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Abstract—This paper presents a fully integrated energy
harvester that maintains >35% end-to-end efficiency when
harvesting from a 0.84 mm? solar cell in low light condition
of 260 lux, converting 7 nW input power from 250 mV to 4 V.
Newly proposed self-oscillating switched-capacitor (SC) DC-DC
voltage doublers are cascaded to form a complete harvester, with
configurable overall conversion ratio from 9x to 23x. In each
voltage doubler, the oscillator is completely internalized within
the SC network, eliminating clock generation and level shifting
power overheads. A single doubler has >70% measured efficiency
across 1 nA to 0.35 mA output current (>>10° range) with low
idle power consumption of 170 pW. In the harvester, each doubler
has independent frequency modulation to maintain its optimum
conversion efficiency, enabling optimization of harvester overall
conversion efficiency. A leakage-based delay element provides
energy-efficient frequency control over a wide range, enabling
low idle power consumption and a wide load range with optimum
conversion efficiency. The harvester delivers 5 nW-5 pW output
power with >40% efficiency and has an idle power consumption
<3 nW, in test chip fabricated in 0.18 pm CMOS technology.

Index Terms—DC-DC converter, energy harvester, self-oscil-
lating, switched capacitor, ultra low-power, voltage doubler.

I. INTRODUCTION

ECENT advances in low power circuits have enabled

mm-scale wireless systems [1], [2] for wireless sensor
networks and implantable devices, among other applications.
Energy harvesting is an attractive way to power such systems
due to the limited energy capacity of batteries at these form
factors. However, the same size limitation restricts the amount
of harvested power, which can be as low as tens of nW for
mm-scale photovoltaic cells in indoor conditions. Efficient
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DC-DC up-conversion at such low power levels (for bat-
tery charging) is extremely challenging and has not yet been
demonstrated.

Boost DC-DC converters are widely used to harvest en-
ergy from DC sources and yield high conversion efficiency
[3]-[6]. However, they require a large off-chip inductor at low
harvested power levels, increasing system size. Alternatively,
switched-capacitor (SC) DC-DC converters can be fully in-
tegrated on-chip and are favored for form-factor constrained
applications [7]-[14]. At low power levels, SC converter effi-
ciency is constrained by the overheads of clock generation and
level-conversion to drive the switches. As a result, efficient SC
converter operation has been limited to the 4 W range.

This paper presents a fully integrated switched-capacitor en-
ergy harvester that consists of cascaded self-oscillating voltage
doublers [15]. In each voltage doubler, an oscillator is com-
pletely internalized and clocking power overhead is reduced.
The reduced power overhead of both clock generation and level
shifting enables the harvester to operate with very weak power
sources, as low as a few nWs. By completely integrating the
clock generation in the SC, the overhead scales with the cur-
rent load resulting in a very wide load range of ~ 1000x. By
adjusting the number of cascaded voltage doublers as well as
with a new method of modulating the low voltage applied to
each doubler stage, the overall conversion ratio can be config-
ured between 9x and 23x.

Section II presents the structure of the self-oscillating voltage
doubler and describes the frequency modulation scheme for effi-
ciency optimization. Section III describes the energy harvester
structure. Section IV presents measured results and Section V
concludes the paper.

II. SELF-OSCILLATING VOLTAGE DOUBLER

A. Motivation and Basic Structure

As shown in Fig. 1, conventional SC DC-DC voltage dou-
blers generally consist of three parts: clock generator, level
shifter and switched capacitor network (SCN). The clock gen-
erator produces a clock, which is fed into the level shifters. The
level shifters take the clock and create switch control signals
for the SCN. As the clock oscillates, the SCN periodically
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Fig. 1. Structure of a conventional capacitive voltage doubler.
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Fig. 2. Basic structure of the proposed self-oscillating voltage doubler.

changes its connections to generate the output voltage. Each of
these blocks introduces power overhead, reducing efficiency.
Looking at each transistor in the complete converter circuit,
the dynamic power consumption of SCN switches directly
contributes to generating output power, whereas the clock
generator and level shifter power consumption does not con-
tribute to output power. As a result, the basic motivation of
the proposed self-oscillating voltage doubler is to remove the
unnecessary power consumption of those secondary blocks and
transistors.

Fig. 2 shows the basic structure of the self-oscillating voltage
doubler. It consists of two stacked ring oscillators with output
nodes of corresponding stages connected through flying caps
(C1 ~ C). In each stage, inverters from the top and bottom
ring either charge or discharge the flying cap, thereby transfer-
ring power to the upper ring. Simultaneously, the inverters drive
the next stage in their ring, creating a multi-phase DC-DC con-
verter with overlapping charge/discharge phases and self-sus-
taining operation. Every transistor in this structure is essen-
tially a flying cap switch and hence dynamic power loss is min-
imized since there are no superfluous transistors. The natural
multi-phase operation reduces output voltage ripple with little
cost.

Another advantage of this structure lies in reduced level
shifting overhead. Conventional level shifters generally use
output keepers, which generate contention loss in addition
to dynamic power loss. This contention loss comes from
the timing mismatch among the signals of a level shifter;
depending on the amount of mismatch, contention loss can
dominate dynamic power consumption and greatly reduce
overall efficiency. Some previous SC voltage converters have
used nonoverlapping clocks to reduce level shifting contention
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loss [10]-[12]. However, this introduces another overhead,
i.e., generation of the nonoverlapping clocks. Additionally,
such a converter does not actively convert power during the
nonoverlapping periods, reducing its maximum output power.

The self-oscillating voltage doubler has no dedicated level
shifter because both ring oscillators actively generate their own
clock signals. However, contention loss can still arise from
phase mismatch between the two oscillations. This is mitigated
by the fact that the two oscillators are synchronized at every
stage and hence the amount of mismatch is very small, avoiding
the need for nonoverlapping clocks. According to simulation
results, phase mismatch is less than 1% of a fanout-of-4 (FO4)
inverter delay, and contention loss from this mismatch is also
under 1% of total dynamic power loss.

The self-oscillating voltage doubler is capable of self-startup
regardless of its initial state. When Vi is initially supplied to
VaED, the bottom oscillator starts oscillating. In each SCN
stage of the doubler, both the nodes before and after the flying
cap driver are coupled between the top and bottom oscillator.
Therefore, even when Viyigp is very low and the top oscil-
lator is not oscillating by itself, the coupled nodes in the top
oscillator will be rising and falling, and hence some charge is
transferred to Vg solely due to the driving capability of
the bottom oscillator. Due to this fluctuation of the top nodes,
Vaign can rise above the average voltage level of the top
nodes. As Viigu becomes higher, the average level of the top
nodes also increases, forming a positive feedback that raises
Viign above Vyep. As Viign rises higher than Vygp, the
top oscillator starts normal oscillation on its own. Because the
top oscillator is initially much weaker than the bottom, the top
oscillation is naturally synchronized to the bottom oscillator.
After synchronization, the voltage doubler starts normal opera-
tion, continually generating output power.

B. Modulation Scheme for Optimum Conversion Efficiency

The self-oscillating voltage doubler is modulated to main-
tain optimum conversion efficiency over a wide range of output
power levels. The specific goal of the modulation is to bal-
ance conduction and switching losses by examining the ratio
of output to input voltages (Rprv = Vour/Vin). A low Rprv
indicates a large voltage across the switches and dominant con-
duction loss. Conversely, high IZp1y indicates low conduction
loss (zero as Iipry — 2) and more dominant switching losses
due to a higher frequency needed to transfer the same amount
of load current.

To find optimum Rprv, we first define Crry as the total
amount of flying cap, f as the oscillation frequency, and A as
the amount of voltage drop:

A =2Vin — Vour. (D

The voltage doubler operates in a multi-phase manner with low
ripple, and hence Vyr is assumed to be constant in this anal-
ysis. In this case the input power to the voltage doubler Pyy can
be approximately written as

Py = 20py VKA f )
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by additionally assuming that A < Vix and that the top and
the bottom oscillators have similar total parasitic capacitances.
With these additional assumptions, the active current going out
from Vipigp to Varep through the top oscillator is nearly reused
as the active current flowing from Vygp into Vrow through the
bottom oscillator. Therefore, only a small portion of the total
parasitic effect, or switching loss, is actually incorporated into
the true input power, hence the approximate equation is rela-
tively accurate. Simulation results also support the existence of
this current reuse and the Pyx approximation. For example, in a
simulation with A = 0.2V, true input power differs from Py
in (2) only less than 15% of the total switching loss.

Conduction loss L comes from the effective internal resis-
tances of the voltage converter. Assuming DC at the power rails,
this loss is the same as the loss from charge sharing, and can be
written as

Lo = Cpry A*f. 3)

Switching loss Lg is the total dynamic power loss in the voltage
doubler:

L, = a; OV,

swing;

J=CerrViif (4

>

non—flying

where C; is every non-flying capacitor including parasitic ca-
pacitance, and Vswing and « are the voltage swing and activity
factor of each non-flying capacitor, respectively. Cgpr is de-
fined as

2
Io VSVVINGl ~
Xty =
IN

Y. G

non—flying

CEFF =

non—fying

and is independent of the oscillation frequency. This value de-
pends on A because the Vawing of the top oscillator nodes de-
pend on A, however it is fairly constant with A < Vix.

The ratio of these losses to input power can then be written as

Le  CryA’f A ©)
P 2CryVINAS 0 2V
and
Ls  CerrVikf  CerrVin )

Px 20piyVinAf  2Cpiy A

These two ratios are clear functions of A. Assuming A < Vi
and neglecting the weaker dependency of Cgpr on A, the in-
equality of arithmetic and geometric means

T +y
5 = VY (®)

can be applied as illustrated in Fig. 3, to obtain the lower bound
of total loss ratio:
Lrorar _Le+Ls A CrrrVIN
Py Py 2Vin  2CFyA
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Fig. 3. Rough dependency of voltage doubler loss elements on A.
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Fig. 4. Leakage loss model of the voltage doubler.

Therefore, maximum efficiency 7yax is

LroTaL ) CEFF
TAY = 1 — - - - =1- 10
VAX ( Pin T Criy (10)
when the following equality condition is satisfied:
A CerrVi
_ CEPFVIN a1
2y 2CFyA
put differently:
A /C L
R EFF _ ( TOTAL) (12)
Vin Crry PN vix
or
Vour A CErr
R = =2——=2- =1 1ax- (13
DIV Vi Vin Criy +max- (13)

Therefore, as long as the circuit operates properly and these two
losses are dominant, its optimum efficiency is nearly a constant
value that is determined by the ratio of total parasitic capaci-
tances to the total flying capacitances Crry, and Rpry at op-
timum efficiency is also a constant.

As output power becomes smaller, leakage power loss be-
comes dominant over the conduction and switching losses.
Leakage loss can be modeled as a constant current sink attached
to the output node, as shown in Fig. 4. In simulation, amount
of equivalent leakage current, I pak, does not vary over 8%
across a wide output voltage range (Vixy < Vour < 2 X Vn).
In this model, overall conversion efficiency is

ILoap
Noverall = Tlwithout —leakage (14)

>< e —
Itoap + ILeax
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Fig. 5. Implementation of the voltage doubler with frequency modulation.

and is optimized with the same arguments as a voltage doubler
with no leakage, if the load can be approximately considered
as a constant current sink. Therefore, even when output power
is very small, the optimum efficiency point is still at a similar
condition to (13), namely:

| Cerr
Rprv 22— 4/ ——.
DIV Criy

In this work, voltage doubler oscillation frequency is modu-
lated to achieve optimum FRpryv. Delay blocks are inserted in
the oscillation paths and their delay is controlled by an analog
delay tuning voltage, Vorr (Fig. 5). Negative feedback control
of Vorr adjusts the output voltage level to the desired optimum
level.

Instead of frequency modulation, a block enabling scheme
is another candidate approach to use the proposed design in a
high performance setting with higher power demands. In this
scheme, several independent voltage doubler blocks that share
the same input and output ports are prepared, with each block
capable of being turned on/off independently. According to the
desired output power level, the number of turned-on blocks are
adjusted to keep optimum output to input voltage ratio. This
scheme does not require any delay elements in the oscillation
paths, eliminating efficiency loss from delay elements. To match
time constants for charging/discharging flying caps to the oscil-
lation period, the ring structure can be lengthened (i.e., more
stages) to match its open-loop clock signal path effort to each
stage effort for charging/discharging a flying capacitor. In this
scheme, the coarser granularity control relative to frequency
modulation reduces efficiency when output power is lower than
the optimal output power of a unit voltage doubler block. The
block enabling scheme also requires more transistors and flying
capacitors, increasing area. To focus on the ultra-low power de-
sign space, this work adopts the frequency modulation scheme.

(15

C. Circuit Implementation

Fig. 5 shows the detailed implementation of the voltage dou-
bler with frequency modulation. To modulate oscillation fre-
quency, delay blocks are inserted in the oscillation paths. As
shown in Fig. 6, a delay block consists of two coupled leakage-
based delay elements [1] and a pass transistor Tp controlled by

Frequency controller

Verr. When the inputs Hr and Ly of a stage switch from high to
low, output nodes Hop and Lop (driven low) become isolated.
Tp then provides a leakage path from L¢ to Lop that slowly
raises Lop and, through C¢, also Hop. Back-to-back inverters
in the delay element provide positive feedback and amplify the
transition once it reaches V1, creating a sharp edge. This tran-
sition is then passed to the next stage. The opposite transition
functions similarly.

A higher Vo allows Tp to provide more leakage, reducing
the delay and speeding the oscillation. The leakage through Tp
can be adjusted to any amount between its on and off currents,
offering a very wide range of delay controllability. Additionally,
due to the output isolation, the structure can produce very long,
synchronized delays while the coupled positive feedback cre-
ates a sharp edge that limits short-circuit current and contention
loss, enabling ultra-low power operation with very slow oscil-
lation speed.

This structure also has an advantage for low-power
self-startup and idle power minimization. It can oscillate
even when the control voltage is 0, though very slowly, and
therefore, is capable of self-startup. When the input voltage
become available from the cold stage, Vorr goes up from zero
voltage, speeding up its oscillation until it reaches optimum.
Start-up energy is reduced because its initial oscillation starts
from the slowest speed, minimizing dynamic energy loss during
start-up. When no input power is available from the power
source, Vv always becomes lower than Vpiv, pulling down
the control voltage Vorr to its lowest possible value. This
automatically minimizes the idle power consumption.

Vorr is adjusted through negative feedback. A clocked com-
parator, operating at a fraction of the internal oscillator fre-
quency, takes in a divided form of the output voltage (Vprv =
Vour/Epiv_pesirep) and the input voltage Vin. A charge
pump then takes in the corresponding pull-up/pull-down signals
and adjusts the delay tuning voltage Vo as needed to either
speed or slow the oscillation. As shown in Fig. 7, the voltage
divider is implemented with a combination of a diode stack
and a capacitive divider, to provide both fast response and good
low-frequency behavior. In the charge pump (Fig. 7, right), two
input inverter chains with small capacitive loads, Cstgp, de-
termine the amount of charge transfer per cycle to be similar to
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VDD x Cstep. Each chain also generates a short pulse at an :""""'""'""'""""'"""""""\;""
output isolation transistor, turning it on briefly and only while E Vax Ve Ve out
the mirrored current flows through. The isolation transistors are [ poper| + Vin
turned off otherwise and help sustain the output voltage more |source[™s
.
.

than 1000 times longer in simulation than without isolation,
even when clock frequency is as low as a few Hz.

III. ENERGY HARVESTER

A. Overall Structure

Fig. 8 shows the block diagram of the complete harvesting
system, consisting of four stages of cascaded voltage doublers,
a negative voltage generator, and circuits for conversion ratio
control. A negative voltage is used to boost overall conver-
sion ratio over 16x and to power control circuits. The neg-
ative voltage generator is implemented by connecting Vg
and Vigp of the doubler to Vix and ground, respectively, re-
sulting in Vygg &~ —Viy at the Vow port of the doubler. The
target Rpyy of each voltage doubler is adjusted for its optimal
operation.

To facilitate energy harvesting from a low voltage source
(e.g., aphotovoltaic cell under low light), the first stage and neg-
ative voltage generator use low Vi (~ 300 mV) devices for
their flying cap drivers. Bootstrapping is also used with these

'
'

: 4

H £ X2 o 17

: Negative| -

] Voltage ] § (bbb bbbbbbb il -O- - b-ﬁ'. .
E Generator VNEG r% : n ip

: Voo Vss j : LOWer VTH

*| [Conversion . ' Bootstrapped driver

H : Switch H

: Ra_tlo [~ mapping : .

: Register : ngher VTH

' '

' '

Conversion Ratio Controller Thick oxide device

Fig. 8. Overall energy harvester architecture.

low Vg switches, as shown in Fig. 9, to improve Iox/Iorr
ratio at low input voltages. To ensure the bootstrapped signal
does not decay in a clock cycle, every transistor in the boot-
strap circuit uses a regular threshold voltage. For robust boot-
strapping with a fast oscillation frequency, a reset switch for
each bootstrap capacitor is driven by the output @1, which has
an increased voltage swing. To eliminate the short-circuit path
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Level
Switch EN Converter
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Fig. 10. Dual switching scheme for the harvester to reconfigure its conversion
ratio while maintaining its capability of self-startup.

through the reset switches, an isolation transistor is inserted in
each reset path, which is driven by ®;_», the output signal of
one of the previous bootstrap stages. Thick oxide I/O devices
are used in the final doubler stage to protect the circuit from high
voltages used to charge energy storage devices such as batteries
or supercapacitors.

B. Conversion Ratio Modulation

The conversion ratio is adjusted by changing the number of
cascaded stages. We propose an additional adjustment scheme
where the ViLgw of a doubler is switched among Vin, Gyp,
and VNgg, as shown in Fig. 8. If Viow is set to —Vix, the
voltage across the flying cap increases, resulting in Voyr =
(VMmeDp + Vin) X 2= Vix = 2 X Vmep + Vin. If Voow s set to
ground for all 4 cascaded stages, the overall conversion ratio
is 16 x. However, if the final stage VLow is set to Vxgg, the
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Doubler
0.069Mmm?

Al

Negaﬁve
Voltage
Generator

2" stage
Doubler

1% stage
Doy}bler

3" stage
Doubler

P
<

»

Fig. 11. Die micrograph of 0.18 yzin CMOS test chip. Total flying cap sizes
of the standalone voltage doubler and the harvester are 54 pF and 600 pF,
respectively.

overall conversion ratio increases by 1x to become 17x. Sim-
ilarly, setting the third stage Vrow to Vxgg raises voltage Vi
by ~Vin, resulting in an increase of overall conversion ratio
by 2x. On the other hand, setting V1,ow to Vin decreases con-
version ratio. In this way the conversion ratio is controlled in
a binary manner as shown in Table I, generating any integer
ratio from 9x to 23x. By changing the conversion ratio, har-
vester input voltage Vi can be adjusted to closely approximate
the maximum-power point of the power source, thereby opti-
mizing the power harvested from the source. By selecting the
bottom voltage from among three choices rather than just two,
the overall conversion ratio range is greater and also the voltage
across each doubler can be chosen properly for best operation.
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TABLE I
SWITCH MAPPING FOR HARVESTER’S OVERALL CONVERSION RATIO CONTROL FROM 9% TO 23X

Ratio 9x | 10x | 11% | 12% | 13% | 14% | 15% | 16% | 17x | 18x | 19% | 20x | 21x | 22% | 23%
Bypass 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
VL2 VNEG VNEG VNEG VNEG VNEG VNEG VNEG GND VNEG VNEG VNEG VNEG VNEG VNEG VNEG

Vi3 Vin Vin GND | GND | GND | Vnes | Ves | GND | Vi ViN GND | GND | GND | Vnes | Vies
Vi Vin | GND Vin GND | Vnees | GND | Vines | GND | Vi GND ViN GND | Vnee | GND | Vies
Va 1x 1x 1x 1x 1x 1x 1x 2% 2% 2% 2% 2% 2% 2% 2x
Ve 3x 3x 3x 3x 3x 3x 3x 4x 5x 5x 5x 5x 5x 5x 5x
Vc 5x 5x 6x 6x 6x 7x 7x 8x 9x 9x 10x | 10x | 10x | 11x | 11x

Vour 9x | 10x | 1x | 12x | 13x | 14x | 15x | 16x | 17x | 18x | 19x | 20x | 21x | 22x | 23x
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Fig. 12. Measured results of the voltage doubler.
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Fig. 14. Measured results of the harvester at different Vi .
For example, the switch mapping shown in Table I first seeks to To enable cold start of the complete system, the control logic

develop a larger voltage across the second doubler since its use  (including the conversion ratio register) operates between VNgc
of standard Vry transistors, coupled with its lower amplitude and Vix rails. Upon initial system startup, Vg and Vaox be-
(relative to later stages) make its operation more challenging.  come available first, thus allowing the control logic to turn on
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Fig. 15. Measured results of the harvester with a 0.84 mm? silicon solar cell at the input.
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Fig. 16. Measurement setup for the second harvester chip’s self-starting
behavior.
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Fig. 17. Cold start behavior of the harvester powered by a 1.33 mm? solar cell.
Output is connected to a capacitor. Light is turned on at some time between 0 ~
20 s.

and configure the switches. As shown in Fig. 10, every switch
is realized with a dual structure, one controlled with lower volt-
ages for harvester self-startup, and the other controlled by a
level-converted higher voltage to strongly turn on the switch
for high output power levels. As each stage is powered up, its
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Fig. 18. Measured results of the harvester in different temperatures, with solar
cell ISC = 180 nA.

internal frequency modulation begins to control the frequency
for optimum efficiency.

IV. MEASURED RESULTS

The proposed voltage doubler (standalone) and energy
harvester are fabricated in 0.18 pm CMOS (Fig. 11). The
standalone voltage doubler uses bootstrapping to minimize
its leakage. The division ratio of the output voltage divider
in the frequency feedback control circuit (see Fig. 5), which
is equivalent to the desired output to input voltage ratio
(R’prv_pesirep), is set to 1.73 for the standalone voltage
doubler in all measurements. Fig. 12 shows a single doubler
has >70% measured efficiency across 1 nA to 0.35 mA output
current (>10° range) with low idle power consumption of
170 pW. Internal clock frequency is modulated to maintain
constant Rpry and is proportional to the load current until the
clock period becomes too short relative to the time constant for
charging/discharging a flying cap. As described in expression
(13) in Section II-B, the conversion efficiency of the doubler
is nearly flat within its operational range with an efficiency of
roughly Eprv pesirep — 1 =73%.

Fig. 13 shows measured results of the harvester with different
conversion ratios. Results show that a 0.35 V input can be con-
verted to a 2.2 V-5.2 V voltage range with similar conversion
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Fig. 19. Micrograph of a small M3 wireless sensor node system [2] with harvester (top right), and a graph of measured battery voltage (bottom) showing that its

battery is continuously charged by the harvester during system operation.

TABLE II
PERFORMANCE SUMMARY AND COMPARISON OF THE STANDALONE VOLTAGE DOUBLER
[11] [12] [13] This work (Doubler)
Technology 32nm CMOS 45nm SOI CMOS w/ trench cap| 0.13um CMOS 0.18um CMOS
pehtectre | guiocpumer | 12tepupidoun oomener | i BN | iage douner
Conversion ratio 1:2 2:1,1:2 1:2 1:2
Tested input voltage 1V-1.2V v 1V-1.2V 1.2V
Frequency 250MHz-2GHz ' 100MHz N/R 70Hz-19MHz
Peak efficiency 64% 90% 82% 75%
Load range 0.4mA-9mA 0.5mA-§mA 0.15mA-22mA 1nA-O.35mA
w/ >40% efficiency w/ >80% efficiency ' w/ >70% efficiency '| w/ >70% efficiency
Load range in ratio 1:231 1:101 1:151 1:350,000
Area 0.0067mm?2 0.0012mm?2 2.25mm? 0.069mm?

N/R: Not reported
1 Estimated number from the paper

efficiencies across settings. As conversion ratio goes up, output
voltage level monotonically increases except for a transition
from 16x to 17x. At this transition, the number of cascaded
stages increases from 3 to 4, thereby introducing another power
loss at the first stage and lowering output voltage level. Fig. 14
shows measured results of the harvester at different V. Con-
version ratio is adjusted to maintain a similar Voyr level. With
Vin = 0.45 V, corresponding to an outdoor condition, the har-
vester delivers 5 nW—5 W output power with >40% efficiency
and an idle power consumption < 3 nW. For Vix = 0.25 V,
corresponding to a solar cell under very low light, the harvester
can take in between 10 nW and 120 nW to charge a ~ 4 V bat-
tery with >35% efficiency. For both V1, the harvester’s output
power range well covered expected solar cell power range.

Fig. 15 shows the measured results with a small silicon solar
cell (0.84 mm?) at the input. In one test, the harvester is con-
nected to the solar cell under various light conditions. These
results are shown in the graph as the X-marked points. In the
second test, the solar cell operation is emulated using an external
current source in parallel with the solar cell, to perform a finer
grain sweep of harvester performance. These two test results
are very consistent as shown together in this graph, showing
that the harvester can convert input power from the solar cell
with up to 50% efficiency under a wide range of light condition,
from dim room lighting to beyond outdoor daylight. Because
of its low idle power consumption, the harvester shows >35%
end-to-end efficiency even under a dim light of 260 lux, where
the solar cell generates only 7 nW output power. By adjusting
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TABLE III

PERFORMANCE SUMMARY AND COMPARISON OF THE HARVESTER

[3] [8] [14] This work (Harvester)
Technology 0.13um CMOS 65nm CMOS 0.35um CMOS 0.18um CMOS
. Transformer self- Cascade of integrated
Architecture startup Integrated charge pump Integrated charge pump voltage doublers
Fully integrated No (off-chip Yes Yes Yes
transformer)
Self-startup Yes (min. 40mV) Yes (min. 120mV) N/R Yes (min. 140mV)
Input voltage 40mV-300mV 0.12V-0.16V 0.6V-4V 0.14V-0.5V
Output voltage 2V 1V, 1.8V, 3V N/R 22V-5.2v

(0.35V VIN, 10nA Il o0ap)

Peak efficiency

61% @ 0.3V Vin

38.8% @ 0.12V Vi

70% @ 2V Vi

50% @ 0.45V Viy

1UW-3uW @ 0.12V Vi !
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TUW-1mwW
2uW-7uW @ 0.14V Vi ' .- 5nW-5uW
Output power range N/R 3uW-104W @ 0.16V Vi (Only :aeeaoknzf(:[)clency W >40% efficiency
(W/ >15% efficiency) ° P
Idle power 2uW @ 100pW input
consumption N/R N/R 7WW @ TmW input <3nW
Minimum 6nW for self-startup
input power NR N/R N/R 1.7nW to sustain harvesting
Area 0.093mm? 0.78mm? 59mm? 0.86mm?

N/R: Not reported
' Estimated number from the paper

the conversion ratio the harvester can take in nearly 100% of the
solar cell output power at its maximum power point for incident
light up to 200 klux, covering almost all practical light condi-
tions (Fig. 15, “Solar cell efficiency” curve).

A second chip is fabricated in 0.18 g CMOS that includes
the harvester with the same design specifications previously de-
scribed but has interfaces compatible with the M* (Michigan
Micro-Mote) sensor system [2]. This chip is tested with a solar
cell of 1.33 mm? area to measure its self-startup characteristic
(Fig. 16). As shown in Fig. 17, the harvester cold starts with 55
lux of light and a 5.2 nW power source and charges an output ca-
pacitance to 4 V, which is a voltage enough to charge a battery.
Fig. 18 shows measured results in different temperatures, with
solar cell short circuit current overridden to 180 nA to emulate
room lighting. The results show the harvester’s robust operation
across —10°C — 50°C temperature range.

This chip is integrated in a very small M?® wireless sensor
node system (Fig. 19, top right) with volume of approximately
1 mm?® [2]. A graph at the bottom shows the system battery
voltage during operation. As shown in the graph, the system pe-
riodically wakes up and sends a radio signal every ~ 3 minutcs.
The positive slope in the battery voltage plot during sleep cycles
show that the battery is being charged effectively by the pro-
posed harvester. Tables II and III summarize the voltage doubler
and harvester performance and compares to prior related work.

V. CONCLUSIONS

This paper presents an ultra-low power fully integrated
energy harvester based on a novel SC voltage doubler structure.

Internalized clock generation and clock frequency modulation
allow the doubler to operate across a wide load range (> 10°x)
with low idle power consumption of 170 pW. Four voltage
doublers are cascaded to form an energy harvester, which can
operate with a very limited power source of a few nWs. Overall
harvester conversion ratio is configurable from 9x to 23x
using bottom voltage switching, a negative voltage generator,
and cascaded stage count, generating 2.2 V-5.2 V Vpyr from
0.35 V Vin. Measured results with a small silicon solar cell
(1.33 mm?) show the harvester cold starts with 55 lux of light
and a 5.2 nW power source. The harvester chip is integrated
in an actual wireless sensor node system and demonstrates
charging of the system battery during typical operation.
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