allocators significantly, making
them comparable or better than more expensive and slower allocators.

Our evaluations show that VIX based allocation improves network
throughput by 16% for a mesh topology. VIX improves network
throughput by 15% when compared to wavefront switch allocation,
while having 39% lower delay. We also study the applicability of
VIX to higher radix topologies. VIX improves network throughput by



15% for concentrated mesh topology and by 17% for flattened but-
terfly topology. Higher performance from VIX can be used to reduce
network buffers. VIX can reduce the network buffers by 33% while
still improving network throughput by 10%. For application work-
loads, VIX improves system performance by 5% on average.

2. VIRTUAL INPUT CROSSBARS
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Figure 1: Router Architecture.

2.1 Description
The routers are responsible for communicating packets between the

source and destination nodes connected by the on-chip network. Each
packet consists of several smaller units of flow control called flits. Ev-
ery flit travels hop by hop from one router to another unitl it reaches its
destination. A generic router architecture is shown in Figure 1. This
router has P input ports and P output ports. The Route Computation
unit, RC determines the output port for each packet. The Virtual chan-
nel Allocation (VA) stage decides the winner amongst all the packets
requesting access to the same output VC in the downstream router.
The Switch Allocation (SA) unit decides the winning flit for each in-
put port and each output port that can proceed to crossbar traversal.
Typically crossbars in routers have as many inputs as the number of
input ports. A multiplexer is used to connect one virtual channel from
v virtual channels in an input port to the corresponding input in the
crossbar. We can potentially increase the inputs to the crossbar to
provide more virtual inputs. For instance, the crossbar can have 2P
inputs. Thus each input port has 2 virtual inputs corresponding to it.
The virtual channels are partitioned into two virtual input sets. A mul-
tiplexer can be used to connect one virtual channel from v/2 virtual
channels to the corresponding virtual input of the crossbar as shown
in Figure 2.

2.2 Switch Allocation with VIX
Our goal is to provide high matching efficiency with complexity

comparable to separable allocators. VIX provide opportunities to ex-
pose more conflict free inputs during switch allocation and hence im-
prove matching efficiency of separable allocators. The virtual inputs
provide two advantages. First, now more than one virtual channel can
transmit flits from one input port to different output ports. Figure 4
illustrates this advantage for a 5-port mesh router with 4 virtual chan-
nels. There are two packets in the West port of the router in V C0 and
V C2. The packet in V C0 is requesting for Local port and the packet
in V C2 is requesting for East port. In absence of virtual inputs only
East output port is allocated and one flit is transferred. With virtual
inputs, its possible to transfer flits from both V C0 and V C2 in the
same cycle. Thus both East and Local output ports are allocated and
two flits are transferred.

The second advantage of virtual inputs is better matching efficiency
because more input requests are exposed for output arbitration. This
reduces the probability that different input arbiters pick the same out-
put. Figure 5 illustrates this advantage. In absence of virtual inputs
(Figure 5 (a)) both West and South input port arbiters pick East
output port. East output port can pick only one, which is West, re-
sulting in only one flit transfer. In presence of virtual inputs (Figure 5
(b)), the input arbiters for each virtual input in South pick different
outputs, North and East. This leads to a better matching, resulting
in three flit transfers.
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Figure 2: Router Architecture with VIX
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Figure 3: Switch Allocation

2.3 Virtual Channel Assignment with VIX
The Virtual Channel Allocation stage decides the winner among all

the packets requesting access to the same output VC at the downstream
router. Before Virtual Channel Allocation every input VC is assigned
an output VC. Typically the output VC with maximum number of free
flit-buffers is assigned. VIX can be optimized by intelligent assign-
ment of output virtual channels to input virtual channels. This is be-
cause virtual channels are now divided among virtual inputs to the
crossbar creating sub-groups of virtual channels, each sub-group con-
nected to a specific virtual input to the crossbar. For example, for the
router shown in Figure 2, there are two sub-groups of virtual channels
at each port, and each sub-group has v/2 virtual channels. Packets
can be assigned to different sub-group of output virtual channels (and
hence different virtual inputs in the downstream router) based on the
direction of the output port at the downstream router. By using this di-
mension information, there will be fewer output port conflicts because
requests to different output ports will likely be generated from virtual
channels belonging to different virtual inputs. The input requests are
also load balanced among the sub-groups of virtual channels to make
sure that the different virtual inputs connected to the crossbar always
have requests. This exposes majority of the input requests at the cross-
bar and can help in better switch allocation. Load balancing the input
requests in combination with dimension information in the VIX archi-
tecture will help improve performance in adversarial traffic patterns.

2.4 Implementation
Supporting VIX requires modest changes to the router architecture.

The datapath of the router needs to support extra connections between
input buffers and crossbar. The extra connections can be realized by
increasing the number of output multiplexors which route flits from
virtual channels to the crossbars. The extra connections for a router
with two virtual inputs per input physical port, are shown in Figure 2.

The switch allocation unit also needs modification to support VIX.
Figure 3 (a) shows the organization of switch allocation unit with
input-first separable allocation for baseline router without VIX, with
v virtual channels, and P physical input and output ports. The input
arbitration is done in parallel by P input arbiters each of size v : 1.
The output arbitration is done in parallel by P output arbiters, each of
size P : 1. Figure 3 (b) shows the organization of switch allocation
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Figure 4: Virtual input crossbars allow more than one flit to be
transferred from each input port per cycle.
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Figure 5: Virtual input crossbars expose more conflict free input
requests for output arbitration.
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Figure 6: Router pipeline stages

unit with VIX. To realize two virtual inputs per physical input port, the
number of input arbiters are doubled. However each input arbiter is
now a v/2 : 1 arbiter and hence its complexity is reduced by half. The
number of output arbiter remains same as baseline, but the complexity
of each output arbiter is now doubled to 2P : 1.

The number of inputs of the crossbar are doubled to support a VIX
with two virtual inputs per input physical port. The size of crossbar is
increased from a P × P crossbar to a 2P × P crossbar as shown in
Figure 2. This can potentially effect the cycle time (and frequency) of
the router. In order to examine the impact of using larger crossbars on
router’s cycle time, we synthesized the various components of router’s
pipeline. The different stages of a router’s pipeline are shown in Fig-
ure 6. The Figure 6 (a) illustrates the stages of a 5-stage pipeline and
Figure 6 (b) illustrates the stages of an optimize 3-stage pipeline with
speculative switch allocation [19] and look ahead routing [9]. Several
studies have shown that Virtual channel Allocation (VA) or Switch Al-
location (SA) is on the critical path of the router [19, 17, 18, 10, 4].
Thus we examine the delays of VA stage, SA stage, and crossbars to
study the impact of using larger crossbars for supporting VIX.

We synthesize the VA and SA stage using open-source NoC router
RTL code [4, 3]. Synthesis was done with Synopsis Design Compiler
using a commercial 45nm SOI technology library (1.0V, 25◦C and
topographical mode). Since crossbars are wire dominated structures,
we use SPICE modeling for more accurate estimation of crossbar de-
lay. We model 128 bit matrix crossbars whose inputs are driven by a
flip-flop followed by a driving buffer. Each output gets latched into a
register. Tri-state buffers connect the input wires to the output wires,
with a one-hot enable signal. The enable signal is assumed to be driven
from the SA pipeline stage. Metal 3 and Metal 4 are used to model the
crossbar wires. Appropriate length wire models are used, assuming
2x spacing between wires, to avoid coupling. The driving buffer and
tri-state gates are optimally sized to reduce delay.

Design Radix Xbar size VA Delay SA Delay Xbar Delay
Mesh 5 5 x 5 300 ps 280 ps 167 ps
Mesh with VIX 5 10 x 5 300 ps 290 ps 205 ps
CMesh 8 8 x 8 340 ps 315 ps 205 ps
CMesh with VIX 8 16 x 8 340 ps 330 ps 289 ps
FBfly 10 10 x 10 360 ps 340 ps 238 ps
FBfly with VIX 10 20 x 10 360 ps 345 ps 359 ps

Table 1: Router pipeline stage delays.
The delays for analyzed components of the router are shown in Ta-

ble 1. To study the wider applicability of VIX, we synthesized the
components for routers of three different topologies. The topologies

considered are mesh [10, 22], concentrated mesh [2] and flattened but-
terfly [11]. Each topology requires a router with different radix1, radix
5 for mesh, radix 8 for concentrated mesh (CMesh), and radix 10 for
flattened butterfly (FBfly). The different topologies also require cross-
bars of different sizes as noted in Table 1. We observe that cross-
bar stage is not in the critical path of router’s pipeline. Our analysis
demonstrates that there is sufficient slack in crossbar stage to support
larger crossbars required for VIX architecture. For a mesh router, the
delay of crossbar stage increases by 22%, while still remaining within
70% of the router’s cycle time. The slack in crossbar stage reduces for
higher radix flattened butterfly topology, however the allocation stage
delays also increase proportionally for higher radix. Supporting VIX
for flattened butterfly increases the delay of crossbar stage by 50%.
However the crossbar delay continues to be lower than VA delay, thus
VIX can be implemented for flattened butterfly without increasing the
cycle time of router. But this also indicates that VIX architecture may
not scale to very high radices unless innovative high-radix switch ar-
chitectures are utilized [20].

In summary, we conclude that we can implement VIX architecture
without degrading the frequency of baseline router architecture for the
three topologies considered.

3. METHODOLOGY
We use a cycle-accurate network-on-chip simulator for our analysis.

All routers use the three stage pipeline shown in Figure 6 (b). We
model deterministic dimension order routing algorithm, finite input
buffering, wormhole switching, and virtual-channel flow control. For
each router, we assume a buffering of 6 virtual channels per port and
a buffer depth of 5 flits per virtual channel. The datapath width of the
router is constant across all topologies and is equal to 128 bits.

We evaluate the different network configurations with uniform ran-
dom statistical traffic and application benchmarks. For applications,
we use a trace-driven, cycle-accurate manycore simulator with the
above network model integrated with core, cache and memory con-
troller models. Table 2 provides the configuration details of the com-
ponents simulated.

We use a set of multiprogrammed application workloads compris-
ing scientific, commercial, and desktop applications. We study 35
benchmarks, including SPEC CPU2006 benchmarks, and four com-
mercial workloads traces (sap, tpcw,sjbb, sjas). The details of
how each multiprogrammed workload mix is derived from the differ-
ent benchmarks are discussed in Section 4.7.

1Radix is equal to number of physical input/output ports of a router.



For network energy, each component of router such as, links, buffers
and switch is modelled through SPICE. Our models include energy
spent due to clocking and leakage energy. The activity factor of links,
buffers and switches were collected from cycle-accurate simulations
and integrated with component models to determine the overall net-
work energy consumption.

Cores 64 cores , 2-way out-of-order, 2 GHz frequency
L1 Caches 32 KB per-core, private, 4-way set associative,

64B blocks, 2-cycle latency, split I/D caches,
32 MSHRs

L2 Caches 64 banks, 256KB per bank, shared, 16-way
set associative, 64B block size, 6-cycle latency,
32 MSHRs

Main Memory 8 on-chip memory controllers,
4 DDR channels each @16GB/s,
up to 16 outstanding requests per core,
80ns access latency

Table 2: Processor configuration

4. EVALUATION
4.1 Network Configurations Studied

We evaluate the network performance for four different switch allo-
cation schemes - Separable input-first (IF), Wavefront (WF), Aug-
mented Path (AP) and VIX. In the IF scheme, the input arbiters
choose one request per input port. Next, the output arbiters choose
one input request for each output port. This can lead to uncoordinated
decisions between the two arbiters. The inefficiency of separable al-
locators can be minimized by more complex iterative allocators [14]
or wavefront (WF) [21]. The WF allocator works on the principle of
iteratively allocating all conflict free input-output pairs along the diag-
onals. By exposing more conflict free inputs to the outputs, WF allo-
cation achieves better allocation efficiency than separable allocators.
Better allocation comes at a cost of increased complexity and higher
cycle time [4, 15]. The WF allocator has 39% higher cycle time than
a separable allocator as shown in Table 3. However, the WF allocator
does not necessarily achieve maximum or ideal matching. Maximum
matching can achieved by the AP algorithm [8]. The complexity of
AP algorithms limit their applicability to NoC routers [4]. In the ex-
periments conducted, all VIX configurations have two virtual inputs
per input port. All our experiments are performed for 64 node net-
works. For each of these configurations, we study the average packet
latency and average network throughput for each of the four switch
allocation techniques. To study the allocation techniques independent
of their implementation limitations, we assume equal cycle time for all
switch allocation techniques. The packet latency is reported in cycles
and network throughput in packets/cycle/node or flits/cycle. The
routers have a 128 bit datapath width, and support 6 virtual channels
per input port. We evaluate the different network configurations with
uniform random statistical traffic with a packet size of 512 bits (i.e. 4
flits).

Separable Wavefront Augmented Path
Delay 280 ps 390 ps Infeasible

Table 3: Delay of different switch allocation schemes.
4.2 Switch Allocation Efficiency

In this section, we study the switch allocation efficiency for a single
router. This study allows us to analyze the different switch alloca-
tion techniques in isolation, without second order effects of network
topology and interaction of a router with other routers. Packets are
injected at maximum injection rate into each port of the router. Fig-
ure 7 illustrates the throughput achieved by the router for different
radices and different allocation techniques. A single router of Radix-
5 can achieve at best 5 flits/cycle and Radix-10 can achieve at best
10 flits/cycle. We observe that the trends across different radix routers
are similar. The AP algorithm can provide above 30% higher through-
put than separable IF for all radix configurations, while VIX provides
above 25% throughput improvement over IF for all radices evaluated.
Both AP and VIX achieve efficiency very close to ideal switch alloca-
tion. Ideal allocation is possible by allowing 6 virtual inputs per input
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Figure 7: Switch allocation efficiency for single router.
port. Interestingly, some of these trends are reversed for network level
performance, as we shall see in the next section.

4.3 Network-Level Performance
In this section, we evaluate the network performance for a mesh

configuration using a 64 node network.
Figure 8 shows the average packet latency and average network

throughput for mesh topology. We observe that VIX only provides
benefits at high injection rates. Since, at low network load all the allo-
cation schemes have nearly identical performance due to fewer output
port conflicts. At higher injection rates, we observe that VIX improves
network throughput by 16.2% and average packet latency by 36% over
the IF allocation method. VIX also outperforms the AP scheme. VIX
improves network throughput by 15.9% over the AP allocation.

The AP scheme improves the network throughput by a mere 0.3%
over IF for mesh topology. This is because the AP algorithm follows
a greedy approach, making optimal decisions locally while making
sub-optimal decisions at the network level, leading to high levels of
unfairness in the network. The extent of unfairness in the network is
proportional to the average number of hops in the network. To illus-
trate this fact, we evaluated the maximum/minimum throughput val-
ues of all the nodes in the network. Ideally, the maximum/minimum
throughput should be close to 1, as all network nodes are injecting
at equal injection rate. Figure 9 shows that this ratio is 6.4 for Mesh
using an AP algorithm, while it improves to 1.99 by using VIX.

Overall at the network level, VIX achieves higher network through-
put and also has significantly lower average packet latency at high
load. In addition, VIX also achieves maximum fairness at the network
level when compared to the other allocation schemes studied.
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Figure 10: Network throughput achieved by Packet Chaining,
VIX and other allocation techniques.

4.4 Comparison to Packet Chaining
Recent work proposes the concept of Packet Chaining [15] for im-

proving the efficiency of separable allocators. The key idea is to inherit
the allocation decisions made by the separable allocator in previous
cycles and then decide the new allocations for current cycle. Thus,
packets which want to communicate between same output-input pairs
are chained. Packet chaining provides higher benefits for short packets
or single-flit packets. By using past history and spreading the alloca-
tion over multiple cycles, Packet Chaining (PC) achieves some of the
properties of iterative allocators.

In our view, PC works by elimination. By preserving the allocations
from previous cycles, it eliminates many requests from the request ma-
trix, thereby reducing the chances of uncoordinated decisions between
the input and output arbiters. Input ports which preserve connections
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Figure 8: Network throughput (a) and packet latency (b) for a mesh topology.
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Figure 11: Network energy per bit.

from the previous cycle do not participate in input arbitration. Thus the
chances that many input arbiters pick the same output port is reduced.
On the other hand, VIX works by exposing more non-conflicting re-
quests to output arbiters, and thereby reducing the chances of uncoor-
dinated decisions between input and output arbiters. Both allocation
methods solve the problem with baseline separable allocators by tak-
ing very different approaches. In addition, VIX has the advantage of
allowing more than one virtual channel per input port to transmit flits
in a given cycle.

To compare the two techniques quantitatively, we replicate the router
pipeline used by Michelogiannakis et al. for Packet Chaining [15]
and simulate the SameInput, anyV C scheme. We evaluate a 8x8
mesh with uniform random traffic, and single-flit packets. Figure 10
shows the network throughput achieved by the different allocation
methods at maximum injection rate. We observe that PC improves
network throughout by 9%, whereas VIX improves network through-
put by 16%. We conclude that for separable allocators, an approach
which exposes more non-conflicting input requests to output arbiters
provides better allocation than an approach which eliminates input re-
quests and preserves prior connections.

4.5 Energy Consumption
Figure 11 shows the energy per bit for the mesh topology at an

injection rate of 0.1 packets/cycle/node. In VIX, the switch energy
increases due to an increase in the crossbar size. We observe that
the total network energy per bit increses by 4% for a Mesh network
due to a larger crossbar size. Note, VIX improves both network-level
throughput and application-level throughput significantly. Tasks will
complete execution earlier, leaving the network and processor’s other
components idle for longer periods. Hence, leakage energy of net-
work and processor’s others components can be saved. Also, energy
dissipated by clocking can be saved during the idle periods.

4.6 Increasing Virtual Inputs
In this section we study the impact of increasing virtual inputs.

Figure 12 shows network throughput for three configurations. First,
baseline which has no virtual inputs (no VIX). Second, VIX with two
virtual inputs per input port (1:2 VIX) and lastly, ideal VIX configu-
ration which has equal number of virtual inputs and virtual channels,
per input port. We study the impact of VIX for routers with both 4
VCs and 6 VCs per input port. The realistic 1:2 VIX provides signif-
icant throughput improvement for both 4 VCs (21% on average) and
6 VCs (16% on average). For routers with 4 VCs, we find that VIX
with two virtual inputs (1:2 VIX) achieves nearly equal performance
as ideal VIX for all topologies. Thus, two virtual inputs suffice for
routers with 4 VCs per input port. For 6 VCs, two virtual inputs is

close to ideal VIX for mesh and concentrated mesh topologies. The
switch allocator has more opportunities for improving throughput in
flattened butterfly because of its higher radix. Thus the gap between
1:2 VIX and ideal VIX is more pronounced for flattened butterfly with
6 VCs.

We also observe that 1:2 VIX with 4 VCs achieves more than 10%
throughput improvement over a 6VC configuration without VIX. Thus
VIX can be leveraged to reduce number of buffers, and save router
area/power. VIX can be used to reduce network buffers by 33% (from
6 VCs to 4 VCs) while still improving the network throughput by 10%.

4.7 Application-Level Performance
In this section, we analyze the effect of different allocation schemes

with real application workloads. We evaluate the multi-programmed
workloads Mix1 - Mix8 for our experimental analysis. Each work-
load consists of 6 unique applications. These applications are chosen
at random from a suite of 35 benchmarks. Table 4 lists the multi-
programmed workloads used for the study and the speedup observed
over the baseline scheme. We observe an average increase of 5% and
a maximum of 7% in system performance using VIX over the base
(IF) allocation scheme. VIX also shows an increase of upto 3.2% in
performance over the AP algorithm.

5. RELATED WORK
Several interesting switch allocation schemes have been proposed

for off-chip networks [1, 16]. We focus on switch allocation tech-
niques which have been proposed for on-chip networks. We have al-
ready compared our approach extensively, both qualitatively and quan-
titatively, to existing switch allocation techniques such as separable
allocators, wavefront allocators [21], almost ideal matching based on
augmented path algorithms [8] and packet chaining [15].

Kumar et al. [13] proposed SPAROFLO switch allocation to im-
prove efficiency of separable allocators. In SPAROFLO, the number
of input requests presented to output arbiters is varied dynamically
with network load. Similar to VIX, more than one request per input
port is selected for output arbitration at low and medium load. Since
there are no virtual inputs at the crossbar, only one request per in-
put port can be granted. Thus, conflicts must be detected after output
arbitration. This is done by assigning a priority to the virtual chan-
nels during input arbitration. These conflicts limit the efficiency of
SPAROFLO when compared to VIX. In addition to varying dynam-
ically the number of requests per input port, SPAROFLO prioritizes
older requests during output arbitration. Priority is also given to flits
of same packet, so that all flits of a packet stay together. These priori-
tization optimizations can be easily integrated with VIX.

Becker et al. [4] study the design space of virtual channel allocators
and switch allocators for NoCs. They also propose an optimization
for speculative switch allocation. In speculative switch allocation, the
winners from the non-speculative requests must be prioritized over
speculative requests. By pessimistically masking the speculative re-
quests, their design removes the prioritization circuit from the critical
path of switch allocation. This optimization is orthogonal to our pro-
posed techniques and is applicable to routers with VIX.

Recently Chang et al. [5] proposed TS-router. By predicting fu-
ture requests to arrive at a router, TS-router maximizes the matching
of separable allocators across cycles. While this is an beneficial ap-
proach, it does not solve the problem uncoordinated decisions between
the input and output arbitration stages. We believe both TS-router and
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Figure 12: Impact of increasing the number of Virtual Inputs for (a) Mesh, (b) Flattened butterfly, and (c) Concentrated mesh.
Mix avg. MPKI Speedup
Mix1 milc (11) applu (11) astar (10) sjeng (11) tonto (11) hmmer (10) 15.0 1.03
Mix2 sjas (11) gcc (11) sjbb (11) gromacs (11) sjeng (10) xalan (10) 21.3 1.03
Mix3 milc (11) libquantum (10) astar (11) barnes (11) tpcw (11) povray (10) 33.3 1.04
Mix4 astar (11) swim (11) leslie (10) omnet (10) sjas (11) art (11) 38.4 1.05
Mix5 applu (11) lbm (11) Gems (11) barnes (10) xalan (11) leslie (10) 42.5 1.05
Mix6 mcf (11) ocean (10) gromacs (10) lbm (11) deal (11) sap (11) 52.2 1.05
Mix7 mcf (10) namd (11) hmmer (11) tpcw (11) omnet (10) swim (11) 58.4 1.06
Mix8 Gems (10) sjbb (11) sjas (11) mcf (10) xalan (11) sap (10) 66.9 1.07

Table 4: Benchmarks used to construct eight multiprogrammed workloads for our 64-core processor. Numbers in parenthesis indicate
the number of application instances that we used to construct a workload. The average Misses-Per-Kilo-Instruction (MPKI) per core
for a benchmark is calculated as the sum of its L1-MPKI and L2-MPKI. The last column indicates the speedup of VIX over Baseline
VIX can work together to improve efficiency of separable allocators.

Prior work has proposed input speedup - a mechanism by which
output port utilization can be improved by increasing the number of
input ports to the crossbar [6]. The mechanism that we propose pro-
vides a strong case for this architecture for NoCs. We expose requests
coming from different VCs to the crossbar by increasing the num-
ber of input ports. VIX can also benefit from different VC allocation
schemes to ensure better utilization of input virtual channels. Our
studies showed that VIX can achieve a throughput higher than com-
plex allocation schemes in most topologies studied. Moreover, the
synthesis and SPICE simulations show that this can be achieved with
minimal impact on delay and energy efficiency.

Kim et al. proposed a modular router architecture (RoCo) in [12] to
achieve low latency and energy efficient networks. They propose de-
coupled parallel arbiters and use smaller crossbars for input and output
port connections to improve the allocation efficiency for mesh topol-
ogy with dimension-order routing. The RoCo architecture has two sets
of smaller 2× 2 crossbars which are used depending on the direction
of flit traversal, i.e East-West or North-South. It tries to minimize the
conflicts in allocation by dividing requests based on dimension. VIX
and RoCo have the same goal, but VIX exposes more requests to the
crossbar by increasing its size and having virtual inputs. VIX can also
assign input requests to virtual channels based on the dimension of
travel, thus reducing output port conflicts.

6. CONCLUSION
Switch allocation matches output links to waiting input requests.

Switch allocation directly impacts network throughput. An ideal switch
allocator avoids idle cycles on output links for which requests exist.
For on-chip networks, separable allocators provide best cycle time vs
efficiency trade-off. However, uncoordinated decisions between in-
put arbitration and output arbitration stages of separable allocators can
lead to poor allocation efficiency. We make the observation that pro-
viding virtual inputs to the crossbar, which connect more than one vir-
tual channel per input port to the crossbar, can improve the efficiency
of separable allocators significantly. We show that VIX is feasible for
on-chip routers without increasing routers cycle time.

Our evaluations show that VIX based allocation improves network
throughput by 16% for a mesh topology. We also study the appli-
cability of VIX to higher radix topologies. VIX improves network
throughput by 15% for concentrated mesh topology and by 17% for
flattened butterfly topology. Higher performance from VIX can be
used to reduce network buffers by 33% while still improving the net-
work throughput by 10%.
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