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ABSTRACT

In this paper, we present an efficient method for computing
switching windows in the presence of delay noise. In static timing
analysis, delay noise has traditionally been modeled using a simple
switch-factor based noise model and the computation of switching
windows is performed using an iterative algorithm, resulting in an
overall run time of O(nz), where 7 is the number of gates in the cir-
cuit. It has also been shown that the iterations converge to different
solutions, depending on the initial assumptions, making it unclear
which solution is correct. In this paper, we show that the iterative
nature of the problem is due to the switching-factor based noise
model and the order in which events are evaluated. We utilize a
delay noise model based on superposition and propose a new algo-
rithm with a run time that is linear with the circuit size. Since the
algorithm is non-iterative and does not operate with initial assump-
tions, it also eliminates the multiple solution problem. We tested the
algorithm on a number of designs and show that it achieves signifi-
cant speedup over the iterative approach.

Categories and Subject Descriptors: B.7.2 [Inte-
grated Circuits)]: Design Aids - Verification.

General Terms: Algorithms, Theory, Verification.
Keywords: Cross-talk noise, Superposition, Switching Window.

1 INTRODUCTION

Noise from cross-coupling capacitance between neighboring nets
has become a dominant factor in static timing analysis. Delay noise,
which is the topic of this paper, occurs when noise is injected on a
victim net when the victim transitions. It is critical that delay noise is
accurately accounted for and a number of methods to compute the
impact of noise on circuit delay have been proposed [1 - 4].

In order to reduce the pessimism of noise analysis, timing win-
dows [2] are often computed to determine which aggressor nets can
switch simultaneously with the victim net. However, the computa-
tion of timing windows in the presence of delay noise exhibits a well
known “chicken and egg” problem [5]. The delay noise depends on
the overlap of victim and aggressor timing windows. However, the
timing windows depend on the delay of the circuit, which, in turn, is
impacted by the delay noise. An iterative approach has been used to
solve this problem. For instance, timing windows are initially com-
puted without coupling noise and are then updated with delay noise
and computed in multiple iterations until convergence.

Typically a so-called switch factor model is used where for both
victim and aggressor nets, the coupling capacitance is replaced with
a grounded capacitance. The value of the grounded capacitance is
equal to the coupling capacitance, multiplied by a constant k,
referred to as a switch factor [3][4].
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As shown in Figure 1(a), we consider two coupled nets and their
initial timing windows, computed without coupling noise. If, after
this initial window computation, aggressor and victim timing win-
dows overlap, as shown in Figure 1(b), the switch factor for compu-
tation of the early edge of window m is set to 0 and that for the
computation of the late edge of / to 2. This has the effect of increas-
ing the size of the windows, which can cause the windows of other
nets to become overlapping. Multiple iterations are therefore needed
to reach convergence. Also, an individual pair of nets may require
multiple iterations to converge, since with each iteration, the region
of overlap between the two nets increases as shown in Figure 1(c).

It was shown in [5] that an iterative computation of timing win-
dows is guaranteed to converge with a maximum number of itera-
tions of O(n), where n is the number of circuit elements, leading to a

worst-case run time complexity of 0(n2). In [6], different window
scheduling approaches are explored to reduce the number of itera-
tions, however, the worst-case number of iterations remains O(n). In
practice, the number of iterations is typically less, but can still reach
5 - 10 for circuits with significant coupling. As coupling noise
increases with technology scaling, the number of required iterations
is expected to grow. It was later shown in [7] that the solution of the
iterative computation depends on the assumption used to compute
the initial windows. If the initial windows are computed in the
absence of delay noise, versus with delay noise, the iterative
approach will converge to different solutions. For instance, in Figure
1(d) two windows are shown that do not overlap in the absence of
delay noise, whereas they overlap if the initial windows were com-
puted assuming the presence of delay noise.

In this paper, we present a new approach for computing circuit
performance in the presence of coupling noise, which differs from
the discussed approach in two fundamental ways.

® We use a delay noise model based on linear superposition.
Superposition has been used extensively in functional noise
computation and has also been proposed for delay noise compu-
tation [6][8][10]. In a switch factor based model, delay noise is a
function of the timing windows at the victim and aggressor
nodes themselves, creating a cyclical dependency between the
timing windows of the nodes. In the superposition based model,
delay noise is a function of the timing windows at the driver
inputs of the victim and aggressor nets, thereby removing this
immediate cyclical dependency.
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Figure 1. Coupled net and timing window computation.
Arrows show change in window size over iterations as
numbered.
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Figure 2. Noise cluster with switching windows and linear
model for superposition

® Instead of traversing the timing graph in topological order, based
on the structure of the circuit, we use a time-sort based algorithm
where early and late window edges are scheduled as separate
events and are processed in non-decreasing order.

In general, time progresses in monotone increasing fashion in the
proposed algorithm and the worst-case run time is linear with the cir-
cuit size. We implemented the proposed algorithm and show that the
algorithm achieves speedups of up to 5X over the iterative approach.

2 OVERVIEW

Given a victim net and aggressor nets, we construct linear Theve-
nin models for the victim and aggressor driver gates [10][11] as
shown in Figure 2. Using superposition, each of the voltage sources
is simulated in turn, while the other voltage sources are shorted. The
voltage waveforms observed at the receiver gate input from all simu-
lations are then added together to obtain the combined waveform.
Figure 3(a) shows the noiseless transition, when only the victim
driver voltage source of v is simulated, the noise pulses obtained by
simulating each of the aggressor drivers a; and a;,, the composite
noise pulse obtained by adding the two noise pulses, and the noisy
transition, obtained by adding the composite pulse to the noiseless
transition. The use of linear superposition has the advantage that the
noise waveform induced by each aggressor can be shifted to search
for the worst-case alignment with respect to the noiseless transition
without requiring re-simulation of the network.

The noisy victim transition, and hence the impact of noise on
delay, is a function of the alignment of the noise pulses. It is impor-
tant to note that this alignment is constrained by the timing window
at the input of the aggressor and victim drivers. Unlike the switch
factor noise model, delay noise is not a function of the timing win-
dow at the aggressor and victim nodes themselves, thereby breaking
the cyclical dependency between delay noise computation at a vic-
tim node on the timing window at that same node.

Based on this observation, we model the circuit using a so-called
causality graph, where an edge from node n to node m indicates
dependence of the delay at node m on the timing window at node n.
Figure 4(a) shows a simple circuit and its causality graph. Vertex n3
in the causality graph has edges incident from vertices 7y and #,,
indicating that, if the timing windows at both #; and », are defined,
the timing window at node n3 can be computed. Note that since the
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Figure 3. Victim waveform computation and alignment.

causality graph of the circuit in Figure 4(a) is acyclical, the timing
windows for this circuit can be computed in a single topological tra-
versal of the causality graph with linear run time, where as multiple
iterations might be required using a switch factor delay model.
Although the specific example in Figure 4(a) is acyclical, it is, in

! general, possible that the causality graph is cyclical, such as the one
: shown in Figure 4(b). However, the nature of a cycle in the causality

graph is such that it invloves the delay of atleast one or more
gates(i.e., the delay of both gates g2 and g3 in Figure 4(b)). There-
fore, if an event occurs at a particular node in a cycle and propagates
along this cycle, the effect on itself will be delayed due to the delay
of the gates in the cycle. Based on the properties of the proposed
delay model, such self-induced noise cannot cause a signal transition
to become earliar. This characteristic forms the basis for the pro-
posed non-iterative solution for timing-window computation. By
processing events in a time ordered fashion, the earliest unprocessed
event can be completely determined, without the need to consider
the impact of this event on itself. Since it is not always possible to
determine which signal transition occurs first in a cycle, an incorrect
ordering of event evaluation along a cycle may occur, leading to the
need for roll-back of time. However, we will show that such roll-
back of time does not lead to multiple iterations over the cycle, but
simply the adjustment of where in the cycle event processing is
started. This ensures that the algorithm remains linear in its run time
complexity.

It is important to note, however, that the non-iterative nature of
the algorithm depends on the properties of the delay model which is
explained in the next section.

3 DELAY MODEL AND PROPERTIES

As shown in Figure 2(a), the input of the victim driver has early
and late events vi€ and vi', where an early event corresponds to a sig-
nal transition at the start of a timing window and a late event corre-
sponds to a signal transition at the end of its timing window.
Similarly, the aggressor driver inputs have early and late events ai®
and ai’. The victim node has early and late noiseless events v¢ and v/
and early and late noisy victim events vn® and vrd. The event pairs
for different nodes are shown in Figure 2(a). The noisy events vn®
and vn! at victim v are considered as victim input events for the
fanout node fo and as aggressor input events for nodes coupled to the
fanout node fo.

Each event e = (¢, s,) is defined in terms of its arrival time ¢,
when the signal transition crosses the so-called switching voltage v,
and transition time s, which is the time interval between the 20% and
80% ¥ , crossing times. Given the victim input early event vi® =
(5> 5,) and late event vil = (tvi’, sv,-’), the timing window at that
node is given by the time interval [£,f, tv,-l]. In order the ensure that
all gate delays are positive, our delay model uses separate switching
voltages for rising and falling transitions. We set the switching volt-
age for a rising transition vy,,, = ¥, ,, as shown in Figure 3(a), and
the switching voltage for a falling transition vy, r= Vg - V;,, where
V;nand ¥, , are the NMOS and PMOS threshold voltages.

The noisy early and late events va® and vn' are a function of the
alignment of the noise pulses relative to the noiseless victim transi-
tion. In [8], it was shown that, for a late event computation, the inter-
connect delay is maximized by aligning all aggressor noise pulses at
the point where the noiseless victim transition reaches v, + v,
where v, is the height of the composite noise pulse (Figure 3(a)).
Similarly, for early events, the peak of the composite noise pulse is
aligned at the point where the noiseless victim transition reaches vy,
~ v,,. If the alignment of the noise pulses is constrained by timing
windows, an optimal alignment may not be possible, thereby reduc-
ing the impact of noise on the arrival time. Also, if the noise pulse
height exceeds ¥ - vg,, for a late event, the optimal alignment is no
longer well defined since vy, + v, > Vy,. In this case, we consider
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Figure 4. Simple circuits and their causality graph representation.

the optimal alignment to be when the peak of the composite noise pulse
is positioned at the end of the noiseless victim transition, where it
reaches ¥V, Similarly, for an early event, we consider the optimal
alignment of a noise pulse that exceeds vy, to be at the start of the
noiseless victim transition.

We use the following model to compute a noisy victim late event v’

=ty s‘,,,l), given a noiseless victim late event / = (tvl, 5, and one or
more noise pulses. We define the noisy victim event va! = (tv,,l, sv,,l)
such that 7,/ is equal to the time point where the noisy transition

crosses vy, and such that s,,/ = s,%. As illustrated in Figure 3(b), we
have effectively shifted the ramp approximation of the noiseless victim
transition to the point where the noisy victim transition crosses the
switching voltage, while keeping its transition time constant. A noisy
early event is computed similarly. Although a number of other models
for abstracting the arrival time and transition time from the noisy tran-
sition are possible, the described model is a common model that is con-
servative for typical noise pulse shapes and has useful properties for
timing window computation.

We present the following important properties of the discussed delay
noise model:

Property 1. A signal transition at a victim input with arrival time ¢,;

produces a noiseless signal transition at the victim node with arrival
time ¢, which is later than ¢,;: £,> ¢,;.

Property 2. A signal transition at an aggressor input with arrival
time ¢,; produces a noise pulse on a victim node where the time of

the start of the noise ¢, is later than z,;: 2,> t,;.

Both Property 1 and Property 2 follow directly from setting separate
switching voltages vy, and vy, such that the output transition of a
gate starts after the input transition reaches the switching voltage.

Property 3. If the aggressor input arrival time is earlier than the
noiseless victim event, z,; < t,, it follows that the noisy victim arrival
time ¢,,, will fall after the aggressor input event, ¢, > f,;.

Property 3 follows directly from Property 2 and from the fact that a
noise pulse cannot hasten a victim transition to occur before the start of
a noise pulse. Property 3 holds for early events but a similar property
exists for late events; intuitively, it states that an aggressor input transi-
tion cannot cause a victim to switch earlier than itself. Next, we intro-
duce a property which is useful for proving that the proposed method
has a linear run time.

Property 4. Consider a noise pulse with optimal input alignment
1,°P! resulting in a noisy late event time 7,,°’. Given that the slope
of the leading edge of the noise pulse is steeper than the slope of the
victim transition, we consider a suboptimal noise pulse alignment ¢,;
and the subsequent noisy late event vn with event time ¢,,,. If ¢, >
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timing_window_computation()

1 schedule early and late events for primary inputs
2 for (t = 0; scheduled events left; t++) {
while (events left at time t) {
select event e at node n from queue at time t;
for (all fanout nodes l of n) {
if (e is an early event) victim_early_event(e);
else if (e is a late event && for all fanin nodes of | a late event is defined,
victim_late_event(e);
for (all nets m coupled to )
0  if (e is an early event) aggressor_early_event(e);
11}
12 select check point event cp at time t;
13 if (cp is an early cp event) cp_early_event(cp);
14 else if (cp is a late cp event) cp_late_event(cp),
15 }
16}
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Figure 5. Time sort algorithm for computing timing windows.

1,7, it follows that #,,, = ¢, and if t,; < #,°P, it follows that #,,, <
¢ opt
VR *

Property 4 shows that if the noise pulse is aligned earlier than its
optimal alignment ,,°7, the impact of the noise on the delay of the vic-
t,,°P". On the other hand, if the

alignment of the noise is later than the optimal alignment #,,°7", the
noise will not impact the delay of the victim and hence ¢,,, = ¢,.

4 TIME SORT ALGORITHM

In the proposed algorithm, events are processed ordered by non-
decreasing arrival times. We refer to the time ¢ for which events are
being processed as the current time. Due to space restrictions, we limit
our discussion to nets with a single aggressor, although the algorithm
can be easily extended to nets with multiple aggressors. Figure 1(a)
shows the victim net / with aggressor net m. The victim net has a victim
driver gate with one or more input nets » and the aggressor net has an
aggressor driver with one or more inputs k. However, for clarity, we
will restrict our explanation to aggressor drivers with a single input
since the extension to aggressor drivers with multiple inputs is straight-
forward. The algorithm processes early and late events at victim driver
input node » and aggressor driver input node k and computes a new
noisy event at the victim node /. An event at node # is first considered
as a victim input event, resulting in a new event at node /, and is then
considered as an aggressor input event resulting in a possible change of
the early and late events at node m.

The overall algorithm is shown in Figure 5 and consists of 5 event
processing steps. We first illustrate the general approach of the algo-
rithm and then discuss each procession step in detail in Section 4.1. All
early and late events are processed as victim input events in functions
victim_early_event() and victim_late_event(). For a victim input event
vi at node n, the noiseless event v at the victim node / is first computed.
If the early event ai at aggressor input £ is defined (i.e. it has an early

event time ¢, < £), we compute the optimal alignment time ¢, at
input k for this aggressor m, as illustrated in Figure 6(a) for early
events. If the optimal alignment time ¢, <

tim will be reduced and hence ¢,, <

t, we superimpose the
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Figure 6. Early victim input event scheduling.



noise from aggressor m on the noiseless event v at node / and a new
noisy event vn at / is computed and scheduled. During the computa-
tion, the noise alignment is constrained by the timing window at
node k. On the other hand, if the optimal aggressor input alignment

time #,,°"" > 1, as shown in Figure 6(b), there exists ambiguity as to
whether the aggressor can transition at the optimal time, since the
time window at k could end before #,,°7". In this case, we schedule a

so-called check point event cp at a point in time when the ambiguity
is resolved. The early and late check point events are scheduled
much like regular events and are processed by functions
cp_early_eveni() and cp_late_evenK). For early events, only a single
check point is needed whereas for late events, multiple check points
may be required. However, we show in Section 4.1 that the maxi-
mum number of required check points is independent of the circuit
size and can be considered a constant for run time complexity analy-
sis. In practice, the number of check points was found to be small.
We consider the impact of noise from aggressor m on node / only
if the aggressor input & has a defined early event at time z as shown in
Figure 6. If the early event at aggressor input & is later than the vic-
tim input event vi at node n (i.e. £, > 1,;), we initially schedule event
vn without considering the noise from aggressor m and then later
update event vn, if necessary, when processing the early event ai at
aggressor input k in function aggressor_early_event(). Early and late
events at a node maybe scheduled multiple times, due to processing
of new aggressor early events when #,;° > ¢,;. However, we will show
that the worst-case number of event updates is limited by the number
of aggressor nets that couple to a victim net and is independent of the
circuit size and is typically small. Also, the sorting and scheduling of
new events can be performed in constant time by discretizing time.
Although an event can be scheduled multiple times, the objective
of the algorithm is to process each event only once at a node. It can

be shown that the following two conditions are sufficient to ensure
for this:

* Condition 1: When scheduling a new event, the arrival time ¢,
of this event vn falls after the current time #: ¢,,, > 1.

* Condition 2: When scheduling a new event vn, a previously
scheduled event of that type has not already been processed.

Condition 1 ensures that a newly scheduled event vn falls in the
future and does not require a roll-back of the current time. Condition
2 ensures that a new event is not scheduled after a previous event of
the same type has already been processed for a node. As shown in
Section 4.1, Condition 1 and 2 are satisfied in the proposed algo-
rithm in all but two cases. Under certain timing window alignments,
it is possible that in function victim_early_event(), Condition 1 is not
met, and in function aggressor_early_event(), Condition 2 is not
met. In these cases, the current time ¢ is rolled back and the event in
question, as well as other processed events that it spurred, must be
reprocessed. We will show, however, that for a particular circuit
node, time roll-back can occur only once and the number of repro-
cessed events is fixed based on the topology of the circuit, and is not
a function of the circuit size. Hence, the worst-case run time of the
algorithm is linear with the circuit size. Also, we found that time
roll-back and event reprocessing are extremely rare in actual circuits,
while the number of iterations required in the existing approach is
often quite significant. Finally, since the algorithm is non-iterative
and does not operate using an initial overlapping or non-overlapping
timing window assumption, it does not exhibit the multiple solution
problem of the iterative approach.

4.1 Event Processing and Scheduling

In this Section, we present the event processing steps in more
detail and also discuss their adherence to Condition 1 and 2.

victim_early_event(vi®)
if (early event time 1, is defined) {
compute optimal switching time t,°P* at k resulting in noisy event time t,,,
. < 9¢
if (t‘aiE < taiopt <

1

2

3

4 ta,-l) compute event vn at I, with optimal alignment
5 else compute event vn at I, with nearest alignment in[t,,f, tail]
6

7

8

9

if (t,, < t,p) remove vp and schedule vn
Jelse {

if (t,,,-’ is defined) {

compute noisy event vn at I, with aggressor input aligned at ta,-l

10 if (ty, < t,,,) remove vp and schedule vn

11 }else

12 if (t,, < 1,,,) remove vp and schedule check point event cp at time t,,,
13 }elsef

14 schedule event v

15)

Figure 7. Victim early event processing.

Victim Early Event

In this scheduling step, we consider the response of the victim
node / due to an early event at one of its driver inputs », as shown in
pseudo-code in Figure 7. Note that at time ¢ node / may already have
an early event scheduled, due to one of the other driver inputs of /.
We first compute the noiseless victim event v at / due to event vi® at
n, as illustrated in Figure 6(a). We then consider the aggressor m and

its driver input k. If the aggressor input early event time z,° is
defined (i.e. 7,;° < £), we determine the noise pulse injected from
node m on node / and find the switching time #,,°”" at node k that will
result in the optimal alignment of this noise pulse (line 2). If £, <1,
as shown in Figure 6(a), we compute the earliest noisy event vn, con-
strained by the switching window [¢,;%, ta,-’] at node k (lines 4-5) and
compare its arrival time t,,, with the current early event time #,,, (line
6). If t,,, < t,,, we remove the existing event vp and schedule the new
event vn. If 1,,°P' > 1, we check if the event window at aggressor input
k has ended. If it has, we align the noise based on the latest point in
the aggressor input window tla,» (lines 8-10). Otherwise, there is
ambiguity whether the optimal alignment can occur (since it falls in
the future) and we schedule a check point event for node / at time ¢,
(line 12), which is processed in function cp_early_event(). The vic-
tim noisy event is then scheduled when this check point event is pro-
cessed and the ambiguity is resolved. The processing steps in
cp_early_event() are similar to those in victim_early_event() and the
discussion is omitted for brevity. Note that if the early event on £ is
not defined, we ignore this aggressor and compute its effect on node
! in function aggressor_early_event().
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Figure 8. Event scheduling for noise heights exceeding v,
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victim_late_event(vi’)

1 if (early event time 1,£ is defined) {

2 compute switching time t,°P* at k for optimal noise alignment
3 S yf

4 compute vn at I, with k at nearest alignment in [t,£. ta,!]

5 schedule vn

6 jelse{

7 if (t,} is defined) {

8 compute noisy event vn at I, with aggressor input k aligned at t,;
9 schedule vn

10 Jelse {

1 compute late event vn’ at I, with aggressor input k aligned at t
12 schedule check point event cp at time t,‘,,, Jor node |

13 }

14}

15} else {

16  schedule event v

17}

Figure 9. Victim late event processing.

We only schedule event vn if a previously scheduled event vp has
an event time #,, > 1,,, and has not been processed, which satisfies
Condition 2. Also, if the noise height is less than switching voltage
Vg it is clear that the noisy victim event time ¢,,, must fall after the
victim input early event time #,; and hence, Condition 1 is met. How-

ever, if the noise pulse is larger than the switching voltage vy, it is

possible that 1,,, <, if £,,£ <, and Condition 1 is not met, as shown
in Figure 8(a). This means that the victim early time ¢,, occurs

before the victim input early event time 7,;° = ¢ as shown in Figure

8(b). In this case, events with arrival times in the window [t,,, #,/°],
that were already processed and that depend directly or indirectly on
the transition at node / must be re-processed. We recursively exam-
ine all events at the fanout nodes of net / or coupled to the fanout
nodes of net / and reschedule any that fall in the time window [z,

t,.£]. The rescheduling has two important properties. An early event
vn at a victim node will be rescheduled only once. This is intuitively
clear from the fact that Property 1 and 3 ensure that a change in va
cannot cause one of the aggressor input nodes of / or its victim input
node to become earlier than itself. A detailed proof is given in [9].
Secondly, the number of rescheduled events is independent of circuit
size. This is clear from the fact that the size of the rescheduling win-
dow [#,,, £,/] is bounded by the transition time of the leading edge of
the noise pulse as illustrated in Figure 8(a) which is independent of
circuit size. The number of events that need to be scheduled is there-
fore independent of circuit size, ensuring the linear run time of the
algorithm. Furthermore, the rescheduling window was found to be
very small in practice and required no more than 4 events to be
rescheduled in all the benchmark circuits.
Victim Late Event

In this scheduling step, we consider the response of the victim /
due to a late event at one of its driver inputs #. The computation is
analogous to victim_early_event(), and is shown in pseudo-code in
Figure 9. If the aggressor input early event ai® has not occurred at
time ¢, we compute the noiseless victim transition and schedule it
(line 16). On the other hand, if 7,7 < t, we compute the optimal
alignment time for aggressor input & for a noisy late event at the vic-

tim node. If the optimal alignment #,,°”" < ¢, as is illustrated in Fig-

ure 10(a), we compute the noise on node / with the optimal
alignment at the aggressor input k constrained by its switching win-
dow of [1,%, 1,/] (lines 4,5). If 1,,°°" > t and the switching window of
k has not yet ended at time ¢, as shown in Figure 10(b), there is again
ambiguity about whether the optimal alignment can occur and we
schedule a check point for a future point of time to determine if the
optimal alignment is possible. However, contrary to the early event
time computation, the check point is scheduled at the noisy victim
late event time tyv,,, computed with the aggressor input aligned at
time ¢ at node & (lines 11, 12). When this check point event is pro-
cessed, we schedule the victim noisy late event if the ambiguity is
resolved or we place another check point if there is ambiguity still.
The processing steps in cp_late_event() are similar to those in
victim_late_event() and the discussion is omitted for brevity. Since
event time t',,,, is computed with the most optimal alignment that is

certain to be possible, £, is a lower bound on the final value of f,,,.

It is important to note that a late event at the victim input » is only
processed if all other driver inputs of victim node / have defined late
events, as shown in line 7 in Figure 5. This is necessary to ensure
that Condition 2 is met. If one or more driver inputs n, have not
completed their event window at time ¢, the latest noiseless event on
I will lie after the current time ¢, based on delay model Property 1,
and it is not necessary to process the event on n. Therefore, a late
event vi is processed only for the fanin node of / with the latest early
event time. Also, based on delay model Property 1, the noiseless vic-
tim event time #, due to a processed late event vi falls after ¢. Since
the impact of noise on node / will only increase the late arrival time,
the noisy late event time ¢, > ¢, satisfying Condition 1. To satisfy
Condition 2, it is sufficient to note that event vn is the first late event
scheduled for node /. Hence, no earlier scheduled event could have
been processed.
Aggressor Early Event

In this step, we compute the impact of an aggressor early event on
early and late victim events. We only process an aggressor early
event if the victim event has already been processed. If the victim
input early or late event has not been processed, the impact of the
aggressor is accounted for in the functions victim_early_event() and
victim_late_event(). When an aggressor early event is processed, the

current time ¢ = t,;%, as illustrated in Figure 11. We first compute the

optimal alignment time ,,°"" at the aggressor input node n. If #,%P! <
t, we compute the new victim event vn with aggressor input aligned
at time #,,° = ¢ and schedule it. If the optimal alignment time falls
after the current time ¢, there is again ambiguity on whether the opti-
mal alignment can occur and we schedule a check point in similar
fashion to function victim_early_event() and victim_late_event()..
From Property 3 it follows that, if the noiseless event v is later
than the current time, #, > ¢ = t,; then, t,,, > ¢, which satisfies Condi-
tion 1 for early events as shown in Figure 11(a). Also, if £, <t =1t,,
the noise will not impact the victim early transition time, and ¢, =
t,,- Hence, no new event will be scheduled. This satisfies both Con-
dition 1 and 2 for early victim events. For late victim events, it is
again easy to see that if the noise impacts the victim late transition
time, it follows that ¢, > t,; = ¢, which satisfies Condition 1 as
shown in Figure 11(b). However, Condition 2 is not met for the com-

Figure 10. Victim late event scheduling
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(b)
Figure 11. Early aggressor event processing for (a) early victim
events and (b) late victim events.
putation of the victim late event, meaning that a previously sched-
uled late event vp at the victim m may have arrival time typ <tand

has already been processed. In this case, we need to reschedule the
victim late event vp at node m, as well as any events dependent on it
with event times in the window [tops t,°]. However, we show in [9]
that this rescheduling again has the property that each event is
rescheduled only once, and the number of rescheduled events is
independent of circuit size, and hence, the run time complexity of
the algorithm remains linear with circuit size.

5 RESULTS

The proposed time-sort algorithm was implemented and tested for
the ISCAS85 benchmark circuits and a 64-bit ALU. All circuit were
synthesized with a 0.18 um Artisan library using Synopsys Design
Compiler. The characteristics of these circuits are shown in Table 1.
The average ratio of coupling capacitance to grounded capacitance
for a net was 25%. Coupling capacitance was generated randomly
between nodes in the circuit. Table 1 shows the percentage of nets
with one or more couplings and the average number of coupling
capacitances per net. For the larger circuits, an average number of
couplings per net of 10 was used, which corresponds to the number
of expected couplings for nets in high performance designs.

The traditional iterative approach was also implemented and
Table 1 compares the results from the two methods. The reported run
times are on a Pentium IV 1.8GHz PC running Linux. For the itera-
tive method, the number of iterations needed for convergence ranged
between 3 and 11. The improvement in run time ranged from 2.31 to
5.01 and increased with circuit size and the number of couplings in a
circuit. Roll-back occurred only for circuit ¢7552, causing recompu-
tation of two events for both cases of roll-back. This demonstrates
that time roll-back is extremely rare and that in practice each net is

Table 1. Results for ISCAS85 combinational Circuits

Ai;:gg::h Proposed Time Sort Approach
_— speed
Circuit| Run | # | Run |% Check Avg # #Events
. - - #Roll up
Time |Iterati| Time | Point |check Backs | EPTO°eS
(sec) | ons | (sec) | Events |points sed
o432 | 008 | 5 | 002 | 1803] 002 0 O] 380
c499 | 0.33 5 0.12 19.54] 0.57 0 0] 271
c880 | 0.17 3 0.03 2191 0.69 0 0| 4.67
cl355 [ 0.34 5 0.15 27.19| 0.89 0 0] 231
cl908 [ 0.31 6 0.08 26.64 | 0.93 0 o] 3.59
c2670 | 0.65 7 0.19 21.831 0.62 0 07 327
¢3540 | 1.37 6 0.52 3130 1.36 0 0! 2.63
c5315 | 1.43 5 0.45 30.52] 1.01 0 0| 3.18
c6288 | 4.9 11 0.98 2589 L.12 0 o s.01
c7552 | 2.81 6 0.93 27.13| 1.16 2 4] 299
alu64 | 3.65 6 0.73 31.14[ 1.29 0 0| 4.98

processed only once. Table 1 also shows the percentage of events
that required one or more check points (% Check point events) and
the average number of check points for these events (dvg # check
points). Note that a check point does not represent multiple process-
ing of an event, but only multiple updates to an event time before the
event is processed.

Finally, we compared the timing analysis results for the two meth-
ods. The iterative method converged to different solutions depending
on the initial overlap assumption in all of the 11 circuits. The per-
centage difference in the window size ranged from 1% to 6%. As
expected, we found that the proposed time sort algorithm obtained a
result that falls between the two solutions of the iterative approach.

6 CONCLUSIONS

We have presented a new timing window computation method for
static timing analysis in the presence of cross-coupling noise. The
proposed method is based on delay noise computation using linear
superposition and early and late event processing ordered by arrival
times. We have shown that the proposed algorithm has linear run

time with circuit size as opposed to the O(n%) worst-case complexity
of the current iterative approach. Since the algorithm is non-iterative
and does not use an initial coupling assumption for timing window
computation it eliminates the multiple solution problem present in
the iterative approach. We demonstrated the proposed method on
benchmark circuits with extensive capacitive coupling and show that
it obtains significant speedup over an iterative method.
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