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Abstract - In this paper, we present a new RLC crosstalk noise
model that combines simplicity, accuracy, and generality. The new
model is based on transmission line theory and is applicable to
asymmetric driver and line configurations. The results show that
the model captures both the waveform shape and peak noise
accurately (average error in peak noise was 6.5%), A key feature of
the new model is that its derivation and form enables physical
insight into the dependency of total coupling noise on relevant
physical design parameters. The model is applied to investigate the
impact of various physical design optimizations {(e.g., wire sizing
and spacing, shield insertion) on total RLC coupled noise. Results
indicate that common (capacitive) noise avoidance techniques can
behave quite differently when both capacitive and inductive
coupling are considered together.

1. INTRODUCTION

On-chip inductance has become significant in designs with GHz
clock frequencies [1,2). One aspect of on-chip inductance that has
not been studied well is mutual inductive coupling. Mutual
inductance causes signat integrity issues by injecting noise pulses
on a victim line. The injected noise can either cause functional
failure or change the delay of the victim line [3].

Most existing noise models and avoidance techrigues consider
only capacitive coupling [4]. However, at current operating
frequencies inductive crosstalk effects can be substantial and
should be included for complete coupling noise analysis. Figure 1
shows noise waveforms for two fully coupled lines (in this case
minimum spacing is used along with a larger linewidth for RC
delay reduction as may be done for critical global signals). The
figure also shows waveforms for capacitive and inductive coupling
noise separately,' The waveforms show that inductive noise can
be comparable in magnitude to the noise due to capacitive coupling
and hence neglecting inductance in noise analysis can be highly
inaccurate.

Recently, there has been work that includes inductive coupling
in noise modeling. A noise model for two coupled RLC lines was
proposed in [5]; however, this model is only applicable to loosely
coupled lines for which muwal inductance and coupling
capacitance are much smaller than self-inductance and ground
capacitance respectively. This approximation is not valid for
on-chip interconnects where the ratio of coupling capacitance to
ground capacitance can easily exceed one and similarly the ratio of
mutual inductance to self inductance can be in the range of 0.7 to
0.8 [6]. Another model for coupled RLC interconmects was
proposed in (7). The model maps two coupled lines to two isolated
single lines and then approximates each isolated line as a
one-segment RLC pi circuit. One disadvantage of this approach is

' The capacitive coupling noise waveform is generated by setting mutual
inductance to zero and similarly inductive coupling noise is generated by
setting coupling capacitance to the ground capacitance. Note that the
capacitive coupling noise waveform is not smooth due to the line self
induclance.
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Fig 1: Noise waveforms for capacitive, inductive and
capacitive + inductive coupling for two coupled lines.

that it is applies only to identical wires with identical drivers.
Furthermore, #ts use of a simple lumped one-segment pi
approximation makes it invalid for fast transilion times. At current
frequencies, on-chip interconnects act as lossy transmission lines.
Hence, single-lump approximations for noise modeling are
insufficient since transmission line effects such as time of flight
and reflections must be considered. Reference [8] proposes a model
based on the rigorous solution of coupled distributed RLC lines but
the model is extremely complex and as such does not provide
useful insight for physical design noise optimizations.

In this paper, we propose a transmission line based coupling
noise model that is simple while retaining accuracy. Due to its
simplicity, the model is useful in understanding noise waveform
shapes due to capacitive and inductive coupling and also their
dependencies on various parameters. The model can handle
asymmetric line and driver configurations. The proposed model
will be particularly useful in investigating the effect of physical
design changes (linewidth, spacing, shield insertion, etc.) on total
(capacitive and inductive) noise.

The remainder of the paper is organized as follows. We begin by
reviewing relevant transmission line theory in the following section.
The second section also presents our approach to modeling RLC
coupling noise waveforms. In Section 3, we validate the new model
by comparing to SPICE resuits. Using this model, we examine the
effects of various physical design optimizations en RLC noise in
Section 4 before concluding in Section 3.

II. CoupPLING NOISE MODEL

In this section, we first review transmission line theory for two
coupled lines and then develop a new noise model based on this
theory.

A.  Coupled Transmission Line Theory

Consider two distributed coupled RL.C lines. Let R, L, and C be
the line resistance, self-inductance, and ground capacitance per unit
length of the line respectively. The lines are capacitively and
inductively coupled. Let Cc be the per unit length coupling
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capacitance and M be the per unit length mutual inductance
between the lines. At any point z along the line, the voltage and
current waveforms on line 1 and line 2 satisfy following set of
differential equations.
av, of
——=(R+sLM, +sMI, ——L=5(C+C.)V, —sC.V.
aZ 1 2 aZ ( [aFad cr2 (l)

v
- aa—2 ={R+sL)], +sMI,

3
-2 =5(C+C W, —s5CV,
z dz

l

Here, Vi(z,t), /i(z,t) and Vi(zt), (zt) are voltage and current
waveforms on lines | and 2 respectively. The generic solution of
the above set of equations is given by

Vi = (A e + Ae™ ) +(4e75 + Ae™)

Vo= (A + A" ) — (A ™ + Ae™)

| ~%.2 7.2 1 Al Yk @

I =Z—(A1e “ - Ae” )+Z—(A3e " - Aue’)
(23

Do
i : 1
[, =—(Ae ™ —Ae™ ) ———(Ae" — A"
=g A A (A )

Here, the A;'s are constants whose values are obtained from the
boundary conditions. The constants y, and y, are defined as ever
and odd mede propagation constants [9]. These constants are given

by
7. =,fxC|R+.v(L+M)| 3)

¥, =JS(C+2C)R+5(L-M)]

Similarly, Z, and Zy, are defined as even and odd mode
characteristic impedances and can be expressed as

R+s(L+M)
ZI]: =
sC @
R+s(L-M)
Zﬂﬂ = T A, N
s(C+2C.)
In the generic solution of {2), ¢™ terms represent waves
traveling in +z direction and €™ terms represent waves traveling in

—z direction. The first term A e in the expression of V| and v,
in (2) represents a voltage wave traveling in the +z direction with
propagation constant y, and the second term A, e™* represents the

corresponding reflected wave traveling in the reverse direction.
Similarly, third and fourth terms represent similar traveling waves
but with a different constant y,,.

The above result shows that coupled lines have two modes of
propagation with two different propagation constants and two
different characteristic line impedances. The interesting implication
of this observation is that the solution of two coupled lines can be
viewed as the combination of the solutions of two single
transmission lines. Physically, even mode represents the case when
both lines switch in the same direction and odd mode represents the
case when lines switch in opposite directions. Any signal traveling
in the coupled transmission line system can be expressed as the
superposition of these modes [10].

B.  Coupled Noise Model

Based on the theory in Section 2.1, an accurate coupling noise
maodel for on-chip interconnect can be developed. Figure 2 shows
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Fig 2: Coupled line configuration

two coupled interconnects where one line is switching and the other
is quiet. The driver for the active line is replaced with a voltage
ramp Vs in series with a Thevenin resistance Rg. For the quiet line,
the driver is modeled as a linear resistance Ry connected to ground.
Receivers at the far-end of the lines are modeled as lumped
capacitive loads.

For global interconnect in typical CMOS designs, the receiver
has a small input capacitance. From a transmission line point of
view, a small capacitive load at the far-end of the line represents a
large termination impedance. For example. a far-end capacitive
load of 20fF at 1 GHz frequency corresponds to an impedance of
around 8 KQ. This impedance is significantly higher compared to
the characteristic line impedance (which is nommally around
50-60€2). As a result, the far-end reflection coefficient in practical
interconnects is around +1 [11).2 This implies that any forward
traveling wave is completely reflected at the far-end and the
voltage at the far-end of the line is doubled due to the superposition
of the incident voltage wave and the reflecied reverse wave, In the
generic solution given in (2), the amplitude of the reflected wave
can be set equal to the incident wave and the solution of (2) can be
simplified to

V,=A (e +e™ )+ A (e + ™)

Vi=Ale "+’ )— A (7 +e")

A A . 5)
I == (e —e™ )+ =(e" —e™)
[ef3 0o
A A
I, = (e85 —ght) = 3 (eTh —ghT)
Qe Qo

At the near-end (z = 0), the active line (line 1) is driven by a
voltage source Vg through a resistance Rg and the quiet line (line 2)
is connected to ground through resistance Ry. Applying these
boundary conditions to Equation 5 gives

Vo —Vi(z=0) _Vi=(A+4) _

[(z=0) A A s
[z *z ) )

Oe O0a

—V2(2=0)= _(Al_A_q) —
12(z=0) i_i
ZUE Zl)ﬂ

Solving the above set of equations for A; and A; gives
4y Zy (Zo, + R,)
T 2o+ RO Z, + R+ (2o, 4 RO EZ 4R (7)
=V Zy(Zo, + Ry)
F(Zgo RN Zy, + R+ (Zy, + R NZ, + R

R,

Ay

? The analysis can be easily extended to the cases with large capacitive
toads by considering a far-end reflection coefficient different than +1.
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Fig 3: Far-end waveform computation in coupled transmission
lines

Now, let us first consider the case of lossless lines only. We will
consider losses in Section 3. For lossless lines, the term ¢ in

(5) simplifies to e &) This simplified term in the s-domain
corresponds lo a time delay of | w75 in the tme domain.

Similarly, the exponential term for odd-mode corresponds to a time
delay of JCFE NL—M)- Hence, any voltage step generated at

the near-end in lossless coupled lines travels without any
attenuation and distortion. For line length [, the step propagating
with the even mode constamt arrives at the far-end after an even
time of flight t, and the step propagating with the odd mode
constant arrives at the far-end after an odd time of flight delay .

t, =l fC(L+M) )
1, =IJ(C+2CHL-M)

Based on the above theory, the far-end waveforms in coupled
lossless lines can be computed by performing the following steps:

e Given an input voitage ramp Vg(t), compute the even and odd
voltage ramps A, (t) and A;(t} using Equation 7.

e The voltage ramp A,(t) arrives at the far-end after ¢ and the
voltage ramp As(t) arrives at the far-end after fp delay.

¢ Due to a reflection coefficient of +1, both the voltage ramps are
doubled at the far-end.

¢ The far-end waveforms for active and quiet lines can be
computed by superposition of the doubled voltage ramps. In the
active line, both even and odd modes are positive while in the
quiet line the even mode is positive and the odd mode is
negative, '

¢ Reverse traveling waves can get reflected at the near-end and
add to the far-end waveforms after three time of flight delays.

The above flow is explained in Figure 3. The figure shows that
voltage steps A(t) and A;(t) are generated at the near-end of the
lines. These steps travel with different velocities and arrive at the
far-end after different time delays. The output voltage waveforms
can then be computed by:

Ve () =240 —2,)+24,(r—1.)

age

Vi ()=24(-1,)-24,(1~1,)

vie

)

Here, V. (0) and V. (t) are the waveforms at the output of
aggressor and victim respectively.

Now that we have discussed the theory of coupling noise, we
can use the above concepts to analyze noise waveforms. Let us
consider the case of inductive and capacitive coupling separately.
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Fig 4: Typical noise waveforms for capacitive and inductive
coupling noise explained using even-odd mode theory.

The even and odd mode characteristic impedances and times of
flight for capacitive and inductive coupling are given by the
following expressions.

For capacitive coupling only:

1, =CL
f, = 1‘/(C+ 2C)L

I3
and Zor =4/ 10)

\lc
L
Z, =
b \f(c+zcc)

Similarly for inductive coupling only:

1o =IO MY g 2o, = | LMD (11

c
t, =IO -M)

(L-M
Zusy

Capacitive coupling noise has positive polarity while inductive
coupling noise has negative polarity. This can be explained by the
time of flight expressions in Equations 10 and 11. For pure
capacitive coupling, the even mode time of flight is less than the
odd mode lime of flight. Hence, the even mode voltage step arrives
at the far-end before the odd mode step. Since even mode is
positive and odd mode is negative, hence pure capacitive coupling
results in a positive noise pulse. On the other hand, for pure
inductive coupling the negative odd mode step travels faster than
the positive even mode step, thereby resulting in a negative polarity
noise pulse. Also, the even characteristic impedance is always
larger than the odd characteristic impedance; thus the voltage step
due to the even mode is bigger than the odd mode step. These
observations are summarized in Figure 4 for capacitive and
inductive noise waveforms in a 4 mm coupled line.

C. Noise Model for Different Line Parasitics

Now we consider the case of two coupled lines with different
line parasitics. The configuration considered is the same as in
Figure 2. The line parasitics per unit length for the active line (line
1) are R, Ly, and C; and those for the quiet line are R;, L, and C,.
The differential equations in this case are given by

i

SV R st +sME, =S m G+ O, = 5CLY,
oz oz

- aavz =(R, + 5Ly, + sMI, —aaiq(c2 +C WV, —5CV,
7 2

(12}
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The generic solution for this set of differential equations
(considering a far-end reflection coefficient of +1) is given by

V, = A, (€7 +e )+ AT +eT)
V, = A, (e +e™ )+ A (e +e™F)

A a3
"I - Al (e—}’,l _ e;r,z)_'_ 3 (e-m _er,,z)
Ol Col
]2 = Al (e—y,_z _er,z)+ A4 (eAY_,z _er,x)
Oe2 002

For simplicity, let us consider the case of lossless lines (this
assumption will be addressed in Section 3). Even and odd mode
propagation constants y, and y, are given by

e

(@, +a,)+(a, -a,)’ +dbb,

5 (14)
—Ja,—a,)? +4h
7,”=sJ(c;t,+az) (a,—a,)” +4bb,
2
where
a, =L(C, +Cc)~MC, a, = L(C, +C}-MC. (15

b, =-~LCp +M(C, +C;) b, =—L,Cc + M(C, +C,)

For symmetric lines, ay=a, (=a) and by=b; (=b), and the
expressions for even and odd mode propagation constants in
Equation 14 reduce to

Y. =sva+b =s5yC(L+M)

(16)
Y, =sda—b=sJ(C+2C ) L-M)
In the solution of (13), the coefficients are related as
A _(a-a )+ y(a, —a,)’ +4bb,
A, 2b, (17
A _(a-a)) =g, —a,)" +4b,
A, 2b,

Again for symmetric lines, A;=A; and Ay=-4,, and (13) reduces
to the equation for symmetric lines.

Another difference for asymmetric lines is that even and odd
mode characteristic impedances for the two lines are different.
These impedances are given by

7 Sl -M7)
0el — ‘"ﬁﬁ_ﬁ_ﬁzv_“_“'
(L, -2 M)
Felts A

s(LL,—-M?%)
A
Ya(LZ_IM)

_s(LL, =M7)

YL -imy ag)
AZ

s(LL,-M")
A1
Ya(l‘z _;;M)

4

Z

0ol —

Oa2

Applying the boundary condition in a similar way as for
symmetric lines, the voltage steps traveling on the quiet line can be
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The overall flow for computing noise waveforms in asymmetric
lines is the same as that in symmetric lines. For a given input ramp
to the active line, the two voltage ramps Ax(t) and Ay(t) are
generated on the quiet line. The two ramps propagate at different
speeds'and arrive at far-end of the line after #;. and fg time of flights
respectively. These waveforms get doubled at the far-end and the
noise waveform is then computed by the superposition of these two
ramps, The times of flight are given by

(@, +a,) +yla, —a,)? + 4bb,

1, =1
fe J 3

, =IJV("| +az)—J(a| —a:)2 +4b,b,
o 2

Z()z!

Z

0p2

Oel

(20)

IIL. VaLiDaTION OF THE MODEL

In this section, we test the model by comparing it 1o HSPICE
simulations. We consider the testcases with realistic interconnect
topelogies (for example, maximum interconnect length considered
is 4mm because wires longer than 4mm are often broken into
shorter wires by repeater insertion). Far-end capacitive loading of
30fF is considered in simulations. Line parasitics are extracted
using the commercial extraction tool Raphael. A two-layer
orthogonal power grid structure with 50pm pitch and 10pm
linewidth is used in inductance extraction. All simulations use a
0.13um 1.2V technology.

Figure 5 shows the comparison between model and HSPICE for
three arbitrarily chosen line configurations. In computing the model
waveforms, the first set of reflections from the near-end were also
considered. For one of these cases, we swept the aggressor input
transition time from 20ps to 200ps. Figure 6 compares the
measured and calculated peak noise values as a function of input
transition time. In all these testcases, line resistance was not
considered.

Now, we discuss the effect of line resistance on noise
waveforms. Figure 7 shows HSPICE waveforms for three different
line resistances. The figure shows that as line resistance increases,
the noise peak reduces. This is due to the fact that with resistance,
the voltage steps traveling along the line undergo attenuation and
dispersion. Hence the voltage steps arriving at the far-end of the
line are smaller and have larger rise times. This causes noise pulses
in the lossy lines to be smaller and wider as compared to those in
lossless line. This is helpful since the noise peak values obtained
using -a lossless approximation can be safely assumed to be
pessimistic.

Including resistance in the transmission line analysis adds
significant complexity to the problem and the resulting equations
fail to provide much physical insight. For simplicity, a low loss
approximation is used to inclunde the effect of line resistance in the
above lossless model. In a low loss approximation (R<2Zg), a
voltage step traveling along a transmission line of characteristic

’

impedance Z; is attenuated by a factor of e 22 [10]. Based on

this theory, positive and negative noise peak values in lossy lines
can be computed as
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captured well by the analytical equations.

Finally, we tested the complete analytical model including the
lossy approximation by sweeping line length from 1mm to 4mm
and linewidth from 0.8um to 3.2pum. Line to line spacing was swept
from 0.4um to 1pm. We also varied input transition time from 50ps
to 150ps. Table I shows the error bins i peak noise estimation for
these 532 iestcases covering different wire topologies. The table
shows that the model works extremely well with 81% of the
testcases showing less than 10% error.

The average error in noise peak estimation over entire set of 532
testcases was 6.5%. On examining the testcases, we found that the
cases with large errors correspond to long and narrow wires. Such
wires are not common in practical designs because they have high
line resistance and hence are buffered more often to reduce RC
delay.

1V. EFrFecT OF LINE PARAMETERS 0N COUPLING NOISE

The analytical noise model proposed in the previous sections
can be used to quickly screen for logic (or timing) failures due to
coupling noise during physical design. Once a failure is detected,
the routing should be modified to ensure proper operation. One
way 0 manage coupling noise is by controlling line parasitics
which in turn can be controlled by wire sizing and spacing as well
as shield line insertion. In this section, we siudy the effect of
changing Jine parasitics on inductive and capacitive noise. Before
we study these effects in detail, we highlight two observations from
the theory discussed in Section 2.

If the difference between even mode and odd mode times of
flight increases, then peak noise grows. This is due to the fact
that even and odd mode voltage ramps are in the opposite
direction. Hence if the difference in their arrival times is larger,
then the voltage step due to the first mode (mode that armrives
first at the far-end) can rise to a higher value before being
pulled down by the second mode.
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If the victim driver resistance is fixed, then the height of the

even step increases as the ratio  Z,, increases. Similarly
Zo +R;
the height of the odd step increases with a rise in the ratio
zl]rl
Z,, + Ry

A.  Effect of Linewidth (Ground Capacitance) on Noise

For physical design tools, linewidth is an important parameter
during wire optimization because it has a significant effect on both
line resistance and ground capacitance. In this section, we consider
the effect of linewidth on coupling noise. We consider two coupled
lines where each line is 2mm long and the spacing between them is
fixed at 0.4pm. Linewidth of both wires is swept from 0.8pm to
4 8um in steps of 0.4pum. For each width, line parasitics were
extracted using commercial extraction tool Raphael.

For each width, peak noise is computed using the model
proposed in this paper. We consider three cases - capacitive
coupling only, inductive coupling only, and both coupling together.

As linewidth increases, the ground capacitance of the line increases.

With increased line capacitance, the aggressor transition time slows
down considerably. Hence for a fair comparison; the aggressor
driver resistance was varied such that the RC product of driver
resistance and total line capacitance remains constant, The input
transition time to the aggressor is 50ps, victim diver resistance is
500, and the aggressor driver resistance varies from 1000} to 42Q0.
Figure 9 shows the absolute peak noise voltage as a function of
linewidth. The figure shows that as linewidth increases, noise peak
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due to capacitive coupling reduces as expected while the noise peak
due to inductive coupling increases. The actual noise peak while
considering both forms of coupling was not very sensitive to the
width. This is an interesting result because increasing linewidth is
traditionally considered a useful noise avoidance technique but it
actually worsens inductive noise. We also simulate the full noise
waveforms for three different widths in HSPICE. Figure 10 shows
the waveforms for capacitive, inductive and both coupling cases for
three different linewidths. ’

The above behavior of capacitive and inductive noise can be
explained based on the theory discussed in the paper. For capacitive

coupling, the even mode time of flight is given by [ LC while
the odd mode time of flight is given by ; I‘L(C+2CC)- Now, as

ground capacitance C increases the difference between even and
odd mode times of flight reduces. This causes capacitive noise to
reduce with width, For inductive coupling, the difference between
even mode time of flight (7 f(L+M)C) and the odd mode time of

flight (; /(L—M)C } increases with a rise in ground capacitance C.

Hence, \contrary to capacitive coupling, inductive coupling noise
peak increases with linewidth. It should be noted that with
increased ground capacitance, both even and odd mode
characteristic impedances reduce. If driver resistance is fixed, then
this will result in reduced heights for even and odd mode steps.
However, in our experiment, aggressor driver resistance was
decreased to maintain a fixed RC preduct; making the effect of
change in characteristic impedances on noise peak less significant.

B. Effect of Self inductance on Noise

Unlike capacitance, inductance is only a weak function of line
geometry and is primarily controlled by the position of current
retern paths. With the increasing significance of inductance, it is
required that physical design tools consider inductance during
shield insertion and power grid specification. In this section, we
study the effect of changing self inductance on noise. A similar
setup as in Section 4.1 is used. In the experiment we consider 2 mm
long lines with 1.2pm width and 0.4pm spacing. Aggressor and
victim driver resistances are 1000 and 50<) respectively and input
transition time is 50ps. Instead of wvsing extracted self inductance
values, it is swept from 2nH to 5nH.

Figure 11 shows absolute peak noise voltages as a function of
self inductance calculated using the model. The figure shows that
as self inductance increases, noise peak due to capacitive coupling
increases significantly. Noise peaks while considering inductive
coupling only and the total noise considering both couplings were
not very sensitive to the width. This is an interesting result since we
find that increasing self inductance affects capacitive noise more
than inductive noise. Also, consider that with capacitive coupling,
when the ratio of coupling capacitance to ground capacitance is
reduced, the capacitive noise reduces. Along the same lines for
inductance, we might speculate that increasing the self inductance
should reduce the mutual to self inductance ratio and hence reduce
inductive noise. However, in our experiment we found that for
increasing self inductance, the noise peak due to inductive coupling
increases slightly. Figure 12 shows HSPICE waveforms for
capacitive, inductive, and total coupling cases for three different
self inductances.
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Fig 11: Absolute peak noise voltage vs. line self inductance for
capacitive, inductive and capacitive + inductive coupling.
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Fig 12: Noise waveforms for capacitive and inductive coupling
(left) and for capacitive + inductive coupling (right} for three
different line self inductances.

This behavior can again be explained by the two observations
made in the beginning of this section. For capacitive noise, as self

inductance is increased the difference between even (/+ LC ) and
odd mode times of flight (7 fz(C'¥ 2C,.) ) incteases. Also, with self

inductance, even and odd mode characteristic impedances also
increase causing capacitive noise to increase significantly. For
inductive noise, the difference between even mode time of flight

(IJ(L+M)C) and the odd mode time of flight (7 {(Z—am)C)

reduces but characteristic impedances increase. Due to the
conflicting impact of these two factors on noise, the inductive noise
peak is fairly insensitive to self inductance.

C. Effect of Spacing on Noise

Finally, we study the effect of spacing on noise. A similar setup
as in Section 4.1 is used. Line to line spacing is swept from 0.4pm
to 3.2um in steps of 0.4pm. For each spacing, line parasitics are
extracted and coupling noise behavior is computed using the new
RLC model. Figure 13 shows the absolute peak noise voltages as a
function of spacing. The figure shows that with increased spacing,
noise peaks due to both capacitive and inductive coupling reduce.
As expected, the reduction in inductive noise is not as significant as
that in the capacitive nojse, This is due to the fact that with spacing,
the coupling capacitance reduces more rapidly as compared to the
muteal inductance. The figure also shows that for large spacings,
the total noise is dominated by inductive coupling only. This
implies that only small increases in spacing are useful (e.g., in this
case from 0.4pum to 0.8um) since beyond this point noise
reductions have saturated due to the presence of mutual inductance.
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Fig 13: Absolute peak noise voltage vs. line to line spacing for
capacitive, inductive and capacitive + inductive coupling.

V. CONCLUSIONS

In this paper, we have proposed a simple crosstalk noise model
for coupled RLC interconnects. Qur results show that the model
captures the noise waveform shape weil with an average error of
6.5% for noise peak over a wide range of testcases. The model is
then used to investigate sensilivities of rotal noise to layout
parameters such as width, spacing, power grid granularity. Our
analysis shows that traditional capacitive coupling based physical
design noise optimizations are not efficient when both capacitive
and inductive coupling are considered together.
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