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Abstract
We propose the concept of an optimal inductance value that can 

substantially reduce delay of global RLC signals while 

maintaining good signal integrity (low ringing/overshoot).  We 

exploit the fact that inductance results in faster transition times to 

improve delay of buffers in global signal lines. We observe that 

voltage overshoot, slew rate, and total line delay all show strong 

inflection points at the same value of inductance. At this optimal 

value of inductance significant improvements in signal transition 

time, and hence in overall signal delay, are obtained with 

negligible ringing. We propose adjusting the power grid to 

achieve this optimal inductance. Results show that the delay of a 

1cm line with 9 inserted repeaters can be reduced by 8-12% with 

acceptable ringing by operating at the optimal inductance point.

1.   Introduction 
On-chip inductance has become significant in designs with GHz 

clock frequencies. Inductive effects in interconnects manifest 

themselves as overshoots/undershoots in voltage waveforms that 

may degrade signal integrity and cause reliability concerns. 

Hence, interconnect inductance is typically seen as a problem and 

various approaches have been proposed to minimize inductance 

[1-4]. However, it is known that inductance provides some useful 

effects such as improved signal transition times [5,7,8]. This effect 

of inductance can be used to improve propagation delay in global 

wires. In this paper we demonstrate that, while the delay of a 

single interconnect increases with inductance, the delay of global 

signals containing repeaters can be reduced by exploiting the fact 

that gate delays improve with faster input transition times. To take 

advantage of the improved slope effect of inductance, we seek out 

inductance values that result in improved slew and total delay with 

acceptable ringing. Our study shows that contrary to the belief that 

designers should always aim to minimize inductance, there exists 

an optimal inductance value where better slopes can be harnessed 

to improve performance of high-speed interconnects while 

keeping negative inductive effects at acceptable levels. 

2.   Concept 
Inductance results in faster slew rates due to the fact that when a 

positive voltage is applied to an inductor, it takes some time to 

build up the charging current. Once the current is established, 

however, it continues to be supplied for some time, resulting in an 

overall faster transition time [7]. Figure 1 shows the far-end RC 

and RLC waveforms of a 2mm long interconnect driven by a 60X 

inverter in a 0.13 m technology.1  It is clear from the figure that in 

this case, the RLC waveform is superior to the RC waveform. This 

is because the RLC waveform experiences a faster transition than 

RC with almost the same 50% delay. Also, for this case the RLC 

waveform does not exhibit significant ringing or overshoot. 

Increasing inductance further will result in even better transition 

times but will cause a more significant interconnect delay increase 

1
Driver size 60X implies an NMOS width in the inverter of 60 times 

minimum channel length (2*0.13µ). PMOS is twice as wide as NMOS. 

This work is supported by grants from the NSF and Intel Corporation. 

and signal ringing making the RLC waveforms less desirable than 

their RC counterparts. However, for the case shown in Figure 1, 

the RLC waveform has better slope with little negative effects and 

this useful effect of inductance can be exploited to improve 

performance.

Typically, repeaters are inserted in long interconnects to 

improve propagation delay. Gate delays reduce significantly with 

improvement in input slew and hence, the overall delay of a line 

containing repeaters can be improved by increasing inductance 

from its minimum value. In fact, the slew improvement with 

increased inductance results in a cascading effect where the gain 

in one stage is propagated to the next stage, resulting in additional 

improvements with a higher number of stages. This suggests that 

if we can control the inductance of lines, then the delay of global 

interconnects containing repeaters can be improved by harnessing 

the faster transition time effect of inductance. It should be noted, 

however, that as inductance is increased, interconnect delay and 

ringing also increase and it can offset the gains due to improved 

slope and degrade signal integrity. Hence, it is required that the 

trade-off between the slew improvement and the associated 

increase in interconnect delay and ringing with inductance is 

balanced properly. In this paper, we explore this trade-off and 

propose an optimal inductance point. Our results show that this 

point results in an ideal trade-off between delay and signal 

integrity. We also propose an analytical expression for obtaining 

the optimal inductance by controlling the power grid spacing.  

3.   Analysis and Discussion 
In this section, we analyze the above concept by simulations. 

For our experimental setup, we consider a 10mm long global 

interconnect using repeaters as shown in Figure 2. The total 

number of repeaters inserted is nine with a 1mm interconnect 

segment between two repeaters. Line width and thickness are 
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0.8 m and 1 m respectively. The size of the repeaters is 45X in a 

0.13 m technology. The resistance and capacitance are extracted 

using the commercial extraction tool Raphael. To find an optimal 

inductance value for this configuration, we keep resistance and 

capacitance fixed and sweep the inductance value of each 1mm 

segment from 0 to 3nH. 

Figure 3a shows the improvement in slopes with inductance. The 

figure shows 10-90% slew (normalized to the RC case) measured 

at the input of repeaters 2, 5, 8, and 11. It is clear from the figure 

that significant improvements (up to nearly 5X in this case) in 

slew can be obtained by increasing the inductance.  The figure 

also shows that slope improves rapidly when small inductances are 

included, but saturates beyond some point, showing only small 

improvements with further increases in inductance. The 

improvement in slope at the input of Repeater 2 is less than that at 

the input of other repeaters. This occurs because Repeaters 3 

through 11 benefit from a cascading effect as improved slopes are 

propagated through the inverter chain, while the slope at the input 

of Driver 1 is fixed in the simulation setup. 

Next, we plot delay at various stages with inductance as shown 

in Figure 3b. As inductance is increased, the delay first decreases, 

becomes minimum at an optimal point, and then starts to increase. 

The initial delay reduction is due to the significant improvement in 

repeater delay as slew rates decrease, while the interconnect delay 

itself stays roughly constant in this region. When the inductance is 

increased beyond a certain value, however, the gain in repeater 

delay is overcome by the increase in interconnect delay and hence 

total line delay starts to rise. Figure 3b also shows the cascading 

effect where the gain in delay improves with the number of 

repeaters (for instance, the relative gain in delay at Repeater 8 is 

more than the gain at Repeater 5). We note that the delay until 

Repeater 2 increases monotonically with inductance. This is 

because the input of Driver 1 has a fixed input slope and hence no 

improvement in its delay is obtainable while the larger inductance 

yields an increase in the delay of the first wire segment. 

In Figure 3c, we plot the overshoot as a function of inductance. 

Two important observations can be made from this plot. First, the 

overshoot is almost negligible for small values of inductance and 

second, there exists a clear inflection point beyond which the 

overshoot starts to increase rapidly. The key point is that the 

inductance value at which the delay is minimized is the same 

value after which the overshoot starts increasing rapidly.  This is 

also the same inductance value after which the improvement in the 

slope saturates (Figure 3a). For example, in the above experiment, 

this value is about 1.4nH. We refer to this point as the optimal 

inductance point, as it represents an operating point with 

minimum total delay while ringing is still negligible.  

It was observed in [6] that the inductive overshoot is initially a 

weak function of inductance and remains negligible until the so-

called no-peak condition, beyond which it starts to increase 

rapidly.  Reference [6] shows that the no-peak condition can be 

analytically calculated using a second-order approximation of the 

distributed RLC response and that at the no-peak condition, 

overshoot is limited to only ~4% of the voltage supply. For a 

distributed line of length l with a driver resistance RD, load 

capacitance CL and per unit length line parameters R, L, C, the no-

peak condition satisfies following equation [6]: 
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In this paper, we make the key observation that the inductance 

yielding an optimal delay also occurs at the no-peak condition, as 

shown in Figure 3. Our experiments show that the no-peak point 

not only yields acceptable overshoot, but also provides optimal 

delay and very good slew as well.  This is illustrated in Figure 4, 

which shows the far-end waveforms of a 4mm line driven by a 

100X driver. Inductance of the line is increased and the 

waveforms for RC, critically damped, no-peak, and underdamped 

states are plotted. The figure shows that at the no-peak point, slope 

is improved with controlled overshoot and negligible delay 

overhead. The figure also shows that the no-peak point is different 

from the critically damped point and additional improvement in 

slope (without significant ringing) can be obtained by operating at 

this point instead of the critically damped state. 
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Figure 3. (a) 10-90% slew vs. inductance, (b) 50% delay vs. inductance and (c) overshoot vs. inductance at different stages 
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Equation 1 shows that the no-peak point is a strong function of 

driver resistance. For very strong drivers (small driver resistance), 

the optimal inductance point is reached at a small value of 

inductance and vice versa. In order to clarify this point, we 

consider the configuration from Figure 2 (a 10mm global line with 

9 inserted repeaters) and plot delay and overshoot for varied 

repeater sizes. Figure 5a shows the total line delay and Figure 5b 

shows the far-end overshoot for 30X, 45X, and 60X driver sizes. 

These plots demonstrate that as driver size is decreased, the 

optimal inductance value increases because the no-peak state is 

reached at higher values of inductance. The plots further confirm 

that the optimal inductance point for minimum delay corresponds 

to the no-peak point after which the overshoot starts increasing. 

4.  Designing for Optimal Inductance 

In order to apply the concept of optimal inductance to on-chip 

interconnects, it is necessary to control their inductance value. The 

optimal inductance for an interconnect signal in a real design can 

be controlled in a number of ways, such as by adjusting driver 

size, wire width, inserting shields, and power/ground grid spacing. 

In this paper, we propose the use of power grid spacing to obtain 

the optimal inductance for high-speed interconnects. While power 

grid spacing at lower metal layers is typically dictated by physical 

design and IR-drop constraints, significant flexibility in the power 

grid spacing exists for higher layer metals that are used for high-

speed global interconnects. IR-drop requirements for the power 

supply lines can be met by compensating for increased power grid 

pitches with increased power grid line widths, thereby allowing 

the pitch to be determined by optimal inductance.

      We now show how the optimal inductance can be determined 

by controlling the power grid pitch. Inductance is a function of the 

current return paths. In on-chip signals, the return current 

primarily flows through the power grid and shields inserted 

between signals. Therefore, one approach to obtain optimal 

interconnect inductance is by controlling either the position of the 

shields, the pitch of the power grid, or both. We propose that while 

designing the power grid and performing shield insertion, 

inductance should be considered along with IR-drop constraints. 

One issue with controlling shield insertion for optimal inductance 

is that shields are important for reducing cross coupling effects 

and the optimal shield placement for inductance may not be ideal 

for minimizing coupling. However, once the shield positions are 

fixed for optimal inductance, the remaining coupling noise 

violations can be minimized by increasing metal-to-metal spacing 

as well. In fact, spacing has an additional advantage over shielding 

in that it reduces total capacitance and further improves 

performance [12].   

We consider the experimental setup shown in Figure 6. We have 

a 10mm long signal line containing repeaters similar to the one 

shown in Figure 2. There are power and ground lines on either 

side of the signal as shown in the figure. To control inductance, 

the pitch of the coplanar power lines is varied. As the pitch is 

increased, the inductance of the signal line also increases since the 

area of the loop formed by the signal and its return current 

becomes larger. For each position of the power grid line, we 

extract inductance using FastHenry [10]. Figure 7 shows the 10-

90% slew, 50% delay, and overshoot as a function of the power 

grid pitch.  These plots are similar to the ones in Figure 3 except 

that now the inductance is varied by changing the position of the 

current return paths. Inductance has a logarithmic dependence on 

spacing and hence a log scale is used for the x-axis. The power 

grid pitch was varied from a minimum possible of 4.8µm to 

1000µm and extracted inductance values for these endpoints were 

found to be 0.4nH and 1.8nH respectively.  

Figure 7 shows that slew, delay, and overshoot exhibit the same 

pattern as obtained by directly sweeping the inductance. The 

figure also shows that the optimal operating point corresponds to a 

power grid pitch of 200 m. By operating at this optimal power 

grid pitch, a considerable improvement in delay (12% in this case) 

is obtained. We point out, however, that not all lines can operate at 
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Figure 7. power grid pitch vs (a) 10-90% slew (b) 50% delay and (c) overshoot 
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their optimal inductance as some must be routed near the grid 

returns. Hence, priority should be given to timing critical signals.  

We now develop an analytical expression for optimal power grid 

pitch. This expression will help designers to predict the optimal 

pitch for high-speed interconnect, eliminating the need to find the 

optimal pitch through laborious extraction and circuit simulation 

runs. To find the optimal power grid pitch, we first need to find 

the optimal inductance value using Equation 1. Solving the no-

peak expression of Equation 1 for optimal inductance gives 

Cl
d
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Here, R and C are line resistance and capacitance per unit length. 

RD is driver resistance, l is line length, and b, f, and d are 

coefficients as defined in Equation 1. 

The loop inductance of a line can be approximated by 

powersigpowerselfsigselfl MLLL ___ 2       (3) 

Lself_sig and Lself_power are the self-inductances of signal and power 

line respectively and Msig_power is the mutual inductance between 

them. Self and mutual inductances can be expressed as [9]: 
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Here, w, t, and l correspond to the width, thickness, and length 

of the lines, and s denotes the center-to-center spacing between 

power and signal lines. By combining Equations 3 and 4, the loop 

inductance can be expressed as: 

))(1(
ln}2)21(2235.0{3

2

2
0

tpt

s
stp

sig
l

kkk

k
kkk

l

wl
L

where sigt wtk / , sigpp wwk / , sigs wsk /        (5) 

     To operate at the optimal inductance point, loop inductance 

should be equal to the no-peak inductance value. Hence, optimal 

power grid pitch can be obtained by equating Ll from Equation 5 

with Lno_peak from Equation 2 and solving iteratively for ks. Once 

the value of ks is obtained, then the optimal spacing s and hence 

the optimal power grid pitch (2*s) can be easily calculated.  

We verified the above analytical approach by comparing 

experimental results with analytical calculations. It was shown in 

Section 3 that optimal inductance is a function of driver resistance. 

We use the same setup as in Figure 6 and consider different driver 

sizes.  For each driver size, we sweep the power grid pitch and 

find the optimal pitch value (i.e., the pitch at which the delay is 

minimum) and measure gain in delay corresponding to this 

optimal pitch. This experiment is similar to the one shown in 

Figure 6 where the optimal pitch was measured to be 200µ and the 

gain in delay at that pitch was 11.7%. Next, we calculate the 

optimal pitch value using our analytical approach and find the 

delay gain using SPICE for that optimal pitch. The results are 

shown in Table I and demonstrate that the analytical approach 

matches very well with the experimental results. The table also 

shows that as driver size is reduced, the optimal pitch increases. 

This is due to the fact that, for smaller driver sizes the optimal 

point occurs at higher inductance values.  

Inductance has a logarithmic dependence on spacing (or pitch). 

For smaller drivers, the value of optimal power grid pitch is very 

high. At such high values, the analytically calculated optimal pitch 

may differ more significantly from experimentally obtained result. 

However, at such high values of pitch, the sensitivity of 

inductance to power grid pitch is very small. Hence, although the 

calculated optimal pitch may differ significantly from the 

measured optimal pitch, the delays in both cases match well.  

Table I. Comparison between analytical and experimental 

optimal power grid pitch 

Optimal pitch 

( m)

Delay at optimal 

pitch (ps)

Delay  

GainDriver

Size 
Exp. Anal. Exp. Anal. Exp. Anal.

75x 12 15 303 304 8.1% 7.7% 

60x 24 20 323 324 9.6% 9.3% 

45x 200 190 359 359 11.7% 11.7%

35x 1200 900 407 416 12.6% 10.7%

5.  Conclusion 
We proposed an approach where the delay of global 

interconnects can be improved by exploiting the faster transition 

time effect of inductance. An analytical expression for this optimal 

inductance is given. We propose the use of varying power grid 

pitch to obtain optimal inductance and develop analytical 

expressions for optimal power grid pitch. Our results show that by 

designing power grid with this optimal pitch, the delay of a 

repeated 1 cm line can be improved by 8-12%. 
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