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CPU,
Heal Thyself

In the old days, computer vendors would often 
pull a fast one. They would tell you their system had the lat-
est microprocessor when it actually had a cheaper, slower 
version running faster than the chip’s rating permitted. So 
the shiny, new 500-megahertz system you thought you 
were buying might contain only an overclocked 300‑MHz 
CPU. But the computer worked fine; indeed, it might have 
operated perfectly for years, with you none the wiser. 
And you perhaps replaced it only because a good buy on 
a 1‑gigahertz machine eventually came along.

How did that poor 300-MHz processor cope with such 
abuse? The short answer is that the manufacturer had 
set the clock speed low to ensure that its products would 
function without fault despite the inevitable variations 
among chips and among their different operating envi-
ronments. Shady overclockers took advantage of that 
conservatism, inviting unpredictable failures when they 
eliminated the chipmaker’s prudent safety margins.

Lately, overclocking has gone mainstream. You can, for 
example, find competitions on the Web in which hardware 
hackers vie for top honors in this domain. Even chip manu
facturers themselves are doing it in public trials to show off 
how blazingly fast their processors can run under the right 
conditions—like when they are being cooled with liquid 
helium to within a few kelvins of absolute zero.

E ng i ne e r s at  Adv a nce d M ic ro 
Devices, of Sunnyvale, Calif., did just 
that this past April to prove that the 
company’s Phenom II CPU could break 
the 7-GHz barrier. In theory, they could 
have used the same approach to reduce 
the voltage at which this chip runs at 
its normal clock speed. That in turn 
would have significantly diminished 
the power it consumed.

While saving a few watts is not so 
important in a desktop system, it’s criti
cal for smartphones, mobile Internet 
devices, and other such gadgetry, which 
now have to handle glitzy graphics, 
video, Web access, and gaming without 
burning too quickly through their tiny 
batteries. And reducing the amount of 
power that a CPU uses translates to an 
enormous amount of money saved for 
the companies that deploy vast num-
bers of microprocessors in large-scale 
server farms.

The problem is that if you use any-
thing less than their normal voltage, some 
of these chips, on rare occasions, will fail 
to produce the correct results. That might 
happen when a laptop is turned on after d
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being left to bake in a hot car, for exam-
ple. The resulting miscalculations could 
be catastrophic—or maybe not.

What if a microprocessor could 
check its output and correct any error 
on the f ly? Suppose further that the 
chip could slow itself down or turn up 
its voltage slightly when it noticed it 
was flubbing up too often. Experiments 
we and our colleagues at the University 
of Michigan in Ann Arbor have carried 
out show that adding those capabilities 
to a microprocessor can slash energy 
use by more than a third.

This power-saving trick can be 
very effective, but only if the chip is 
intentionally designed to fail at times. 
That’s because every chip is different—
both in how it comes off the production 
line and how it is ultimately used—so 
you need to push a given chip to its lim-
its to truly know what those limits are. 
But the thought of operating some-
thing without a comfortable safety 
buffer makes most engineers shudder. 
Perhaps that’s one reason why for the 
past decade or so circuit designers have 
attempted to conserve battery power in 
less radical ways.

One easy approach, called clock 
gating, disables the clock signal in the 
circuitry that isn’t working on a given 
operation. That way, the bypassed 
transistors won’t use energy while 
switching on and off. A variation of 
this theme not only disables the clock 
but also cuts off the power being fed 
to the unused components. Doing so 
can substantially improve the energy 
efficiency of cellphones and similar 
mobile devices, which typically idle 
for long periods, interrupted by short 
bursts of activity.

In 2003, we began exploring more ambitious ways 
to reduce the power required to run a microprocessor—
work done together with Todd Austin and Trevor 
Mudge, our colleagues at the University of Michigan, 
and with the help of many students. We were aware 
that chip designers routinely compensate for manu-
facturing variations, as well as for high-temperature 
or low-voltage conditions (which can vary even within 
a single chip), by specifying an operating voltage that’s 
higher than it really needs to be. We knew, too, that 
manufacturers have had to become more and more con-
servative in this regard, because it has been increas-
ingly difficult to control the operating characteristics 
of transistors as they get smaller—a factor of two safety 
margin is not uncommon. Yet only a few of these tran-
sistors will ever experience problematic temperature 

or voltage conditions for very long. So most of the time, 
the built-in safety margin just squanders energy. 

How, we wondered, could we minimize this waste? 
One day while we were chatting about possible ways to 
do that, one member of our research group noted that 
our basic goal was to shave the safety margin to a min-
imum. So, fittingly enough, we named the hardware 
modifications we were working on Razor.

Our idea—inspired by the adage “If you’re not fail-
ing some of the time, you’re not trying hard enough”—
was to reduce the operating voltage until the chip would 
sometimes stumble; then we’d give it a way to recover. 
Although this tactic had been proposed before for a few 
very specialized applications (for within-chip com-
munications and in certain digital-signal processors), 
our Razor project was the first to apply it to a general-
purpose microprocessor. d
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power savings in the pipeline
The authors’ Razor circuitry saves power by reducing 
the microprocessor’s operating voltage. This slows the 
processor’s many transistors, increasing the chance of a 
timing error, but Razor includes a safety net. Consider one 
logic stage of a pipelined microprocessor running normally 
[below, left]. In this example, logical 1s are transformed to 
0s, although the signal lines do not change all at the same 
time. If the transistors involved in the operation switch too 
slowly [right], incorrect results are copied, but the subsequent 
change in the output indicates a timing error.
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We knew up front that it would take some energy 
to monitor for failures and correct them—an overhead 
that would need to be kept small. But we didn’t know 
how common those failures would be as we reduced the 
operating voltage. Would the first failures be sporadic 
or would nearly all the instructions go haywire? Armed 
only with some very approximate theoretical analy-
sis and crude experiments, we took it mostly on faith 
that the failure rate would be reasonably low—say, one 
instruction in 10 000, making error correction feasible. 

What we found after we built and tested our first Razor 
chip was that as the voltage dropped to where the chip just 
started to err, it in fact erred far less often than we had 
guessed—typically only once in every 100 million opera-
tions. The rarity of failures meant that we could more than 
make up for the cost of error correction on the millions of 
instructions that executed properly at low voltage.

The Razor system we devised manages the trade-off 
between system voltage and error rate. It monitors for 
failure and automatically tunes the supply voltage to 
achieve the error rate that saves the most energy. In a 
sense, the chip maintains its own health.

What’s the most energy-efficient way for a 
microprocessor to determine that it has messed up? And 
how can it reliably correct its mistakes? To understand 
the system we’ve engineered to do those things, you 
need to know a little about how modern CPUs work.

To speed processing, most of these chips use a 
strategy called instruction pipelining. Although the 
name conjures up a water pipe, the better analogy 
is to a bucket brigade, where one person fills a pail 
with water and passes it to a second person, who then 
passes it to a third, and so forth. Continued on page 52



All the while, the first person is filling and handing 
off more buckets. 

A pipelined microprocessor owes its high speed 
to the same strategy of breaking down each opera-
tion into a series of discrete steps. For a simple pro-
cessor, there are often five: Fetch the instruction to be 
carried out from memory, decode it, execute it, deter-
mine the address in memory where the result is to be 
written, and write it there. High-end microprocessors 
might extend this strategy to a couple of dozen sepa-
rate pipeline stages. 

Pipelining works only because these different 
functions can all be carried out at the same time. For 
example, while one of the programmed instructions 
is being executed, the following one can be decoded, 
and the one after that can be fetched from memory. 
Each step is carried out by a specialized circuit that 
takes the input provided to it, reacts to it in some fash-
ion, and then presents the results to the next stage in 
the logic pipeline.

As with an actual bucket brigade, these operations 
need to take place with a regular rhythm. Here, the 
microprocessor’s clock provides the necessary tim-
ing. At some designated instant—say, when the clock 

signal switches from low voltage to high voltage—
each processing stage makes a copy of the data on its 
input lines. Each stage then works with its copy to 
produce a result.

The time it takes for the input of any stage to be 
translated into the corresponding output depends on 
how long it takes the different transistors involved to 
switch states. The processor’s clock is normally set 
to run slowly enough to ensure that the output will be 
correct by the time the clock next switches from low to 
high—which is to say, when the output from one stage 
becomes the input for the next one. As long as the tran-
sistors are finished switching states by the time the 
next low-to-high clock signal comes around, every-
thing works well.

Now suppose you turn down the supply voltage 
so that the microprocessor’s many transistors can’t 
switch logic states quite so fast. One or more slowpoke 
transistors within some critical calculation pathway 
may cause an output to switch states after the clock 
has commanded the following stage of circuitry to 
copy the data presented to it. Working with the wrong 
input data, that next stage would, of course, produce 
an erroneous output, which would wreck whatever 
operation is f lowing through the chip’s instruction 
pipeline. This could easily cause the application—or 
even the whole computer—to crash. Razor provides 
a way to avoid such a fiasco.

With our latest version of Razor, each copying cir-
cuit is modified so that it includes a transition detector, 

CPU, Heal Thyself
Continued from page 43
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which is sensitive to changes in the output for a short 
period of time after each tick of the clock. If the out-
put is not yet valid at the clock tick, the next logic stage 
will be working with the wrong data. But catastrophe 
can still be averted, because the correct data will arrive 
slightly later, triggering the transition detector, which 
flags the event as a timing error.

When this occurs, a special error controller executes 
the problematic instruction again. Although it rarely 
happens in practice, it’s possible that this particular 
instruction will produce an error on the next attempt, 
too—maybe even on many repeated attempts. To avoid 
such a deadlock, the controller we’ve designed tries only 
a handful of times. If the error persists, the controller 

hitting 
the 
sweet 
spot
The Razor 
circuitry is used 
to maintain an 
error rate of 
0.04 percent, 
which keeps 
energy use at a 
minimum while 
barely affecting 
computation 
speed [right].
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circuitry cuts the processor’s clock fre-
quency in half during the next attempt 
to ensure adequate time for the error-free 
operation of the problematic instruc-
tion. The correction process might seem 
cumbersome, but as the first iteration of 
our Razor system has shown, this chain 
of events occurs so infrequently that it 
slows the average computation speed by 
only a fraction of a percent.

Ironically enough, the biggest chal-
lenge in designing the Razor system has 
been to prevent the microprocessor’s 
circuitry from working too quickly. The 
reason this can be a problem is that the 
transition-detection circuitry is dumb: 
When it sees a signal line change state 
shortly after a clock tick, it doesn’t know 
whether this is old data from the previ-
ous clock cycle arriving late or new data 
from the current clock cycle arriving 
early. So the transition detector could 
mistakenly flag the early arrival of valid 
data as an error. And such an event 
might well occur again and again during 
attempts at recovery, even 
with a slower clock.

To prevent this from 
happening, we had to 
i nt ro duce some e x t r a 
delay into the micropro-
ce s s or ’s  sp e e d ie r  c i r-
cuitry. This ensures that 
the output of a given pipe-
line stage doesn’t switch 
states while the transi-
tion detector connected 
to it is still sensitive to 
changes. Adding delay 
to the faster circuits con-
sumes some power, but 
it doesn’t diminish the 
processor’s overall speed, 
which remains limited by 
how quickly the slowest 
circuits can operate.

You might guess that 
we also needed to add 
some very complex cir-
cuitry to the microproces-
sor to enable it to repeat an 
operation after a timing error occurs. In 
fact, we did very little, because most of 
the replay circuitry was already there. 
It’s required to deal with one of the sub-
tle drawbacks of instruction pipelining—
the dependence that one instruction 
often has on the outcome of the previous 
instruction. That’s a problem for a pipe-
lined microprocessor, which must begin 
processing the second instruction before 
the result of the first one is known.

In such instances, the micropro-
cessor often guesses what the result 
will be. The answer could determine, 
for example, whether to jump to some 
other part of the program. If the pro-
cessor guesses correctly, all is well. If 
not, the microprocessor executes the 
instruction once more using the correct 
result as input. This was just the mech-
anism we needed to force the micropro-
cessor to replay operations when a tim-
ing error occurs.

T h e  i n i t i a l  v e rs i o n  o f  R a z o r 
included both error-detection and cor-
rection circuitry within each copying 
circuit, more than doubling the num-
ber of transistors needed to copy a 
stage’s input data. The most recent ver-
sion of Razor, which we described pub-
licly in 2008, adds only error detection 
to the various pipeline stages. It relies 
entirely on the microprocessor’s exist-
ing replay circuitry for error correction. 
This approach significantly reduces 

the area on the chip and the amount of 
energy the new circuitry consumes. 

We’ve also limited the additional area 
and power needed by adding Razor ele-
ments only to those portions of the cir-
cuitry that are prone to fail when the 
operating voltage is reduced. This 
requires a careful analysis to be done 
up front for each microprocessor design. 
But that effort pays off handsomely, 
because only 10 to 30 percent of a proces-

to probe further
An overview of adaptive techniques for 
microprocessor design (including Razor) 
is presented in the chapter “Architectural 
Techniques for Adaptive Computing,” by 
Shidhartha Das, David Roberts, David Blaauw, 
David Bull, and Trevor Mudge, in Adaptive 
Techniques for Dynamic Processor Optimization: 
Theory and Practice, Alice Wang and Sam 
Naffziger, editors, Springer, 2008.

A more detailed description of the early 
version of Razor is available in “A Self-Tuning 
DVS Processor Using Delay-Error Detection 
and Correction,” by S. Das, D. Roberts, S. Lee, 
S. Pant, D. Blaauw, T. Austin, K. Flautner, and T. 
Mudge, IEEE Journal of Solid-State Circuits, Vol. 
41, no. 4, April 2006.

The newer strategy for Razor is described 
more fully in “RazorII: In Situ Error Detection 
and Correction for PVT and SER Tolerance,” 
by S. Das, C. Tokunaga, S. Pant, W.‑H. Ma, S. 
Kalaiselvan, K. Lai, D. M. Bull, and D.T. Blaauw, 
IEEE Journal of Solid-State Circuits, Vol. 44, no. 1, 
January 2009.
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sor’s copying circuits typically require 
Razor’s protection against failure.

Although we’ve tried to minimize 
the additional power used as much as 
possible, the Razor circuitry does use 
a small amount of energy at all times. 
So if you were to run the modif ied 
microprocessor at its standard operat-
ing voltage, it would use slightly more 
power than normal. But the Razor cir-
cuitry doesn’t do that; it lowers the 
operating voltage until the error rate is 
about 0.04 percent. This saves far more 
energy than the additional transistors 
consume. Running the chip at still 
lower voltages would, however, make 
the error rate surge, requiring many 
replays, which would slow computa-
tion appreciably and use more energy 
overall. So the Razor circuitry senses 
the error rate and adjusts the supply 
voltage to keep the chip at its optimum 
operating point—which depends not 
only on the environment and manufac-
turing variations but also on the cal-
culations being performed at that time. 
As they say, your mileage may vary, but 
on average you can expect a 35 percent 
savings in energy use.

Since our team f irst descr ibed 
Razor, in 2005, several semiconduc-
tor companies have started to investi-
gate this approach. For example, at the 
IEEE International Solid-State Circuits 
Conference in February, researchers 
from Intel presented a Razor-inspired 
m e c h a n i s m  fo r  i m p r ov i n g  h i g h-
performance chips. Instead of reduc-
ing the supply voltage to save energy, 
the Intel team keeps that voltage con-
stant and uses a Razor-like technique 
to boost computation speed by 25 to 
32 percent. And one of us (Das) now 
works full time with other researchers 
at ARM, a British company that designs 
and licenses reduced-instruction-set 
computer processors, in an effort to har-
ness Razor’s ability to make processors 
faster or less power hungry.

Razor is one of the more far-out 
attempts to push microprocessors to 
their limits—but we’re sure it ’s not 
going to be the last of its kind. As tran-
sistors continue to shrink, we can 
expect chip designers to invest a grow-
ing portion of their transistor budget 
in circuitry to monitor, analyze, pre-
dict, correct, and adapt. Computers 
might never obtain anything resem-
bling consciousness, but the micropro-
cessors they contain will surely become 
increasingly self-aware.�  o
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