Low Power Battery Supervisory Circuit with Adaptive Battery Health Monitor

Inhee Lee, Yoonmyung Lee, Dennis Sylvester, David Blaauw

University of Michigan, Ann Arbor, MI

Abstract

We propose a battery supervisory circuit (BSC) for wireless sensor nodes that automatically adapts to varying battery health, as reflected by its internal resistance (R_{BAT}), and establishes a constant effective threshold voltage. Compared to a conventional fixed-threshold BSC, the new design avoids oscillation and widens the usable range of battery voltages, independent of R_{BAT} . R_{BAT} is measured by inducing a test current using decaps and measuring the resulting battery RC response time. When tested with a 2µAh battery and 11µA sensor system, the BSC reduces the required hysteresis from 656mV to 77mV, increasing the usable battery voltage range by 2.7×.

Introduction & Conventional BSCs

Rapid advances in low-power wireless sensor nodes are driving the realization of Internet of Things [1]. Wireless sensor nodes often include an energy harvester that takes energy from a source (e.g., solar cell) and transfers it to a battery (Fig. 1). Battery voltage (V_{BAT}) varies over time depending on the amount of harvested energy vs. system energy consumption. To avoid unpredictable circuit behavior, a battery supervisory circuit (BSC) monitors V_{BAT} and only enables the system when V_{BAT} exceeds a certain threshold. Conventional BSCs [2-4] typically include a V_{BAT} divider, voltage reference, comparator, and delay generator (Fig.1, bottom). The divided V_{BAT} (V_{DIV}) is compared to a predetermined threshold voltage (V_{TH}) (generated using a voltage reference) by a comparator. The output (*compout*) either immediately disables the sensor system or enables it after a delay that provides stabilization time to the circuits.

To prevent oscillation, conventional BSCs employ two fixed threshold voltages, controlled by an enable signal (Fig. 1). The lower threshold voltage, $V_{DISABLE}$, sets the lowest V_{BAT} voltage at which circuits operate properly. The higher threshold voltage, V_{ENABLE} , provides hysteresis ($V_{HYST} = V_{ENABLE} - V_{DISABLE}$) to prevent the system from oscillating between enabled and disabled modes.

In a battery-operated system, the required V_{HYST} value is directly related to the battery internal resistance (R_{BAT}). When V_{BAT} first reaches V_{ENABLE} and the sensor node turns on, the additional current draw from the system (I_{SYSTEM}) causes an immediate $I_{SYSTEM} \times R_{BAT}$ battery voltage drop. Conversely, when the system is disabled, the reduced I_{SYSTEM} creates an upward spike in V_{BAT} . If these IR spikes exceed V_{HYST} , the system will oscillate (Fig. 2).

Miniature wireless sensor nodes are unique in that they employ very small batteries with high R_{BAT} , e.g., $7k\Omega$ [5], leading to large IR drops. Battery health declines with discharge cycles, increasing R_{BAT} (e.g., from 7 – 31k Ω over 1000 cycles [5]) and is also temperature dependent [6]. As a result, the current BSC approach requires a large V_{HYST} to accommodate the worst-case R_{BAT} over its lifetime, which both delays system turn-on time and reduces the usable range of battery voltages (V_{USE}) over which the system can operate.

Proposed BSC

We propose a new BSC that dynamically modifies V_{ENABLE} (and hence V_{HYST}) to adapt to the varying R_{BAT} , obtaining an $V_{ENABLE,EFF}$ that is constant and independent of R_{BAT} (Fig. 3). When V_{BAT} reaches V_{ENABLE} , the R_{BAT} monitor first measures R_{BAT} by inducing a test current using decoupling capacitors and measuring the RC response. V_{ENABLE} is then updated to ' $V_{ENABLE,EFF} + R_{BAT} \times I_{SYSTEM,MAX}$ ' using a low-power divided voltage reference. V_{BAT} is compared against the new V_{ENABLE} and enabled if $V_{BAT} > V_{ENABLE}$. Otherwise, the system waits for V_{BAT} to increase until $V_{BAT} > V_{ENABLE}$, at which point the process repeats. This approach ensures that V_{BAT} remains higher than $V_{ENABLE,EFF}$ after the system is enabled. The technique requires knowledge of $I_{SYSTEM,MAX}$, which is feasible in small wireless systems that typically have well-defined operation. In the proposed approach, the effective $V_{HYST} = V_{ENABLE,EFF} - V_{DISABLE}$ and is independent of R_{BAT} . Hence, V_{HYST} does not need to be margined for changes in R_{BAT} . maximizing the useable voltage range over system lifetime.

Fig. 4 shows the proposed BSC circuit diagram. The V_{BAT} divider uses 65 diode-connected PMOS transistors that give a division ratio of 3.25/3.05 when *enable* = 0/1. The V_{TH} generator includes a leakage-based voltage reference/divider and provides 64 possible analog reference voltages from 1.06V to 1.28V for the adaptive V_{TH} . This reference consumes 77pA (simulated) while providing 319ppm/°C TC and 0.17%/V line sensitivity (measured). It is constructed with a zero- V_{TH} NMOS transistor for leakage generation at the top of a stack and diode-connected PMOS transistors that provide multiple outputs. When $V_{DIV} > V_{TH}$, the R_{BAT} monitor is triggered and produces *dout* (6-bit code), which updates the V_{TH} generator based on the current R_{BAT} value. If this causes $V_{DIV} < V_{TH}$, *enable_trigger* will remain low since R_{BAT} detection (17.8ms) is much faster than the power-on-reset (PoR) delay (>50ms).

Fig. 5 shows the proposed R_{BAT} monitor including the test current generator and RC response calculator. The test current generator operates by first placing decoupling capacitors in series to discharge them (Steps 1 – 3). This is done gradually to avoid V_{BAT} overshoot, which can damage circuits in the system. In the final step (4) all capacitors are placed in parallel simultaneously, creating a large current draw from the battery. This results in an RC voltage curve on V_{BAT} with a time constant of R_{BAT}×($\Sigma C_{DC,i}$). This time constant is measured by comparing V_{DC} with its earlier sampled and divided version V_{SAMP}. A fast ripple counter quantifies the time when V_{DC} < V_{SAMP}. Since V_{SAMP} is relative to V_{BAT}, *dout* is insensitive to V_{BAT}.

Note that switch S_1 is open during Step 4, protecting the system from the test-induced voltage drop. Since the system operates from a decoupling capacitance during this time, the test event is kept short (<65µs, measured). Note that the test capacitors (C_{DC1} – C_{DC4}) act as standard decoupling capacitors in normal operation. The test chip implementation uses 8 test capacitors to limit V_{BAT} overshoot to 5.6% of V_{BAT} (measured). Fig. 6 describes clock generation, which includes a slow clock generator for Steps 1 – 3 and a fast clock generator for counting *dout*. The fast clock generator runs off a supply regulator that isolates it from the test-induced voltage drop on V_{BAT} .

The delay generator (Fig. 4) uses a voltage reference (V_{REF1}) to drive a current source ($I_{DELAY} = 3.3nA$). This charges a capacitor (C_{DELAY}) that is compared to a second (configurable) voltage reference (V_{REF2}) to set the PoR delay. Reference V_{REF1} compensates the TC of the resistor, resulting in a temperature insensitive delay (0.9%/°C TC, 9.7%/V line sensitivity, measured).

Measurement Results

Fabricated in 180 nm CMOS, the BSC was tested with a miniature 2μ Ah thin-film battery (1.375×0.85mm²) and a sensor system with $I_{\text{SYSTEM,MAX}} = 11 \mu A$. The BSC draws 1nA during battery monitoring and 10nJ/conv. for R_{BAT} detection. Fig. 7 shows measured V_{TH} waveforms as it adjusts to R_{BAT} detection. Fig. 8 shows measured dout and $V_{\ensuremath{\text{ENABLE}}}$, demonstrating good matching across battery resistance. Fig. 9 shows a 500 cycle test of the BSC with the 2μ Ah battery, showing measured change in R_{BAT} from $16k\Omega - 54k\Omega$. The BSC has a maximum V_{HYST} tracking error of 27mV. Assuming 50mV margin, the proposed system requires an effective $V_{HYST} = 50+27 = 77 \text{mV}$. In comparison a conventional BSC requires 656mV hysteresis to accommodate the worst-case $R_{BAT} = 54k\Omega$ condition after 500 cycles. The proposed BSC therefore provides 2.7× usable battery voltage range (V_{BAT} min/max = 3.2V/4.2V). Fig. 10 shows standby-mode power and PoR delay. Figs. 11 and 12 show the die photo and a performance summary with comparison table.

References

- [1] K. Ashton, *RFID J.*, 2009. [2] H. Le *et al.*, TCAS2, 2011.
- [3] I. Lee *et al.*, VLSI, 2012. [4] TPS3839, Texas Instruments.
- [5] CBC005, CYMBET.
- [6] H.J. Bergveld et al., Battery Management Systems. 2002.

