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ABSTRACT

The corruption of signals due to capacitive and inductive coupling
of interconnects has become a significant problem in the design of
deep submicron circuits (DSM). Noise simulators, based on worst-
case assumptions, are overly pessimistic. As a result, when they
are used on industrial ICs with hundreds of thousands of nets, thou-
sands of nets are reported as having potential noise violations. There
is a need to prioritize the problem nets based on the likelihood of
the noise and possibly even eliminate them from further consider-
ation if the likelihood is negligable. In this paper, a probabilistic
approach is described which allows for a quantitative means to pri-
oritize nets based on the likelihood of the reported noise violation.
We derive upper bounds on the probability that the total noise in-
jected on a given victim net by a specific set of aggressors exceeds
a threshold. This bound is then used to determine a lower bound on
the expected number of clock cycles (ENC) before the first violation
occurs on a given net. Nets can be prioritized based on the ENC.
We demonstrate the utility of this approach through experiments
carried out on a large industrial processor design using a state-of-
the-art industrial noise analysis tool. A significant and interesting
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result of this work is that a substantial portion (25%) of the nets
were found to have an ENC of more than five years. If five years is
deemed to be sufficiently long time, then these could be eliminated
from further consideration.

1. INTRODUCTION

A frequent cause of signal corruption in DSM circuits is capac-
itive and inductive coupling of interconnects [2, 5, 6, 8, 14, 16].
Their effects can lead to a malfunction of the circuit or degrade its
performance. Functional noise refers to the situation where a glitch
occurs on an otherwise stable net (victim) due to switching of its
neighboring nets (aggressors), and propagates to a storage element
or a dynamic node, possibly altering its state. Delay noise occurs
when the victim net is also switching, and can lead to a significant
increase in the delay uncertainity [2). This would translate into a
reduced clock frequency. The impact of signal interference due to
interconnect coupling has become quite significant, and therefore
techniques for estimating its magnitude and methods for reducing
its effects are critical for the design of DSM circuits [1,4, 5,7, 9,
10, 12, 13, 15, 17]. An excellent summary of DSM design issues
appears in [16].

Noise analysis tools are designed to be pessimistic due to the
consequences of missing a potential malfunction. In large indus-
trial designs, this results in hundreds or even thousands of reported
violations, which would be too expensive to fix in terms of chip
area, performance and design time. Often the number of aggres-
sors with significant coupled noise can be large, exceeding 5 to 10
aggressors. In such a case, the likelihood of a worst-case com-
posite noise, where all aggressors are required to switch at exactly
the right time, is small. Logic correlations and timing windows
have been used to reduce the pessimism in noise analysis [3, 7, 10,
13]. In general, only a limited number of logic implications can
be derived due to the high computational cost. Moreover, for noise
analysis, logic correlations have not been very effective since the
relation between physical proximity and logical dependence gets
weaker as circuit sizes increase due to a larger number of globally
routed nets. Timing intervals, obtained from static timing analysis,
can also be used to identify aggressors that cannot inject noise on
the victim net simultaneously. In practice, the intervals are too wide
and eliminate only a small portion of the reported noise violations.

In this paper, we present a method that will allow designers to
prioritize the potential noise violations based on their likelihood
of occurance. If this likelihood is sufficiently small, it is possible
that even during operation of the part for a number of years, the
probability of a noise violation on the net is negligible, and the
net can be assigned a lower priority for the application of noise
avoidance strategies or even eliminated from further consideration.
The proposed method is based on estimating the probability that



the noise on a victim will exceed a given threshold. This is used to
prioritize nets based on the expected number of clock cycles (ENC)
before the first violation occurs on a specific victim. Based on this,
anet with a reported noise violation can be assigned a lower priority
if its ENC exceeds say, five years or ten years.

In Section 2 a description of the noise waveforms is presented.
Sections 3 and 4 contain the main technical contribution, namely
the upper bounds on the tail probabilities and estimates of ENC.
Results of experiments carried out on a large, high performance
PowerPC microprocessor are presented in Section 5.

2. A PROBABILISTIC MODEL OF NOISE

The focus here is on functional noise and hence, without loss of
generality, we assume that the victim is stable at logic 0, and an
aggressor switches from logic 0 to logic 1. A victim with a set of
n aggressors will be referred to as a cluster of size n. As in the
case with most other work on noise analysis, we assume linearity,
i.e., the composite noise waveform is obtained by taking the sum
of the noise waveforms resulting from each aggressor. The general
form of the noise waveform seen on a victim due to an aggressor
switching is a sum of weighted, decaying exponentials, the number
of terms being equal to the order of the circuit. To simplify the
algebraic work, we take a linear approximation for the rising and
falling portions of the waveform and consequently, the noise wave-
form resulting from each aggressor is approximated by a triangular
pulse. In the interest of being conservative one can construct a tri-
angular pulse that is an enevelope of a given exponental pulse, i.e.
contains most of the exponential pulse.

Associated with each aggressor i, is a timing interval [a;, b;] (ob-
tained from static timing analysis), where a; and b; denote the earli-
est and latest possible arrival times of the transition. Thus, the noise
waveform resulting from aggressor i, which is denoted by Z;(r), is
represented by (h;,ri,d;,a;,b;), where h; is the peak noise voltage
and r; and d; are the slopes of the rising and falling edges of the
noise waveform, respectively.

The randomness or variability of the noise on a victim net is over
different clock cycles and arises due to the fact that an aggressor
may or may not switch during a clock cycle, as well as the time
when an aggressor switches over its interval. Let T; be the random
variable that denotes the time instance in [a;, b;] at which aggressor
i switches. We assume that 1; is uniformly distributed over [a;,b;],
ie.,

(r—ai)y —(x—bi)+

F;,(x) = Prob(t; <x) = P
)

; @

where (x)4 = x if x > 0, otherwise (x)4+ = 0. In the absence of
any other information, the uniform distribution is the meaningful
choice. However, this assumption is not very restrictive and the
approach can be extended to other distributions of switching events,
e.g., the triangular distribution. For a given value of 1;, Z;(t) is
expressed as

r,-(t—‘c,-) TiStSTi-*-h—f
Zi{) = di(f—(t—T))+h i <i<hiliog @
0 elsewhere.

With T; being a random variable, Z;(¢) is a stochastic process,
and for a fixed value of ¢, Z;(t) is a random variable. Let Fz,,)(z) =
Prob(Z;(r) < z) denote the distribution function of Z;(r). For a fixed
value of ¢, if N waveforms given by (2) are generated corresponding
to N sample observations of T;, then Fz, () () represents the fraction
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of those N waveforms that at time ¢ have a value < z. For a fixed 7,
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This leads directly to the distribution function of Z;(¢), expressed
in terms of the distribution function of 1;.

1= Fyy(t— &)+ Fr(r - é——§+di)

< .

Fz(2) = Oszsh (g
1 22 h
0 otherwise.

Let S,(¢) represent the waveform of the total noise on a given
victim net in a cluster of size n. As stated earlier, the use of linear
models for the victim and aggressor drivers, allows us to represent
the total noise on a victim as a sum of the noise due to each ag-
gressor. We assume that the random variables Z;(¢), i = 1,2,...,n,
are independent. Under the zero delay model, the determination of
logic correlations (which is an intractable problem in itself) is done
separately and only those aggressors that would be switching in the
same direction would be included in a clusrer. These have been
accounted for in the experiments. However, temporal correlations
are far more difficult to model and no effective solution to include
them and still maintain analytical tractability is known. To account
for the fact that an aggressor may or may not switch within a clock
period, we introduce a binary random variable variable X; associ-
ated with aggressor i, where X; = 1 with probability p; and X; =0
with probability (1 — p;). p; is called the switching probability of
aggressor i. The random variable that represents the total noise on
the victim is:

Sn(t) =Z1 (1) % X1 + Zo(t) % Xp + - -« + Zn(t) % X (5)

3. CRITERION FOR PRIORITIZING NETS

A simple criterion that designers can use to prioritize nets that
are identified as having potential noise violations is the expected
number of clock cycles (ENC) before the first violation occurs. A
noise violation is said to occur on a victim net if the total noise
S, (¢) on that victim exceeds a given threshold o The threshold is
calculated based on the characteristics of the victim’s receiver gate.
On each clock cycle, we observe a realization of S,(r). Let the
random variable N(¢) denote the number of clock cycles required to
observe the first noise violation at time t. Assuming independence
of noise waveforms over different clock cycles, the probability that
the noise on this victim will exceed o for the first time on kth cycle
is given by

Prob(N(t) = k) = [P(Su(r) < ) 1+ (1 - P(Su(t) < @0)).  (6)

Let E denote the expectation operator. The expected nurmber of
clock cycles before the first violation occurs at time ¢ within a clock
period, is given by

1

ENC() = BNW) = 5o

)
‘When assigning a victim net a very low priority or even discarding
it from further consideration because its ENC(r) is very large (e.g.

5 years), we should ensure that 7 is selected so that at no other value
of 1, the ENC(¢) is smaller. Thus we have

I {t | ENC(r) is minimum}
ENC* ENC(t*).

®
)



To compute ENC(t), we need the distribution function of S, (z).
An analytical form does not appear to be possible. The alternative,
which is to carry out numerical convolution for each ¢, would be
computationally prohibitive. Therefore, we proceed with the next
best alternative, which is to derive bounds on P(S,(¢) > o).

4. BOUNDS ON NOISE PROBABILITY

A common strategy to construct a upper bound on the proba-
bility that a non-negative random variable exceeds a given value
is to construct a parametric family of upper bounds and then find
the value of the parameter that minimizes the upper bound. This
approach is based on the Chernoff bound [11], which states that

P(Sn(t) > @) < e™%Dg, (,)(6) ¥ > 0, 10)
where @g 1(8) is the moment generating function (mgf) of S,(z),

and 0 is an unknown parameter to be determined. From Equation 5
and from the properties of the mgf, we have

n

@, (1 (0) = [ T(pi®7,:)(8) + 1 - p2). an
i=1
By definition of the mgf, we have
= E(ZF(r))6F
@y 00 = 3, ZAE (12
k=0 :

Let B(6,t,0) = e‘ead)sn(,) (6). The value of 8 that minimizes
B(0,t,0) is the solution to the equation [11]

E(Sa()e¥) Py 1(0)

= = 13
E(85: (1)) D, () o a3
Equation (13) can be simply expressed as
dlog(® 0
og(®s, 1 (8)) —a (14)

do

Using (11) and (14), the value of © that minimizes the bound given
by the RHS of (10) is the solution to the equation

n pi®, (8
__M —q (15)
S pi®z,y(8)+1—p

We have now established a method to compute a lower bound on
ENC. First, we have to determine ¢* (see (8)). Then we have to
minimize B(0,*, o) with respect to 6. Before we proceed with this
task, we need expressions for £(Z¥(t)) (see Equations 11 and 12).

4.1 Moments of Total Noise

By definition, E(Z¥ (1)) = [, *dFy,(z) and Fz(z) is given
by (1). Integrating by parts and noting that F7,(;)(z) has a finite
jump at z = 0, we obtain the following recurrence relation.

h
E(ZH0) = Kk [ 27 Py 0z (6)
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Equation (16) can be solved exactly. The result is
E(Zf (1)) = OFFy,4:(0) +

v
(b,‘ — a,‘)(k+ 1)!7‘,’
(hi+ri(t —a; —hi/ri) )+
(rle—a) ) = (=) ] +
1
(b,’ - a,-)(k+ 1)!di
(h,' - di(t —a;— hi/r,-)+)k+1 +
(~di(t —a; — hi/ri— hi/d;) )+ —
(=di(e—bi = hifri=hifd) )]

where F7,,(0) (using (4) and (1)) is given by

[ re == iy =

[(hi —di(t —bi—hi/r;) )+ ~

a7

Fzn(0)=1—
1

b,-—a,—

-1-ai [(t—ai)+ —(t—bi)+] +

bi
0=t Brae - =B 2. ].
Equation (17) expresses the kth order moment of the noise wave-
form due to aggressor i, in terms of its descriptors, (h;,ri,d;, a;,b;).
The moments of S, (¢) can be obtained from Equations 17 and 5. To
see how the theoretical and sample moments compare, the first four
moments were computed for many clusters taken from a PowerPC
microprocessor. Using the timing intervals for each aggressor that
were obtained from static timing analysis, and the noise estimates
produced by the simulator [10], a MonteCarlo simulation was car-
ried out by varying the switching point of each aggressor. For each
selection of switching points, the composite waveform was com-
puted, and this was repeated 5000 times. This corresponds to 5000
clock cycles. Figures 1 and 2 show plots of the theoretical (us-
ing Equation (17)) and sample mean, and standard deviation. The
timing intervals associated with each aggressor are shown at the
bottom of each plot. There is also equally good agreement between
the higher order theoretical and sample moments.
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Figure 1: Theoretical and Sample Mean of Total Noise of one
victim with 10 aggressors

Since the ordinary moments involve only simple powers of ¢,
the mgf ®z,,(8) can be obtained almost by inspection. Using the
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Figure 2: Theoretical and Sample Std. of Total Noise of one
victim with 10 aggressors

definition of @ ,y(8) given in (12) and substituting the expression
for E(ZF(¢)) given in (17) into (12), we obtain

‘I)Zi(x)(e) = FZ,-(r) 0) +
(b,-_—lam [exp(8(h; +ri(t — bi — hi/ri)+))

—exp(0(h; +ri(t —ai—hi/r)+)) +
exp(0ri(t —a;)+) —exp(Or;(t — bi)+] +

m lexp(8(h; +di(t —bi ~hi/ri)+))

—exp(0(h; +di(t —a; —hi/ri)+)) +
exp(—0d;(t — (hi/ri +hi/di +ai)+)) —
exp(—edi(t — (hi/'"i +hi/d,‘ +b,'))+)1 .

D, (11(0) (the mgf of S,(z)) is computed by substituting Equa-
tion (18) into Equation (11).

Figures 3 and 4 show plots of the bound in (10) for a cluster
of size 10, without and with timing intervals, respectively. Note
that ignoring the timing intervals of aggressors simply means that
the timing intervals span the entire clock period. Figures 5 and
6 show that the bound (10) as a function of 6 in the interval of
interest. From these plots, it is clear that once the desired value
of ¢ is obtained, then the optimal value of 6 can be obtained very
quickly by either gradient or direct search techniques.

(18

4.2 Determining t*

In Section 3 we stated that a lower bound on the expected number
of clock cycles to observe the first violation (total noise exceed-
ing a given threshold) requires determining a value of ¢ at which
ENC(¢) is minimum, or equivalently the value of ¢ that maximizes
B(0,t,0.). That value of ¢ is denoted by *. Since 0 is also unknown,
an iterative search along 0 and ¢ would be very time consuming,
and prohibitively so, given the large number of clusters that have to
processed. Moreover, convergence is not guaranteed. We now de-
scribe a procedure that identifies ¢* first without having to know 6
and then the bound B(8, £*, ) can be easily minimized with respect
to 6 using gradient search.

The solution to finding ¢* is based on the monotonicity proper-
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Figure 3: Chernoff Bound of a Net with 10 aggressors without
timing intervals.

Chemoff Bound
wl

i

0
\

e
T
L

ALY

|
.
!

Tire

Figure 4: Chernoff Bound of a Net with 10 aggressors with tim-
ing intervals.

ties of the mgf @ (). These properties allow us to identify a
finite set (4n for a cluster of size n) of distinguished time points T,
which we refer to as breakpoints. Now for a fixed 8, the maximum
value of &g (;)(0) will occur at the breakpoints or in between two
breakpoints. The latter may occur because at some breakpoint, the
mgf of some of the aggressors are increasing, while the mgf of oth-
ers are decreasing. In such a situation, we would have to iteratively
search, between every pair of such breakpoints, for the value of ¢
where ®g (,)(6) attains a maximum. Moreover, the point within
such an interval where the maximum of ®g, (,)(8) occurs will gen-
erally depend on 6. To avoid this, we construct a modified mgf
@, ) (8) such that By, (,1(8) > g, 1(8), for all B, and so that only
the breakpoints in 7 need to be examined in order to determine
the value of 1 where (i’s,.(t)(e) is maximum. Furthermore, many of
the points in 7 can be discarded. Finally, at each time point in the
reduced set of breakpoints, we solve (15) to find 6 using gradient
search and choose that value of © that minimizes the bound. Note
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Figure 6: Plot in Figure 4 restricted to smaller range of ¢.

that this is a conservative solution in that it will lead to a smaller
lower bound on ENC*.

Consider the mgf of Z;() given in (18). For a fixed 8, its behavior
as a function of ¢ can be classified into two cases.

Case 1. b;—a; > h;/ri+h;/d;. This situation occurs when the
width of the timing interval is greater than the width of the noise
pulse. In this case, ®z,,(6) is

e monotonically increasing for ¢ € [a;, hi/r; + h;i/d; + a;),

e constant for 7 € [h;/r; + h;/d; + a;, b;), and

o monotonically decreasing for ¢ € [b;, h;/ri + h;/d; + bj].

Case 2. bj —a; < h;/ri +h;/d;. In this case, ®z,)(0) is

e monotonically increasing for ¢ € [a;, ], and

o monotonically decreasing for ¢ € (#,h;/r; + h;/d; + bi],

where 7; is given by

P d,' h[ hi i
l’,—-ri_,_di (;+‘7’+a1 +mb, (19)
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The points where @y, ) (0) changes direction are the breakpoints
of Z;(¢). The breakpoints of all the aggressors are collected into a
list 7" and sorted in increasing order. Formally, T = U;t;, where t;
is defined as

{on B+ B +apbi i+ i} ifcase

{a,-,f,-, %‘ + ?];7 + bi} otherwise.

With » aggressors, the maximum possible number of points in
T is 4n. However, most of the points in 7 can be eliminated from
further consideration. This is done by associating a direction J;
with @z, 1(0) foreach1; € T.

—1 if ®z,y(6) is decreasing
= 0 if @z,)(8) is constant
1 if @z.(6) is increasing.

dij

Now &, (1)(8) can be constructed from @z ,)(6) as follows. Let
T = {t1,12, s ,tm}.

&)Zi(tl) (6)

@z,,)(0)

@z,,..)(0) if8; ;1 =—1,
and Eik,Sk’j_I =1
otherwise

‘I’z,-(r,-) (9)
®z,:,(8)

and q)S,,(t) (9) = H?=1 (DZ,-(I) (9)

As stated above, many of the points in 7 can be discarded. Let
t; be the first point in T such that §; ; = —1, for some i. Let 7 be
the last point in 7 such that §;; = 1, for some i. Then points in
(t1,---,tj—1) and (t42,...,tm) can be discarded. This is because,
tj and #; are the the first and last points where one of the modified
mgfs &7 ((6) has reached its peak. Note that this reduction is

possible only with &,,1(8) and not with @, (8). Once a time
point t* € T where ®g (1(8) is maximum is identified, then the
value of 6 that minimizes B(0,1*,01) is computed by numerically
solving (15) with @ replacing ®.

5. EXPERIMENTAL RESULTS

The experimental results reported in this paper were generated
by performing noise analysis for a high performance microproces-
sor. The noise simulator, called ClariNet [10], was developed to an-
alyze large, high performance processor designs. It embodies sev-
eral features that help speedup noise analysis, allowing it to process
hundreds of thousands of nets in a few hours. The total number of
nets analyzed were nearly 200,000. Each net was analyzed twice -
once for low overshoot (victim net is to be stable at logic 0 and its
aggressors switch from logic 0 to logic 1) and once for high un-
dershoot (victim net is stable at logic 1 and aggressors switch from
logic 1 to logic 0). As a result, the total number of violations was
2501. Although the cluster size (number of aggressors per victim)
can be quite large, the number that contributed a significant amount
of noise was found to be less than 10. For this reason, we set the the
maximum cluster size to 10. For each net, the noise report indicates
the peak height and width of the noise injected on the net by each
aggressor, and the threshold of the receiver gate. This is data that
was used for the probabilistic analysis as described in this paper.

For each cluster, the optimal value of the bound was computed,
with o set to the receiver’s threshold. Of the 2501 reported vio-
lations, 634 or 25.35% of them had an expected number of clock
cycles for the first violation exceeding 5 years for a continuously
running 555 MHz processor. If 5 years is an acceptable level then



these can be eliminated from further consideration. Figure 7 shows
a plot of the percentage of nets that have an ENC greater than or
equal to the value on the abscissa. It is important to note that the set
of all nets when using timing intervals (lower plot in Figure 7) is
much smaller than the set of nets when timing intervals are ignored.
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Figure 8: Ranking Nets by Peak Noise and ENC

Next we deleted the nets whose ENC was greater than or equal
to 5 years. The number of nets remaining was 1867. For these
nets, we computed the ENC* values. This provides an alternative
ranking based on the expected number of clock cycles required to
observe a noise violation for the first time, rather than simply the
sum of the all the noise peaks injected by each aggressor. Two
sorted lists Lpsax and Lpye of the nets were generated. Lpgax is the
set of nets in decreasing order of the magnitude of the peak noise of
the composite waveform. Lgyc is the set of nets in increasing order
of their ENC* values. Figure 8 shows a plot of the percentage of
nets in the original list Lygax that retain their ranking in the second
list Lgyc, as each list is traversed. The abscissa represents the top
X% of the nets. The ordinate represents the percentage of the nets
in the top X% of list Lpgak that remained in the top X% of the nets
in list Lgye. For example, from the top 20% of the list Lygax which
represents 373 nets, only 12.5% of them (= 46 nets) remained in
the top 20% of Lgyc. If the ranking of the nets did not change then
the plot would be a horizontal line at 1. The important conclusion
here that the probabilistic approach identifies nets based not only on
the noise magnitude but also on the likelihood of occurrence. Nets
for which the simulator reports a relatively small noise violation
may become more important, resulting in corrective action being

taken on them before nets with larger noise magnitudes.

6. CLOSING REMARKS

In this paper we presented an approach to analyzing functional
noise. The objective was to use estimates of the probability that the
noise will exceed a specified threshold as a means to prioritize nets
or even eliminate them from further consideration if the likelihood
is small. Results of experiments carried out cn a large industrial
high performance microprocessor, using a recently developed state-
of-the-art noise simulator were also presented.
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