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Abstract—Keyword detection is typically used as a front-
end to trigger automatic speech recognition and spoken dialog
systems. The detection engine needs to be continuously listening,
which has strong implications on power and memory consump-
tion. In this paper, we devise a neural network architecture for
keyword detection and present a set of techniques for reducing
the memory requirements in order to make the architecture
suitable for resource constrained hardware. Specifically, a fixed-
point implementation is considered; aggressively scaling down the
precision of the weights lowers the memory compared to a naive
floating-point implementation. For further optimization, a node
pruning technique is proposed to identify and remove the least
active nodes in a neural network. Experiments are conducted
over 10 keywords selected from the Resource Management
(RM) database. The trade-off between detection performance and
memory is assessed for different weight representations. We show
that a neural network with as few as 5 bits per weight yields a
marginal and acceptable loss in performance, while requiring
only 200 kilobytes (KB) of on-board memory and a latency of
150 ms. A hardware architecture using a single multiplier and a
power consumption of less than 10mW is also presented.

I. INTRODUCTION

Keyword detection refers to the task of identifying selected
keywords embedded in a stream of words. This system is
typically used as a front-end for automatic speech recognition
(ASR) and spoken dialog systems (SDS). A device is triggered
to wake up if a specific keyword is detected and enters a fully
operational mode, where it performs speech recognition and
provides appropriate responses. Hence, the speech recognition
engine does not need to be operated continuously, reducing
the power consumption by a huge margin. However, the
keyword detection system still needs to be always on, i.e.
continuously listening, which has strong implications on power
consumption. As a result, there is a strong need to develop an
architectural framework for keyword detection with minimal
power consumption and memory footprint.

There is a vast amount of literature identifying various
methods for keyword detection. Existing methods can be
broadly classified as follows - (i) perform complete speech
recognition over the phrase and then detect the keyword by
looking at the transcriptions provided [1]–[3], (ii) train separate
models for the keyword and out-of-vocabulary (OOV) words,
and detect keywords based on the likelihood over each model.
The first method requires the entire phrase to be uttered
completely, i.e. offline. It also requires a complete ASR system,

which is computationally intensive because of the exhaustive
search required to perform transcription. The second method
is relatively simple and can be performed in an online setting.
It is more suited for applications where the set of keywords
to be detected is known beforehand. There are multiple tech-
niques available for performing keyword detection using the
latter approach. Until recently, techniques based on Gaussian
Mixture Models (GMM) for acoustic modeling and Hidden
Markov Models (HMM) for modeling the sequence of words
were quite common [4]–[8]. The OOV words were modeled
using a garbage or a filler model, while a separate GMM-HMM
was trained for each keyword. The most likely state sequence
was then identified using the Viterbi algorithm. GMMs can be
easily implemented in a parallel fashion, however, the Viterbi
step is inherently sequential, which increases the control over-
head and latency.

Recently, neural network (NN) based methods have shown
tremendous success on speech recognition tasks. This success
has come after advances made in the field of deep learning,
which allows for efficient training of a network with many
hidden layers and a large number of neurons (nodes) per
layer [9], [10]. These networks are well-suited to capture
the complex, non-linear patterns from the acoustic proper-
ties of speech. Detection is again straightforward; a matrix-
vector multiplication step followed by a non-linear operation
at each layer. Such operations can be easily extended for
parallel implementations, thus offering a lower latency and a
uniform architecture compared to the aforementioned HMM-
based methods. One such approach for keyword detection was
presented in [10]. In spite of the low-latency algorithm and
highly accurate detection performance, the network is quite
large, requiring upto a few million multiplications every few
milliseconds as well as large memory banks for storing these
weights. Mobile devices are often constrained in the amount of
available hardware resources, making this approach less suited
for practical applications.

In this paper, we devise a neural network architecture for
keyword detection and present a set of techniques for reducing
the memory overhead of such architectures. Specifically, a
fixed-point implementation is considered. Aggressively scaling
down the precision of the weights can significantly lower
the memory requirements compared to a naive floating-point
implementation. For further optimization, a node pruning tech-
nique is proposed. According to this technique, the nodes in



Fig. 1. A neural network architecture for keyword detection consisting of 1
input layer, 2 hidden layers and an output layer. The number of nodes in each
hidden layer range from 256 to 512.

each hidden layer are first assigned a probability based on their
activation patterns. This is followed by pruning away the least
active nodes based on a specific threshold over the activation
probabilities. To evaluate these techniques, experiments are
conducted over 10 keywords selected from the Resource Man-
agement (RM) database [11]. The trade-off between detection
performance and memory requirements is assessed for different
precisions and different thresholds for pruning. We show that
a neural network with as few as 5 bits per weight yields a
marginal and acceptable loss in performance, while requiring
only 200 kilobytes (KB) of on-board memory and a latency of
150 ms. A hardware architecture using a single multiplier and
memory bank, and a power consumption of less than 10mW
is also presented.

The remainder of this paper is organized as follows. An
overview of the proposed approach and memory reduction
techniques is described in Section II. Our experimental results
are presented in Section III. Finally, the conclusions are
presented in Section IV.

II. PROPOSED APPROACH

A. Preprocessing

The Resource Management (RM) database [11] consists of
phrases recorded for scenarios pertaining to the naval forces.
Speech is processed at a frame rate of 100 frames/second, i.e.
a window size of 25ms and step size of 10ms. The first 13 Mel
frequency coefficients (MFCC) are extracted for each frame.
These features are augmented with MFCCs of the 15 previous
frames and 15 future frames to form a 403-D feature vector per
frame. This corresponds to 31 frames (13 MFCCs/frame) of
310ms of speech; the average word duration for this database
was 300ms, hence, this choice was deemed to be appropriate
for modeling words or sub-word units. Ten keywords - ships,
list, chart, display, fuel, show, track, submarine, latitude and
longitude were selected in this work. Forced-alignment was
performed using the Kaldi speech recognition toolkit [12]
in order to obtain the word boundaries. Each frame is then
labeled as either one of the 10 keywords or OOV or silence.
The speaker-independent train and test partitions are already
specified with the database; there are 109 and 59 speakers in
the training and test set, respectively. The speech features are
z-normalized to zero mean and unit variance for each speaker.

B. Neural Network

The feedforward neural network used in this study is shown
in Figure 1. The network consists of an input layer, two hidden

Fig. 2. An example of the smoothing process for detection of ships in
the phrase do any ships that are in pacific fleet have SPS-48. (Top) Frame-
wise, raw posterior probability estimates, and (Bottom) Frame-wise, smoothed
probability estimates. The window size is W = 15.

layers and an output layer. The input layer consists of 403
nodes corresponding to the MFCCs extracted above. Denoting
the input layer as xi, where i = 1, 2, ..., N is the number of
nodes in the input layer, the computations involved for the
input layer to the first hidden layer (h1) are given below -

z1j =
N∑
i=1

W 1
ijxi + b1j (1)

Here W 1 and b1 refer to the weights and biases of this
layer. A non-linear, rectified linear operation [13] is then
applied over these intermediate values. Rectified linear (ReLU)
units have attained popularity as opposed to the conventional
sigmoid/logistic function as they capture more detailed in-
formation. Furthermore, they are relatively straightforward to
implement in hardware as they require only a comparison
operation, according to Eq. 2. In comparison, a sigmoid
operation is implemented using a Taylor series expansion and
is quite costly.

h1
j = max(0, z1j ) (2)

The computations from the first hidden layer to the second
hidden layer are the same as Eqs (1) and (2). The output layer
is modeled as a softmax layer with K+2 nodes. Out of these,
K nodes correspond to the K pre-defined keywords that are
to be detected and the remaining 2 nodes correspond to OOV
and silence. The softmax output yields a probability estimate
for each of the K possible outputs for the current frame.

Training is performed by minimizing the cross-entropy
error cost function. Backpropagation is applied to iteratively
update the weights and biases of each layer. Mini-batch
stochastic gradient with a batchsize of 500 samples is used for
optimization. The network is trained for a total of 10 epochs
with a learning rate of 0.001 and a momentum of 0.8. In our
experiments, the number of layers was varied from 1 to 3,
while the number of nodes for each hidden layer was selected
from 256, 400 or 512. The optimal values were determined via
validation on a randomly selected subset of the training set.



Fig. 3. Histogram of weights for (a) input to hidden layer 1, and (b) hidden
layer 1 to hidden layer 2.

C. Post-Processing

The output layer returns a posterior probability estimate
for each frame, i.e. every 10ms. To reduce the inherent noise
in such estimates, the latter are smoothed using a symmetrical
moving average window of W frames centered around the
current frame -

ŷj =
1

W

j+(W−1)/2∑
i=j−(W−1)/2

yi (3)

where, yi is the probability estimate obtained from the final
softmax layer, and ŷj is the smoothed estimate.

This helps eliminate noisy bursts and reduce the false
alarm rate. The window size W was varied from 10 to 50
frames (100ms to 500ms) in our experiments. An example
highlighting the effect of smoothing is shown in Figure 2. Here,
we can observe that the frame-wise probabilities returned at
the output are quite noisy and smoothing suppresses the noise
by combining estimates from the past and the future.

The overall goal is to determine whether a specific keyword
is present in the entire phrase, hence, the output should either
be 1, if the keyword is present, and 0 otherwise. To obtain
this phrase-level decision, an additional post-processing step is
applied over the smoothed estimates. Using a sliding window
of size C frames, if the average probability estimate within
this window exceeds a certain threshold, then a keyword is
said to be present in the phrase. The window size C is usually
dependent on the expected duration of a keyword and was
varied from 10 to 30 (100ms to 300ms) in our experiments.

D. Fixed-Point Implementation

The aforementioned training procedure is implemented
using a floating-point representation. The optimized weights,
when stored in floating point require a lot of memory. For
instance, storing each weight in 32-bit floating-point format
would require 2 MBs for a network with 512 nodes per hidden
layer. Often, hardware on mobile devices is constrained in
the amount of memory available, such as a few KBs only.
Hence, a fixed point implementation is necessary to reduce the
memory footprint. A histogram of the weights for each layer
is shown in Figure 3. The weights are normally distributed,
and so we can use different linear or non-linear quantization
schemes. We follow a simple linear quantization scheme owing
to its simplicity and generalizability. Throughout the paper, we
denote fixed-point using a QA.B format, where A denotes the
number of bits assigned to the integer part and B denotes

Fig. 4. Node pruning in hidden layer 1 for different threshold values. There
are 400 nodes in the hidden layer.

Fig. 5. Node pruning in hidden layer 2 for different threshold values. There
are 400 nodes in the hidden layer.

the number of bits assigned to the fractional part. Unless
mentioned otherwise, an additional sign bit is assumed.

The input nodes and intermediate hidden layers are also
stored in a fixed-point format to further reduce the accumu-
lator size during multiplication operations. The former are
represented using 16 bits in a Q2.13 format. The latter are
represented using 24 or 32 bits, i.e. a Q8.16 or Q16.16 format.
The hidden layer nodes are always positive, hence, a sign bit
is not required.

E. Node Pruning

Depending on the size of the neural network, there may
be a few nodes in the hidden layers that are rarely or never
active. If such nodes can be identified, then they can be pruned
away, thus reducing both memory and multiplications. Here,
we propose one such approach to identify inactive nodes,
which is described below.

First, we evaluate the network on the training data and the
weights learnt from backpropagation during training. For each
node in the hidden layers, we identify the nodes which are
zero and maintain a count. This count is averaged over all
the training examples to yield a probability estimate for each
node, i.e. p(node is zero). Using a threshold value t ∈ (0, 1),
we remove the nodes that have p > t. The number of nodes
pruned decrease as t approaches 1.



Fig. 6. The effect of different fixed-point representations for the weights on
the overall AUC performance. The input is represented using 16 bits. Hidden
layer nodes are represented using (a) 24 bits, and (b) 32 bits.

The number of nodes pruned for different threshold values
t, and for both hidden layers (400 nodes each) is shown in
Figures 4 and 5. Here, we can observe that for the first hidden
layer, there is a sharp change in the number of nodes pruned
at t = 0.5. For t < 0.5, all nodes are pruned away, while for
t > 0.5, all nodes are retained. In this case, all nodes in the first
hidden layer are equally informative and node pruning is not
helpful. On the other hand, for the second hidden layer, we can
see that the transition is smoother, especially for 0.7 < t < 1.
If we set the threshold in this range, we can expect to prune
nodes for only a marginal loss in performance.

Besides node pruning, singular value decomposition (SVD)
was also considered for reducing the memory footprint as de-
scribed in [14]. Accordingly, the weight matrix is represented
as a product of two low-rank matrices. This technique helps
lowers the memory, however, at the cost of increasing the num-
ber of multiplications. In our experiments, a significant drop
in performance was observed using this technique, possibly
due to the relatively smaller network compared to [14]. The
degradation was even higher when SVD was combined with a
fixed-point representation.

III. EXPERIMENTAL RESULTS

The experiments and results for fixed-point keyword detec-
tion using the RM database are described in this section. For
the baseline, we consider the performance obtained using a
simple floating-point representation for all nodes and weights.
The optimal values for window sizes, W and C, during post-
processing were found to be 50 and 25 frames respectively.
We use two metrics to compare different methods. First, we
consider the total area under the curve (AUC) [15], which
returns the area under the receiver operating characteristics
(ROC) curve of true positive rate (TPR) vs. false alarm rate
(FAR). Secondly, we consider the equal error rate (EER) [16],
which indicates the rate at which the FAR is the same as the
false reject rate (FRR). Here, the FRR is related to the TPR
as follows: FRR=1-TPR.

A. Floating-Point vs. Fixed-Point

A comparison between floating and fixed-point implemen-
tations is shown in Figure 6. For fixed-point implementation,
the input is represented using 16 bits (Q2.13). Figure 6 (a)
and (b) show the performance with 24 bits (Q8.16) and 32
bits (Q16.16), respectively, for hidden layer nodes. For the

Fig. 7. A comparison of the average ROC across all keywords between
networks with different hidden layer sizes and precisions. In case of fixed-
point, the weights are stored in a Q2.2 format.

weights stored in a QA.B format, here, A ∈ {1, 2} and
B ∈ {1, 2, 3, 4, 5, 6}. First, we can see that the performance
is significantly better when using 32 bits for the hidden layer
nodes. Secondly, reserving 2 bits for the integer part yields a
better AUC compared to just 1 bit. For the fractional part, we
observe that increasing the resolution beyond 2 bits does not
lead to any significant increase.

Figure 7 shows a comparison between NN architectures
with different hidden layer sizes and precisions. In case of
fixed-point implementation, the input, hidden layer nodes
and weights are stored in Q2.13, Q16.16 and Q2.2 formats,
respectively. We can observe that hidden layers with 512 nodes
each obtain the best performance. Here, an EER of 12% is
obtained using floating-point compared to 13% for fixed-point
precision. In comparison, using only 256 nodes per layer may
reduce the memory footprint at the cost of a significant drop
in performance. Here, an EER of 21% and 24% is obtained
using floating and fixed-point precision, respectively.

A summary of the memory requirements is shown in Table
I. The input, hidden layer nodes and weights are stored in
Q2.13, Q16.16 and Q2.2 formats, respectively. For a network
with 512 nodes per hidden layer, a total of 283.6 KB is required
for storing the network weights. For 400 nodes per layer, we
can see that there is only a marginal loss in performance; an
AUC of 0.9098 compared to a floating point representation of
0.9201, while requiring only 195 KBs of memory.

Our results are not directly comparable with the results
reported in earlier works [10], [17] since the databases are
completely different. However, an AUC performance of 0.90
and an EER of approximately 15% is quite commonly ob-
served for small to medium sized databases. In these aspects,
the detection performance obtained here is well within the
acceptable range.

B. Node Pruning

The performance after node pruning is shown in Fig-
ure 8. In this case, only the nodes of the second hidden
layer were pruned, as per the procedure described earlier.
The performance is analysed for different threshold values
t ∈ [0.75, 1.0]. We observe that as the threshold increases,
the number of nodes pruned decreases and the performance



TABLE I. COMPARISON OF AUC AND MEMORY REQUIREMENTS
BETWEEN FLOATING AND FIXED POINT IMPLEMENTATIONS FOR
NETWORKS WITH DIFFERENT HIDDEN LAYER CONFIGURATIONS.

Hidden Layer AUC AUC # of Weights Memory
Width Floating-Point Fixed-Point KB

256 0.8520 0.8038 172300 102.7
350 0.8960 0.8428 268462 160.1
400 0.9201 0.9098 326812 194.8
512 0.9321 0.9153 475660 283.6

Fig. 8. A performance comparison between floating and fixed-point imple-
mentations for different pruning thresholds.

improves. Furthermore, the figure also shows a comparison
between different fixed-point and floating-point representations
for the weights. For weights represented in a Q2.2 format,
and t ∈ [0.95, 1.0], the loss in performance is not significant.
The memory requirements for a network with 400 nodes per
hidden layer and a threshold t ≫ 0.75 are shown in Table
II. For t = 0.99, the AUC is 0.9060 compared to 0.9098
obtained without pruning. The memory, in this case, reduces
by a relative factor of 5%. Similarly, for t = 0.98, the AUC is
0.8962 with a relative decrease of 11.4% in memory. Hence,
node pruning can be a useful technique to further optimize the
neural network and reduce its on-board memory requirements.

C. Hardware Architecture

Most of the recently proposed neural network hardware
accelerators target a very high performance [18], [19] and
consume over 200mW of power. However, keyword detection,
when used as a front-end trigger in mobile devices, is required
to be always on and thus has a very tight power budget less
than 10mW.

Figure 9 shows the proposed hardware architecture that
consists of one Processing Element (PE), three register files,
a central memory for weights and one finite state machine
(FSM) scheduler. Typical neural network hardware accelerators
employ a group of PEs to form a systolic array or ring
[20], while our design uses only one PE because of the
relatively low throughput requirement of the application - 47
million multiplications per second. A 32-by-5 multiplier in
TSMC40nm technology can run at 142MHz at a low voltage
of 0.4V. Thus one multiplier is enough for the workload.

As shown in Figure 10, a PE contains one multiply
accumulate (MAC) unit, a rectified linear (ReLU) module, and

TABLE II. MEMORY REQUIREMENTS AFTER NODE PRUNING FOR
WEIGHTS STORED IN Q2.2 FORMAT.

Threshold AUC # of Weights Memory (KB)

0.95 0.8438 249581 152.3
0.96 0.8669 257428 157.1
0.97 0.8816 269818 164.6
0.98 0.8962 282621 172.5
0.99 0.9060 301206 183.8

No pruning 0.9098 326812 194.8

Fig. 9. Top level architecture of the feedforward neural network.

a sigmoid module. Rectified Linear module is implemented by
a comparator. The sigmoid function can be implemented using
a Look-Up Table (LUT). Three register file based FIFOs are
used to hold input and output neurons. Every 10ms, 13 new
inputs will be shifted into 403-word shift register file. Two
512-word register files store outputs from 2 hidden layers
with 512 neurons each in maximum. Network weights are
stored in a 256KB memory block made by the 8T SRAM
compiler. Because of the relatively large memory requirement
of the application, the chip space and power is dominated
by this 256KB memory. 8T SRAM cell is chosen over 6T
because it is more reliable under lower supply voltages. The
proposed accelerator minimizes power consumption by scaling
down the supply voltage to near threshold points (e.g. 0.5V-
0.6V). Based on the synthesis result, the area and power
estimation of each component at 0.6V is given in Table III.
To meet the workload requirement, 50MHz clock frequency is
assumed. In Table IV and Table V, the current design, Q2.2
with pruning, is compared with two other implementations,
Q2.13 and floating-point without pruning. The results show
that 5-bit fixed-point implementations for weight and node
pruning are highly effective in saving area and power. To use
the memory efficiently, six 5-bit weights are attached together
to occupy one wordline in memory.

IV. CONCLUSIONS

A fully connected, feedforward neural architecture for
spoken keyword detection was proposed in this work. A post-
processing method to obtain phrase-level metrics using a slid-
ing window approach was also described. To reduce the mem-
ory footprint for network weights, the latter were stored using
a fixed-point representation. Experiments were conducted on
10 keywords selected from the RM corpus, and results show
that there is only a marginal loss in performance when the
weights are stored in a Q2.2 format, i.e. only 5 bits. The
total memory required in this case is approximately 200 KBs,



Fig. 10. Internal architecture of the processing element (PE) and multiply-
accumulate unit (MAC).

TABLE III. AREA AND POWER ESTIMATION.

µm2 mW

Scheduler 2855 0.176
Register 108870 0.58

PE 1548 0.11
SRAM 774054 2.64

making it highly suitable for resource constrained hardware
devices. A node pruning technique was also presented to
identify and remove the least active nodes in a neural network,
thus, decreasing the memory requirements even further. For an
acceptable loss in performance, an 11.4% reduction in memory
is obtained after combining this technique with a fixed-point
representation. Finally, a hardware architecture using a single
multiplier and a memory bank was presented. These results
demonstrate the applicability of the proposed approach for
implementations with limited hardware resources.
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