54.4

Post-Route Gate Sizing for Crosstalk Noise Reduction

Murat R. Becer, David Blaauw+, llan Algor, Rajendran Panda, Chanhee Oh,
Vladimir Zolotov and Ibrahim N. Haijjt
Motorola Inc., Univ. of Michigan Ann Arbor*, Univ. of lllinois Urbana-Champaignt

ABSTRACT

Gate sizing is a practical and a feasible crosstalk noise re-
pair technique in the post route design stage, especially for
block level sea-of-gates designs. The difficulty in gate sizing
for noise reduction is that by increasing a driver size, noise
at the driver output is reduced, but noise injected by that
driver on other nets is increased. This can create cyclical de-
pendencies between nets in the circuit with noise violations.
In this paper, we propose a fast and effective heuristic post-
route gate sizing algorithm that uses a graph representation
of the noise dependencies between nodes. Our method uti-
lizes gate sizing in both directions and works in linear time
as a function of the number of gates. The effectiveness of the
algorithm is shown on several industrial high performance
designs.

Categories and Subject Descriptors

1.6.5 [Simulation and Modeling]: Model Development; G.2.2
[Discrete Mathematics]: Graph Theory — Path and circuit
problems '
General Terms

Algorithms

Keywords

crosstalk noise repair, gate sizing

1. INTRODUCTION

Crosstalk noise is a critical design and verification issue
for large, high-performance designs. This problem has be-
come more significant due to the increased ratio of crosstalk
capacitance to total capacitance of a wire and the usage of
more aggressive and less noise immune circuit structures,
such as dynamic logic.

While recent literature proposes a number of crosstalk
noise analysis and avoidance methods, in this paper, we fo-
cus on correcting the identified crosstalk noise problems in
the post-route design stage. Noise can be reduced through
routing and interconnect optimization (wire spacing, wire
widening, controlling coupling length and position) [1], buffer
insertion [2] and driver sizing. In the post-route design
stage, it is not desirable to use techniques that would re-
quire re-routing which can result in significant changes in
net lengths and neighbors, possibly resulting in new noise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2003, June 2-6, 2003, Anaheim, California, USA.

Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

954

failures that did not exist initially and non-converging de-
sign iterations. After routing is completed, noise failures
can be effectively corrected using driver sizing. The flexibil-
ity through scalable libraries and existing fill-space, allows
one to make incremental changes to the driver sizes without
affecting global routing.

Recently, transistor sizing methods for crosstalk noise re-
duction were proposed in [3, 4]. A gate sizing method to
reduce crosstalk induced delay noise is proposed in [3] and
is based on a crosstalk noise aware static timing analysis.
In {4], a post-route gate sizing algorithm for crosstalk noise
reduction is proposed. However, since this method only uti-
lizes downsizing of aggressor drivers under delay constraints,
and not increasing the size of victim drivers, it has limited
effectiveness.

In this paper, we therefore propose a new post-route gate
sizing algorithm for crosstalk noise reduction. Due to the
non-linear dependence of crosstalk noise to the interconnect
and driver parameters, the problem of post route gate siz-
ing for crosstalk noise reduction is a non-linear optimization
problem. The overwhelming system size in today’s highly
coupled interconnects makes it impractical to solve the non-
linear optimization problem in an exact manner. We pro-
pose a heuristic algorithm in this paper. The algorithm
increases the size of victim drivers as well as reducing the
size of aggressor drivers. The proposed algorithm takes into
account both timing and area constraints and treats each
net as both an aggressor as well as a victim. This dual-
ity is a critical factor in post-route gate sizing and must be
accounted for to ensure that new noise violations are not
introduced while fixing existing failures. We approach the
problem by introducing a noise graph which is constructed
based on the static noise analysis of the design. The noise
graph represents all critical nets, their significant aggressors,
and the noise dependencies between them. We introduce
a sensitivity measure to eliminate weak dependencies from
the noise graph to reduce system complexity. The strong
cyclic dependencies in the noise graph are investigated using
a cyclic sensitivity metric. Cycles that are likely to converge
are allowed to remain in the graph, however high sensitivity
cycles are eliminated from the graph by removing a mini-
mum number of vertices. Some edges are temporarily re-
moved from the low sensitivity cycles to obtain an acyclical
graph. The resulting acyclical graph is then sorted topolog-
ically, where the topology in the noise graph represents the
noise dependency relations. Gate sizing is then iteratively
performed on the sorted noise graph under delay and area
constraints. The algorithm is guaranteed to converge and

has a runtime complexity that is linear with the size of the
circuit. Results on three large microprocessor designs are
presented to demonstrate the effectiveness of the approach.

The paper is organized as follows. In Section 2, we ex-
plain the noise graph concept and our algorithm in detail
including the cycle breaking strategy and sensitivity mea-
sures. Results on three high performance microprocessor
designs are presented in Section 3. Section 4 contains clos-
ing remarks.

2. PROPOSED GATE SIZING METHOD

In a post-route design stage, detailed information on the
topology, neighbors and drivers of all the nets in the design
is available. First, we perform an accurate post-route static
noise analysis on the design, utilizing timing and logic cor-
relation information to avoid false failures [5]. Noise anal-
ysis identifies the severity of noise on each net through a
“slack” value. If the slack of a net is negative, it is failing
the noise analysis. The failure criterion used in the paper is
the so called 'Noise Rejection Curve’ method [5] where the
slack is defined as (noise_slack = output_noise_threshold —
V (receiver_output)). Note that the proposed algorithm is
independent of the noise failure criterion being used.

2.1 Noise Graph Representation

As explained in this section, we represent the gate sizing
problem using a noise graph. A noise graph G((V, A), E)
consists of vertices (V, A) and edges E:

- Vertices: Nets are represented by vertices in the noise
graph. There are two types of vertices: Type V vertices
represent nets which are failing or close to failing the noise
analysis. In other words nets that have noise slack less than
some predefined positive value will be of type V vertices.
Drivers of type V vertices are candidates to be sized up.
Type A vertices represent significant aggressors which have
very low noise on them. A significant aggressor is an aggres-
sor which contributes at least 20% of the total noise on a
victim net. Very low noise means that net has a noise slack
greater than a predefined positive slack. Drivers of type A
vertices are candidates to be sized down.

- Edges: A directed edge between vertex a and vertex b
exists if net a is a significant aggressor of net b. Note that
type A vertices always have an in-degree of 0.

vz
Hz

vz V3

vq Vs

Ve

Figure 1: A sample noise graph

Figure 1 shows a simple noise graph. It is a directed graph
which contains cycles. The noise graph contains all the fail-
ing and critical nets (V1—V7) as well as their very low noise
aggressors (A1— A2). It also contains the existing significant
relations between these nets in the form of edges. In real-
ity, victim-aggressor duality exists for each neighboring net
in the design. However, in our noise graph, we incorporate

955

only significant edges, filtering out the insignificant victim-
aggressor dependencies which would otherwise increase com-
plexity. Therefore, cycles in the noise graph represent signif-
icant victim-aggressor dependencies (in some cases in a more
extended sense ~ V3 — V4 — V5 — V7 — V3 cycle). These
cycles may lead to oscillating solutions and/or convergence
problems. In the simplest case of a two vertex cycle, made
up of vertices V5 and V6, the negative slack can oscillate
between the two nets as each one is sized up and neither is
fixed. Noise graph also dictates an order in which type V
vertices are sized up. For example, if we first size up V2
and then V1, we might have to come back to V2 as it is
affected by V1. This information is utilized to minimize the
complexity of our algorithm.

2.2 Sizing Algorithm

Our algorithm can be summarized as follows. After con-
structing the noise graph as explained in the previous sub-
section, we first size down all type A vertices. At this point,
if the noise graph is acyclic, we simply size up the type
V vertices in topological order, where the topology in the
noise graph represents the noise dependency relations. How-
ever, in general, the noise graph will contain cycles which
may lead to problems. We introduce cyclic sensitivity, a
metric designed to represent the overall noise trend in a
noise dependence cycle as the drivers are sized up, to distin-
guish those cycles that will cause convergence problems and
those that will converge. Low sensitivity cycles are stripped
off some edges temporarily, to be able to obtain an acyclic
graph. Problematic cycles are eliminated through the re-
moval of some type V vertices from the noise graph. The
removed vertices are not sized and thus will not be fixed
by driver gate sizing. Our algorithm removes a minimum
number of vertices to eliminate the problematic cycles. The
resulting directed acyclic graph is then topologically sorted
and type V' vertices are sized up in the topological order.
The problem of iterating over the low sensitivity cycles in
the noise graph is solved by repeating the topological sizing
procedure until convergence. The pseudo-code of the pro-
posed algorithm is shown below:

Algorithm: Post-route driver sizing
Input: Noise analysis results

Output: Instance cell replace directives
begin

1 Construct a noise graph G = ((V, A), F) based on
noise analysis

2 Size_down_type_A_vertices(G)

3 Analyze_cycles(G)

4 Break_cycles(G)

5 Gs = Topologicsort(G)

6 repeat until convergence

7 for each vertex v in G¢
8 Size_up(v)
end

We now explain the algorithm stages in detail. In Step
1, we construct a noise graph based on the noise analysis.
The compexity of this step is O(|V|+ |A|+ |E]). During the
construction of the noise graph, we apply a sensitivity based
pruning method to further eliminate some of the introduced
edges. An edge e from vertex u to vertex v represents a
significant noise contribution from the net represented by
vertex u to the net represented by vertex v. As the driver

of vertex u is sized up, if the noise change on vertex v is not
significant, i.e., A(noise,)/A(size,) is very small, then we
can conclude that when vertex w is sized up, this will not
increase the noise on vertex v significantly. In other words,
the noise dependency from u to v is weak. Edges that rep-
resent such weak dependencies are eliminated. This results
in reduced complexity of the noise graph and in some cases
elimination of some noise dependence cycles. In Step 2,
we size down all type A vertices as much as possible such
that they maintain a sufficient noise slack margin and stay
within the timing constraints. By sizing down the signifi-
cant aggressors up front, the rest of the algorithm is sim-
plified since from this point on only size-up operations will
be performed. The constraint on the noise_slack of type A
vertices ensures that no new failures among these nets will
be introduced, while trying to fix the existing failing nets.

In Step 3, we analyze the cycles in the noise graph. The
complexity of this step is bounded by O(|V]| + |A| + |E|) x
sizeof(largest cycle). Cycles represent significant noise de-
pendencies in the noise graph which have a cyclic nature.
These cycles may lead to oscillating solutions and thus con-
vergence problems. We introduce a cyclic sensitivity met-
ric to seperate those cycles which will converge, from those
which will create problems. Assume we have a cycle C in our
noise graph, made up of n vertices (V1...V,) and n edges
(e1...en). Note that since we already eliminated edges that
correspond to weak dependencies from the noise graph, all
the edges in cycle C represent “strong” noise dependencies.
Our cyclic sensitivity metric for cycle C is defined in Equa-
tion (1).

5N2/531 5N3/532
es(C) ‘ oN1 /351 l 6N /555
6N /5n—1 5Ny /85n W
ONp_1/88n-1 6N /bsn,

where N; is the noise on vertex i and s; is the size of the
gate at vertex 7. Each term in Equation (1) represents the
consequences of sizing up a gate in the cycle C. The i**
term, is the ratio of the sensitivity of induced noise on vertex
i+ 1 to the size of driver of vertex 7 and the sensitivity of
noise reduction on vertex % to the size of driver of vertex i.
In other words, each term is a measure of additional noise
introduced to the cycle versus the noise reduction from the
cycle due to sizing up a gate in the cycle. Therefore, if
¢s(C) < 1, this means that as the gates in cycle C are sized
up, overall cycle noise will tend to go down. On the other
hand if ¢s(C) > 1, this means that the overall cycle noise will
increase as we size up the gates, leading to a non-convergent
situation. In Step 3, we identify and analyze each cycle in
the noise graph and eliminate an edge from those cycles with
low cyclic sensitivity. The reason we eliminate an edge from
these cycles is to be able to obtain an acyclic graph while
keeping all the vertices of such cycles in the noise graph.
Although these cycles will be missing an edge, the effect
of these eliminated edges are taken into account when we
iterate the sizing process in steps 7 and 8.

After Step 3, the remaining cycles in the noise graph are
those which will cause convergence problems. In Step 4, we
remove such cycles in the graph by eliminating a minimum
number of vertices. By removing vertices from the noise
graph, we sacrifice some nets {they will not be fixed by driver
sizing), but we ensure that there will not be any conver-

956

gence issues. Our cycle breaking strategy (Break_cycles(G))
ensures that minimum number of type V vertices are re-
moved from the noise graph: Let G be a directed graph
G = (V,E) where V is the set of vertices and FE is the
set of edges. We want to find a feedback vertex set, i.e.,
a subset V' C V such that V' contains at least one ver-
tex from every directed cycle in G, while minimizing the
cardinality of the feedback vertex set |V’|. This problem is
equivalent to the known graph theory algorithm, “Minimum
Feedback Vertex Set”, which is shown to be approximable
within O(log|V |loglog|V]) [6]. Breaking the cycles result in
a directed acyclic graph (DAG). This graph is topologically
sorted in Step 5, whose complexity is O(|V| + |A] + |E|).

In Steps 7 and 8, the gates are sized in topological or-
der. This ensures that the victim-aggressor duality is taken
into account. Since we are sizing in the order of noise de-
pendence, the effects of sizing up a driver will be seen down-
stream, on the nets that it has an effect on. The noise graph
consists of nets that are failing and that are close to failing.
The topological sort approach makes sure that if any of the
‘close to failing’ nets start failing due to one of its up-stream
neighbors being sized up, this is detected and addressed. At
each vertex, a proper gate size from the cell library is chosen
such that the area and timing constraints are satisfied. The
pseudo-code for the size-up process is shown below. Elim-
ination of some significant edges to preserve the low sensi-
tivity cycles in Step 3, dictates that Steps 7 and 8 should
be iterated until convergence. The theoretical limit on the
complexity of these iterations is linear with the system size.
However in practice, the number of required iterations was
found to be very small and thus can be treated as constant.
Therefore, the proposed algorithm works in linear time as a
function of the number of gates in the design.

Algorithm: Size_up(v)

Input: Type V vertex v

Output: library cell to replace driver of vertex v
begin

1 while area-slack(v) and time_slack(v) are within
constraints

2 replace driver of v with next larger same func-
tionality cell in library

3 if noise_slack(v) > 0

4 return

5 return

end

3. RESULTS

In this section, we present results of our algorithm on
three large designs. The circuits used for experiments are
chip_1, which has 31489 nets, chip_2, which has 39200 nets
and chip-3 with 165481 nets. All three designs are actual
high performance ICs in 0.18y technology and the number
of nets reflect the number of top level nets analyzed by the
noise analysis tool. Initial noise analysis is performed on
these three designs after they have been optimized for delay
and slew constraints. During gate sizing for noise reduction,
we use the timing slacks obtained from static timing analysis
as timing constraints.

Table 1 shows the noise reduction results and Table 2
shows some statistical information on the runs. From Table
1, we can see that number of nets that fail the noise criterion
goes down significantly, as much as by 98%. The last two

Circuit || # of nets | # of failing nets | noise reduction
Initial | After opt. | max avg
chip_1 31489 42 23 30% 11%
chip_2 39200 52 1 44% | - 23%
chip_3 165481 502 70 87% 21%
Table 1: Noise reduction results
la # ver # cy # edg

in ac [bc [hs| Is | in el ac | be

122 84 | 84 | 79 0139 | 34| 34 | 23

[
oo

90 | 90 | 90 2 |12] 12 | 10 | 10

[en] Fen] Kop]

31 22 | 602 | 602 | 602 72 217 | 194 | 123 | 123

Table 2: Some statistics

columns in Table 1 show the maximum and average peak
noise voltage reduction.

Table 2 presents the following information in column or-
der: Number of aggressor gates that have been sized down
[l a], number of vertices in the initial graph [#wver/in], num-
ber of remaining vertices after Analyze_cycles [#ver/ac],
number of remaining vertices after Break_cycles [#wver/bc],
number of “high sensitivity cycles” [#cy/hs], number of
“low sensitivity” cycles [#cy/ls], number of edges in ini-
tial graph [#edg/in|, number of edges remaining after sen-
sitivity pruning [#edg/el], number of edges remaining after
Analyze_cycles [#edg/ac], number of edges remaining after
Break_cycles [#edg/bc]. Note that all the cycles in chip_1
were high sensitivity cycles whereas chip-2 and chip_3 con-
tained many low sensitivity cycles, resulting in better noise
reduction results in chip_2 and chip_3. This shows the im-
portance of detecting weak cycles instead of blindly breaking
all cycles through vertex elimination.

In Figures 2 and 3, we show the changes in noise peak
voltages at receiver inputs and changes in noise slack values
at receiver outputs. Each dot in these figures corresponds to
a noise simulation. It can be seen from Figure 2 that, noise
on most nets has been reduced and only on some nets noise
has increased slightly. Figure 3 shows that no slack value
went from positive to negative after gate sizing (i.e. quad-
rant IV is empty). Hence, if a net did not fail before gate
sizing, it remained that way after gate sizing. This shows
that our algorithm is successful in not introducing new noise
problems while trying to fix the existing ones. These results
show the effectiveness of the cyclic sensitivity measure which
significantly reduces the number of eliminated vertices (sac-
rificed nets), improving the quality of the obtained solution.
The algorithm converged after 2 iterations in all 3 chips and
required 163, 150 and 780 seconds runtime respectively on
an UltraSparc-II machine.

As a result, our algorithm reduced number of failing nets
significantly (45%,98% and 86% in three designs, respec-
tively) while not introducing any new failures. Some con-
trolled increase of noise on aggressor nets was allowed, mak-
ing sure that they stayed within acceptable positive slack.
Even with the increase of noise on eliminated vertex nets, av-
erage noise reduction was (11%, 23% and 21%) respectively
for the three designs.

4. CONCLUSION

In this paper, we presented a post-route gate sizing algo-
rithm for crosstalk noise reduction. The algorithm is tim-

957

400 500 600 700 800 900 1000 1100 1200

noise after gate sizing (mV)
O
8
@
8

s -
200 300 400 500 800 1000 1100 1200

600 700 800
nolse before gate sizing (MmV)

Figure 2: Noise peak changes at receiver input

° ,:‘DJ

-s00

-1000

" Ha00 ~1200 -1000 ~800 ~600 ~400 ~200 o 200

ohip_2

nolse alack after gato sizing (m¥)

~500

1000} -

T 400 ~1200 -1000 ~800 -600 -400 ~200 o 200
nolse siack before gate sizing (MV)

Figure 3: Noise slack changes at receiver output

ing and area constrained and takes into account the victim-
aggressor duality through a topologically sorted noise graph.
We introduced a cyclic sensitivity metric to be able to ef-
ficiently handle cyclic noise dependencies. The proposed
algorithm works in linear time as a function of design size,
utilizes sizing in both directions and has been shown to be
effective on large high performance designs.

5. REFERENCES

[1] P. Saxena and C. L. Liu. Crosstalk minimization using
wire perturbations. In Proceedings of Design
Automation Conference DAC, pages 100103, 1999.

[2] C. J. Alpert, A. Devgan, and S. T. Quay. Buffer
insertion for noise and delay optimization. In
Proceedings of Design Automation Conference DAC,
pages 362-367, 1998.

[3] T. Xiao and M. Marek-Sadowska. Gate sizing to
eliminate crosstalk induced timing violation. In
Proceedings of ICCD, pages 186-191, 2001.

[4] M. Hashimoto, M. Takahashi, and H. Onodera.

Crosstalk noise optimization by post-layout transistor

sizing. In Proceedings of ISPD, pages 126-130, 2002.

S. Alwar, D. Blaauw, A. Dasgupta, A. Grinshpon,

R. Levy, C. Oh, B. Orshav, S. Sirichotiyakul, and

V. Zolotov. Clarinet: A noise analysis tool for deep

submicron design. In Proceedings of Design Automation

Conference DAC, pages 233-238, June 2000.

[6] G. Even, J. Naor, B. Schieber, and M. Sudan.
Approximating minimum feedback sets and multi-cuts
in directed graphs. In Int. Conf. on Integer Prog. and
Combinatorial Optimization, pages 14-28, 1995.

5

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

