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ABSTRACT

Delay due to capacitive coupling of interconnects has become an
important reliability issue in the design of nanometer circuits. In
this paper we present a probabilistic approach towards analyzing
the impact of capacitive coupling noise on signal delay. The varia-
ticn in the delay is due to the variation in the relative arrival times
of the aggressors and the victim. We derive expressions for the mo-
ments of the victim voltage in the presence of noise. From these we
compute estimates of the earliest and latest possible arrival times
of the victim. We compare the analytical results with Monte Carlo
simulations using SPICE. Even though the analytical calculations
are 200 times faster than the Monte Carlo simulations, the differ-
ences in the estimates of the mean and standard deviation of the
arrival time is no more than 2.8%. In addition, the width of the tim-
ing intervals using the proposed approach is reduced by as much as
48% with a confidence level of 0.984, That is 98.4% of the Monte
Carlo simulations result in an arrival time that falls within the de-
rived interval which is 48% shorter.

1. Introduction

The reduction in spacing between interconnects in nanometer
scale circuits has caused the cross coupling capacitance to become
the dominant component of the total interconnect capacitance [20,
22). Similar trends are also seen with inductive coupling primarily
due to higher clock frequencies [5, 11]. The term delay noise is
used to describe the situation when switching on a net (aggressor)
results in a change in the timing characteristics of the neighbouring
net (victim). Delay noise can result in the victim getting delayed
and thus resulting in a timing viclation. The timing viclation can
be a hold time or setup time violation depending on the relative
switching directions of the victim and aggressor.

Interconnect coupling noise has become a major concern in the
design of nanometer scale circuits. As a result, noise simulators [13,
20} have become an indispensable tool in their design. Detailed
simulaticn of distributed RC models of an industrial circuit using
noise simulators is computationally prohibitive as they often have
hundreds of thousands of nets. Consequently, accuracy is sacrificed
for speed by using linear models of the gates that drive the victim
and aggressor nets [13, 21], employing reduced order models {14,
15] in the solution of the network equations, and using superposi-
tion to process multiple aggressors.

A key issue in noise simulation is the alignment of aggressor
waveforms [3, 6, 13, 20, 21). Associated with each net is an in-
terval specifying the earliest (EAT) and latest arrival time (LAT) of
that signal. The variations in gate and interconnect delays as well
as the variation in lengths of different paths all contribute to the un-
certainty of the arrival time within this interval. Neise simulators
assume the worst case scenario by fixing the arrivai times of the ag-
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gressors so that the peaks of the noise waveforms are aligned [3, 13,
20, 21]. The worst case alignment results in the maximum delay in
the arrival time of the victim [6]. Even though the likelihood of
realizing a worst-case composite noise is relatively small, this pes-
simistic approach can result in a significant reduction in the clock
frequency.

Much work has been done toward analyzing signal delay in the
presence of coupling. The main objective is to determine the new
timing interval (earliest and latest signal arrival times) in the pres-
ence of coupling noise for use in static timing analysis (STA). The
problem is complicated because the coupling capacitance is not
constant as the victim and aggressor switch [8, 17], and becanse of
the interdependence of the aggressor and victim arrival times [17].
An iterative approach is needed to compute the timing interval.
This is done by starting with an initial window and then expand-
ing or contracting it until the solution converges {2, 4, 24}, The
windows thus obtained can be used for STA [18].

Logic and timing correlations [7, 12] can also be used to re-
duce the pessimism in noise analysis, The set of aggressors for
a given victim can be reduced based on functional analysis of the
signals [10]. However the computational complexity of detsrmin-
ing legic and timing correlations is very high, and of limited ben-
efit since physical proximity of signals and functional dependence
among them might be unrelated.

Even after pruning the nets, the worst case assumptions incor-
porated into noise simulators often result in a very large number
of timing violations being reported. One way to reduce this pes-
simism is to perform a sufficiently large number of Monte Carlo
simulations, varying the arrival times of the victim and aggressor
signals over their respective timing windows, Such an approach
will yield a fairly accurate estimates of the arrival times in the pres-
ence of noise, but requires an enormous amount of compatation
time. What is needed is an analytical method that will yield esti-
mates of the arrival time of a signal in the presence of noise, while
taking into account the variations in the arrival times of the aggres-
sor signals. This requires modeling the victim waveform as well
as the noise waveform due to each aggressor to construct a com-
posite victim waveform. Then the delay of the victim as a function
of relative signal arrival times of the victim and aggressors can be
computed [19]. In [8] the delay uncertainty of a victim net result-
ing from varying the slew rate of a single aggressor and a victim
are studied. .

In this work we present an approach that reduces the pessimism
in obtaining the earliest arrival timne (EAT) and latest arrival time
(LAT) of a signal in presence of noise by taking into account the
variability of the arrival times in absence of noise. The proposed
method will help designers to accurately predict the timing win-
dow of a signal without having to perform time consuming Monte
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Figure 1: Victim and Noise waveforms.

Carlo simulations, Similar work has been done in [23) for func-
tional noise. Our method permits making a tradeoff between the
uncertainty in the estimate and the length of the timing window.
‘We compare our results with Monte Carlo simulations on nets ex-
tracted from a high performance industrial processor. The results
show that the approach leads to as much as 50% reduction in the
width of the timing window with only a 3% decrease in the proba-
bility associated with the timing window,

The organization of rest of the paper is as follows: Section 2
contains a description of the noise and the victim models. It also
shows a way to obtain the EAT and LAT using the moments of
the victim in presence of noise. A discussion of the assumptions
is given in Section 3. The expressions for the kth moment of the
victim and aggressor waveforms are derived in Section 4. Finally,
in Section 5 we present a comparison of the theoretical results and
Monte Carlo simulations using nets extracted from an industrial
processor eircuit.

2. The Victim and Noise Models

A victim with a set of n aggressors is referred to as a cluster of
size n. Since we are examining delay noise, we assume that the
victim is switching in from logic C to logic 1 and the aggressor is
switching from logic I to logic 0.

The victim and the aggressor neis are modeled as a RC ladder
network, Since all the elements in our circuit are linear, we can use
the principle of superposition to model the voltage at a given net
by adding the voltages of the vietim in absence of noise, denoted
by X(t), and the noise waveform resulting from the itk aggressor is
denoted by Z;(r). The general form of the noise waveform seen on
the victim due to aggressor switching is a sum of weighted decay-
ing exponentials. We model the victim and the noise waveforms as
given in [19].

The victim is assumed to be a rising exponential with a rise time
of T,, maximum voltage Vyg and switching time t.. Figure (1)
shows the victim and the noise waveforms. The swiiching times, T;
and 1y, are considered to be random variables with triangular dis-
tributions over [1); — @;, 1)y +a;] and [1); — ax, Nx +ax] respectively.
Here 1); — a; and T, + «; represent the Earliest Switching Time, EST
and the Latest Switching Time, LST respectively. Also 1); and 1 de-
note the mean of the switching times. The length of the switching
time windows is given by 2a; and 2a,. The corresponding density
function of switching time for the ith aggressor is

2
ﬁ,(’t):{ ;1’1' a;‘—i'v—m|) Ni—a<T<Nita; m
g

otherwise

419

Since 7; is a random variable, Z;{¢) is a random variable for a
fixed value of ¢. Let S,(t) represent the resulting waveform on a
given victim net in a cluster of size n. As stated earlier, using the
principle of superposition, we can represent S,{¢) as the sum of the
victim in absence of neise and the noise due to each aggressor. We
assume that the random variables Z;(¢),i = 1,2,...,n, are indepen-
dent. Thus we have

Sa() = X() + Z1 () + Za(r) + -« + Zn(1). (2)

The arrival time of a signal is defined as the time after which the
signal value is more than the threshold voitage. In the presence of
noise the resulting victim waveform can cross the threshold volt-
age multiple times. In such a case we are interested in finding the
last crossing of the waveform, $,(¢) being a continuous and non-
stationary process, obtaining the statistics of the arrival time for
this process is not possible analytically. The next best thing we can
do is to accurately estimate the arrival time window within some
confidence limit. This is done by first deriving the expression for
the kth moment of the victim in presence of coupling noise. Let
#1,;) and O,y represent the mean and the standard deviation of the
victim waveform in presence of noise. That s, y1,() = E[S4()] and

Sy(r) = 1/ El(Sn(t) — (;))?] (see Equation 4). Similarly et 14 and

O, represent the mean and the standard deviation of the victim ar-
rival times. The time at which the mean of the victim waveform
crosses the threshold voltage is an estimate of the mean of the ar-
rival times (¢) of the victim in presence of noise, To find the timing
window we define the two voltage waveforms as follows:

Vi) = wyp — Koy
VHE) = iy + KO €)]
Here k is defined as the Reliability Factor. Increasing the value of

k increases the size of the timing window as well as the reliability
of the circuit. Thus we define the arrival time window as follows

DEFINITION 2.1. Lett,” denote the latest time t such that V(1) =
Vaa/2. Similarly, let tf denote the latest time t such that V(1) =

Via/2. Then, £ and 1y denote the upper and the lower limit of the
arrival time window respectively.

Both ;7 and #;” are obtained by solving p,(;) + kGy() = Vgq/2 and
Hy() — kOy() = V4a/2, for 1, respectively. We compute the voltage
waveforms for different valtues of &, and find the corresponding ar-
rival times. These arrival times form the EAT and the LAT of the
victim in presence of noise. Note that the intervals [EAT, LAT]
have a prebability assigned to them. Therefore, it is indeed pos-
sible that a realization of the circuit may result in the arrival time
falling outside this interval. Clearly, in statistical based design, we
must determine such an interval at a prescribed level of confidence.
We outline the entire procedure of computing the final arrival times
window for a signal in Figure (2).

3. Discussion of Assumptions
Our approach is based on the following assumptions:

1. the switching times of the aggressors and the victim have a
triangular distribution,

2. the noise waveform during the initial part (rising or falling)
is linear, and

3. the individual aggressor and the victim signals are indepen-
dent
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Obtain the parameters for noise and victim signals
using SPICE simulation as showa n Table 2
!

Obtaln the moments of the nolse and victim
waveforms using Fqus 5 and 6 respectively
¥

Combine the moments obtained above
to get the moments of the final waveform
¥

Choose a value of &
to obtain the final arrival time window

Figure 2: Flowchart for computing the Timing Windows

A triangular distribution for the signal switching time is reason-
able since it is finite and unimodal. The alternative of a uniform
distribution is unreatistic. The results presented in this paper are
easily modified to accomodate non-symmetric triangular distribu-
tions. The second assumption is also not too severe a restriction
since the inital part of the noise waveform due to each aggressor
follows the steep falling or rising transition of the aggressor. It was
included to simplify the algebra. It has no significant impact on the
accuracy. The assumption that the aggressors are independent is an
orthogonal issue. Under a zero delay model, determination of logic
correlations is done separately. This would identify the set of "real”
aggressors for a given victim. The approach presented in this paper
would still be valid. Temporal correlations are far more difficult to
model. At present we cannot account for such dependencies.

4. Moments of the Coupled Victim

In this section we derive the moments of the victim in a cluster
of size n. Since S,(t) can be written as shown in (2), the moments
of the victim in presence of noise can be written as

E[SEO]=E[X() +ZO+Za(0) +- +Z(0))F] @

Hence to obtain the moments of the coupled victim, we first need
to derive the moments of the noise and the victim. For this, we first
derive the moments of the individual noise waveforms. The kth
moment of the individual noise waveform is given by [1]

(1)t

ar(k+1)(k+2)
(t=p)F2 =20 - Br)**2-
(k+2){2(B1 —ma){t —B1) ' —
(0 — M Fai)( — 0 )+
(Mit+ai—m)E—n)* 11+
(V) (g —mutai = Vo ri)-
% l
a%kz

Ez}() = [(r—an)*2+

(3)

(a- e—-k(:-n,-+a;—V,,,’ri)/'vn-))

the above expression is for 1 € [n; —a; + Vp/ri,Ni + Vp/ri] similar
expressions can be derived for the rest of the cases as well. the
values of o,By and y; for the condition Vp/r; > a; are given in
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Table 2: Parameters of the victim and noise waveforms

Signal | Peak Volt. (V) | Rise time {ns) | Fall time (ns)
Victim 1.35 26.20 NA
Agg. 1 -0.408 26.178 0.962
Agg. 2 -0.515 26.313 2.065
Agg. 3 -0.040 26.193 0.775
Table 1 where
n=ni—e t=n;i+Vp/ri
tr=t—ai+Vp/r; ts=mi+a

t3="; te="Mi+a+Vp/ri
The moments of the total noise can be computed from the in-
dividual noise moments using the binomial expansion recursively.
The product terms in this expansion are simply the products of the
previously computed moments of individual noise waveforms, We
now derive the kth moment of the Victim. Here we give the kth
moment for ¢ € (T|y — ay, ), similar expressions can be obtained
VE(—Netae) &
E[xt()] =1+ g4y X T78
) =1+ -2—r—=§

for rest of the cases. ;
(e
o3 j=1 8 ]

" 2 (©)
(j) (_l)jj_;(l — emilt-neta)/y

k

)

=1

Vaa*
a2

A closed form for the above summation was not possible. So we
numericaily compute the moments of the victim. The kth moments
of the noise 2nd the victim can be combined to obtain the kth mo-
ment of the victim in presence of noise.

S. Experimental Results

We used an RC network model of a cluster extracted from a high
performance industrial processor. SPICE was used for performing
the Monte Carlo simulations by varying the switchking times of the
victim and the aggressors. The parameters for the noise and the
victim waveforms were obtained after one simulation for each net.
The model parameters are shown in Table 2. The parameters of
the probability distribution were taken to be different for all the
nets, The logic threshold voltage (voltage above which the signal
is assumed to be at logic 1) was taken to be Vy4/2 (0.675V). The
cluster size (number of aggressors) was 3. The figures (3) and (4)
show both the calculated and simulated mean and the variance of
the victim voltage respectively in the presence of noise. We see that
the error in the region of interest (close to the Threshold voltage) is
less than 1% for the mean.

The distribution function of the simulated arrival tirnes of the vic-
tim in presence of noise and in absence of noise were constructed.
Figure (5) shows the two distribution functions. The distribution
of the victim in absence of noise is shifted fo the right by 11.18ns
for better visibility. From these curves, we see that the mean delay
on the victim is 11.12ns (or close to 30%). We also sez that the
shape of the distributicn function of the victim in presence of noise
is considerably different from the one in absence of noiss. This is
because the effect of noise on the victim is equivalent to convolv-
ing the density functions of the victim and the aggressors which
will result in a similar waveform.

Four different test cases were generated by varying the switching
windows of the nets. The widths of the switching windows varies
considerably over all the cases. Figure 6 shows the p,) + 1.5,
andpty() — 1.50,¢). This figure shows the calculation of the EAT
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Figure 3: Means of the Victim waveform.

Table 3: Comparison of the Theo. and Sim. Arrival Times

Case Sim. Theoretical
EAT/LAT EAT/LAT | Prob. | Win. size red.
1 36.92/40.47 | 38.18/40.02 | 0.962 48.2%
II 37.3/41.66 | 38.26/40.94 | 0.956 38.6%
I | 48.21/58.65 | 50.02/56.45 | 0.97 38.5%
IV | 45.12/56.08 | 47.07/52.67 | 0984 48.91%

and the LAT of the victim waveform in presence of noise. The EAT
and the latest arrival times for the rest of the cases is listed in Table
(3). This table also shows the percentage of the simulated arrival
times that fall in this window. The percentage reduction in the size
of the window is also shown. We see that even after reducing the
size of the window by as much as 48%, the probability of the arrival
times falling within this window reduces by only 1.6%. That is
98.4% of the total arrival times fall within this window. This result
also reflects on the amount of pessimism associated with the worst
case analysis and how to reduce i.

Figure( 7) shows the percentage of signal arrival times falling in
the timing window with respect to &. We see from the figure that
as k is increased, the percentage of ¢vents that fall in the arrival
time window increases. For k greater than 1.5, the percentage for
all the cases is greater than 95.6%. Thus choosing a k greater than
1.5 gives a very good estimate of the arrival time window without
sacrificing the accuracy.

Since the convolution of & large number of triangular distribu-
tions tends to Gaussian, we estimate the emperically obtained dis-
tribution with a Gaussian and compare the mean and standard de-
viation of this with the theoretically obtained mean and standard
deviation. Table ( 4) shows the theoretical values and as well as
those obtained by Monte Carlo simulation. We see that the values
match within a maximum error of 2.8%. Thus we can use these
values to give accurate confidence limit on the arrival times.
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Figure 4: Second Central Moments of the Victim waveform.

Table 4: Simulated vs. Theoretical Mean and Std. dev.

Case Simulated Theoretical Error
p(ns) [ o(ns) | p(ns) | o(ns) | p(ns) | S(ns)
1 38.7 | 0606 | 39.1 | 0614 1% 1.3%
1f 39.41 { 0.896 | 39.62 | 0.887 | 2% 1%
I | 53.15] 209 ]5346 1 2.14 | 0.6% | 2.8%
IV 14583 | 1.83 | 5000 1.87 2% | 2.2%

6. Conclusions

In this paper we presented a new approach to analyze delay noise.
The objective was to get an estimate of the arrival times of a vic-
tim in presence of cross-coupling of adjacent nets without perform-
ing the time consuming Monte Carlo simulations. The theory was
appiied on a cluster extracted from a high performance micropro-
cessor and the results were verified by performing Monte Carlo
simulations using SPICE. The results show a very good agreement
between the theoretical and simulated values with the maximum
error being 2.8%. The approach reduces the pessimism inherent in
the worst case analysis by as much as 48%,
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