
40 NA • iEEE Spectrum • august 2009 www.spectrum.ieee.org august 2009 • IEEE Spectrum • NA 41www.spectrum.ieee.org40 NA • iEEE Spectrum • august 2009 www.spectrum.ieee.org august 2009 • IEEE Spectrum • NA 41www.spectrum.ieee.org

40 NA • iEEE Spectrum • august 2009 www.spectrum.ieee.org august 2009 • IEEE Spectrum • NA 41www.spectrum.ieee.org40 NA • iEEE Spectrum • august 2009 www.spectrum.ieee.org august 2009 • IEEE Spectrum • NA 41www.spectrum.ieee.org

CPU,
Heal Thyself

In the old days, computer vendors would often
pull a fast one. They would tell you their system had the lat-
est microprocessor when it actually had a cheaper, slower
version running faster than the chip’s rating permitted. So
the shiny, new 500-megahertz system you thought you
were buying might contain only an overclocked 300‑MHz
CPU. But the computer worked fine; indeed, it might have
operated perfectly for years, with you none the wiser.
And you perhaps replaced it only because a good buy on
a 1‑gigahertz machine eventually came along.

How did that poor 300-MHz processor cope with such
abuse? The short answer is that the manufacturer had
set the clock speed low to ensure that its products would
function without fault despite the inevitable variations
among chips and among their different operating envi-
ronments. Shady overclockers took advantage of that
conservatism, inviting unpredictable failures when they
eliminated the chipmaker’s prudent safety margins.

Lately, overclocking has gone mainstream. You can, for
example, find competitions on the Web in which hardware
hackers vie for top honors in this domain. Even chip manu
facturers themselves are doing it in public trials to show off
how blazingly fast their processors can run under the right
conditions—like when they are being cooled with liquid
helium to within a few kelvins of absolute zero.

E ng i ne e r s at Adv a nce d M ic ro
Devices, of Sunnyvale, Calif., did just
that this past April to prove that the
company’s Phenom II CPU could break
the 7-GHz barrier. In theory, they could
have used the same approach to reduce
the voltage at which this chip runs at
its normal clock speed. That in turn
would have significantly diminished
the power it consumed.

While saving a few watts is not so
important in a desktop system, it’s criti
cal for smartphones, mobile Internet
devices, and other such gadgetry, which
now have to handle glitzy graphics,
video, Web access, and gaming without
burning too quickly through their tiny
batteries. And reducing the amount of
power that a CPU uses translates to an
enormous amount of money saved for
the companies that deploy vast num-
bers of microprocessors in large-scale
server farms.

The problem is that if you use any-
thing less than their normal voltage, some
of these chips, on rare occasions, will fail
to produce the correct results. That might
happen when a laptop is turned on after d

a
n

ie
l

b
e

ja
r

A fault-monitoring microprocessor design
can save power or allow overclocking

by david blaauw & shidhartha das

42 NA • iEEE Spectrum • august 2009 www.spectrum.ieee.org august 2009 • IEEE Spectrum • NA 43www.spectrum.ieee.org42 NA • iEEE Spectrum • august 2009 www.spectrum.ieee.org august 2009 • IEEE Spectrum • NA 43www.spectrum.ieee.org

being left to bake in a hot car, for exam-
ple. The resulting miscalculations could
be catastrophic—or maybe not.

What if a microprocessor could
check its output and correct any error
on the f ly? Suppose further that the
chip could slow itself down or turn up
its voltage slightly when it noticed it
was flubbing up too often. Experiments
we and our colleagues at the University
of Michigan in Ann Arbor have carried
out show that adding those capabilities
to a microprocessor can slash energy
use by more than a third.

This power-saving trick can be
very effective, but only if the chip is
intentionally designed to fail at times.
That’s because every chip is different—
both in how it comes off the production
line and how it is ultimately used—so
you need to push a given chip to its lim-
its to truly know what those limits are.
But the thought of operating some-
thing without a comfortable safety
buffer makes most engineers shudder.
Perhaps that’s one reason why for the
past decade or so circuit designers have
attempted to conserve battery power in
less radical ways.

One easy approach, called clock
gating, disables the clock signal in the
circuitry that isn’t working on a given
operation. That way, the bypassed
transistors won’t use energy while
switching on and off. A variation of
this theme not only disables the clock
but also cuts off the power being fed
to the unused components. Doing so
can substantially improve the energy
efficiency of cellphones and similar
mobile devices, which typically idle
for long periods, interrupted by short
bursts of activity.

In 2003, we began exploring more ambitious ways
to reduce the power required to run a microprocessor—
work done together with Todd Austin and Trevor
Mudge, our colleagues at the University of Michigan,
and with the help of many students. We were aware
that chip designers routinely compensate for manu-
facturing variations, as well as for high-temperature
or low-voltage conditions (which can vary even within
a single chip), by specifying an operating voltage that’s
higher than it really needs to be. We knew, too, that
manufacturers have had to become more and more con-
servative in this regard, because it has been increas-
ingly difficult to control the operating characteristics
of transistors as they get smaller—a factor of two safety
margin is not uncommon. Yet only a few of these tran-
sistors will ever experience problematic temperature

or voltage conditions for very long. So most of the time,
the built-in safety margin just squanders energy.

How, we wondered, could we minimize this waste?
One day while we were chatting about possible ways to
do that, one member of our research group noted that
our basic goal was to shave the safety margin to a min-
imum. So, fittingly enough, we named the hardware
modifications we were working on Razor.

Our idea—inspired by the adage “If you’re not fail-
ing some of the time, you’re not trying hard enough”—
was to reduce the operating voltage until the chip would
sometimes stumble; then we’d give it a way to recover.
Although this tactic had been proposed before for a few
very specialized applications (for within-chip com-
munications and in certain digital-signal processors),
our Razor project was the first to apply it to a general-
purpose microprocessor. d

a
n

ie
l

b
e

ja
r

42 NA • iEEE Spectrum • august 2009 www.spectrum.ieee.org august 2009 • IEEE Spectrum • NA 43www.spectrum.ieee.org42 NA • iEEE Spectrum • august 2009 www.spectrum.ieee.org august 2009 • IEEE Spectrum • NA 43www.spectrum.ieee.org

power savings in the pipeline
The authors’ Razor circuitry saves power by reducing
the microprocessor’s operating voltage. This slows the
processor’s many transistors, increasing the chance of a
timing error, but Razor includes a safety net. Consider one
logic stage of a pipelined microprocessor running normally
[below, left]. In this example, logical 1s are transformed to
0s, although the signal lines do not change all at the same
time. If the transistors involved in the operation switch too
slowly [right], incorrect results are copied, but the subsequent
change in the output indicates a timing error.

i n p u t

1 1 1 1

1 1 1 1

Correct
output
copied.

Copy

o u t p u t

0 0 0 0

It takes time for the
output of the logic
stage to invert the
input completely.

Pipelined
Microprocessor
l o g i c s tag e s

timing errornormal timing

1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

Output
remains
stable.

i n p u t

1 1 1 1

1 1 1 1

Incorrect
output
copied.

Copy

o u t p u t

0 1 0 0

If a timing error occurs,
the instruction must
be rerun, and the clock
may have to be slowed.

1 1 1 0

0 1 1 0

0 1 0 0

0 0 0 0

Late change in
output indicates
timing error.

We knew up front that it would take some energy
to monitor for failures and correct them—an overhead
that would need to be kept small. But we didn’t know
how common those failures would be as we reduced the
operating voltage. Would the first failures be sporadic
or would nearly all the instructions go haywire? Armed
only with some very approximate theoretical analy-
sis and crude experiments, we took it mostly on faith
that the failure rate would be reasonably low—say, one
instruction in 10 000, making error correction feasible.

What we found after we built and tested our first Razor
chip was that as the voltage dropped to where the chip just
started to err, it in fact erred far less often than we had
guessed—typically only once in every 100 million opera-
tions. The rarity of failures meant that we could more than
make up for the cost of error correction on the millions of
instructions that executed properly at low voltage.

The Razor system we devised manages the trade-off
between system voltage and error rate. It monitors for
failure and automatically tunes the supply voltage to
achieve the error rate that saves the most energy. In a
sense, the chip maintains its own health.

What’s the most energy-efficient way for a
microprocessor to determine that it has messed up? And
how can it reliably correct its mistakes? To understand
the system we’ve engineered to do those things, you
need to know a little about how modern CPUs work.

To speed processing, most of these chips use a
strategy called instruction pipelining. Although the
name conjures up a water pipe, the better analogy
is to a bucket brigade, where one person fills a pail
with water and passes it to a second person, who then
passes it to a third, and so forth. Continued on page 52

All the while, the first person is filling and handing
off more buckets.

A pipelined microprocessor owes its high speed
to the same strategy of breaking down each opera-
tion into a series of discrete steps. For a simple pro-
cessor, there are often five: Fetch the instruction to be
carried out from memory, decode it, execute it, deter-
mine the address in memory where the result is to be
written, and write it there. High-end microprocessors
might extend this strategy to a couple of dozen sepa-
rate pipeline stages.

Pipelining works only because these different
functions can all be carried out at the same time. For
example, while one of the programmed instructions
is being executed, the following one can be decoded,
and the one after that can be fetched from memory.
Each step is carried out by a specialized circuit that
takes the input provided to it, reacts to it in some fash-
ion, and then presents the results to the next stage in
the logic pipeline.

As with an actual bucket brigade, these operations
need to take place with a regular rhythm. Here, the
microprocessor’s clock provides the necessary tim-
ing. At some designated instant—say, when the clock

signal switches from low voltage to high voltage—
each processing stage makes a copy of the data on its
input lines. Each stage then works with its copy to
produce a result.

The time it takes for the input of any stage to be
translated into the corresponding output depends on
how long it takes the different transistors involved to
switch states. The processor’s clock is normally set
to run slowly enough to ensure that the output will be
correct by the time the clock next switches from low to
high—which is to say, when the output from one stage
becomes the input for the next one. As long as the tran-
sistors are finished switching states by the time the
next low-to-high clock signal comes around, every-
thing works well.

Now suppose you turn down the supply voltage
so that the microprocessor’s many transistors can’t
switch logic states quite so fast. One or more slowpoke
transistors within some critical calculation pathway
may cause an output to switch states after the clock
has commanded the following stage of circuitry to
copy the data presented to it. Working with the wrong
input data, that next stage would, of course, produce
an erroneous output, which would wreck whatever
operation is f lowing through the chip’s instruction
pipeline. This could easily cause the application—or
even the whole computer—to crash. Razor provides
a way to avoid such a fiasco.

With our latest version of Razor, each copying cir-
cuit is modified so that it includes a transition detector,

CPU, Heal Thyself
Continued from page 43

52 NA • iEEE Spectrum • August 2009 www.spectrum.ieee.org

© 2009 Universe Kogaku (America) Inc.

The Exact
Lens
you need for

Your Project
comes with
Expert Support
to help you make it

work with your design.

www.UKAoptics.com
In USA: 516-624-2444 Email: info@ukaoptics.com

Custom Lens Manufacturer.
1000s of Lens Sizes in Stock.
Most Lenses Ship Same Day.

Universe Kogaku America designs
Lens Assemblies for Every Application...
UV Quartz Lenses
CCD/CMOS Lenses
CCTV Lenses
Diode Laser Lenses
Hi-Res Lenses
Image/Barcode Lenses
Medical Imaging Lenses
Microscope Objectives & Eyepieces
Photographic Lenses
Lens Mounting Accessories
Lens Filters and Accessories

which is sensitive to changes in the output for a short
period of time after each tick of the clock. If the out-
put is not yet valid at the clock tick, the next logic stage
will be working with the wrong data. But catastrophe
can still be averted, because the correct data will arrive
slightly later, triggering the transition detector, which
flags the event as a timing error.

When this occurs, a special error controller executes
the problematic instruction again. Although it rarely
happens in practice, it’s possible that this particular
instruction will produce an error on the next attempt,
too—maybe even on many repeated attempts. To avoid
such a deadlock, the controller we’ve designed tries only
a handful of times. If the error persists, the controller

hitting
the
sweet
spot
The Razor
circuitry is used
to maintain an
error rate of
0.04 percent,
which keeps
energy use at a
minimum while
barely affecting
computation
speed [right].

660

R e d u c t i o n i n c o m p u tat i o n s p e e d
640

620

600

580

560

540

520

E
ne

rgy
 p

er
 in

st
ru

ct
io

n,
 p

ic
oj

ou
le

s

1.15 1.16 1.17 1.18 1.19 1.20

Operating voltage

e rr o r r at e

R
ed

uc
ti

on
 in

 c
om

pu
ta

ti
on

 sp
ee

d,
 p

er
ce

nt

E
rr

or
 r

at
e,

 p
er

ce
nt

0

–20

–40

101

100

10–1

10–2

10–3

10–4

10–5energy
minimum

~0.04% error rate

~0.2% computation-speed reduction

e n e r g y p e r i n s t r u c t i o n

August 2009 • IEEE Spectrum • NA 53www.spectrum.ieee.org

circuitry cuts the processor’s clock fre-
quency in half during the next attempt
to ensure adequate time for the error-free
operation of the problematic instruc-
tion. The correction process might seem
cumbersome, but as the first iteration of
our Razor system has shown, this chain
of events occurs so infrequently that it
slows the average computation speed by
only a fraction of a percent.

Ironically enough, the biggest chal-
lenge in designing the Razor system has
been to prevent the microprocessor’s
circuitry from working too quickly. The
reason this can be a problem is that the
transition-detection circuitry is dumb:
When it sees a signal line change state
shortly after a clock tick, it doesn’t know
whether this is old data from the previ-
ous clock cycle arriving late or new data
from the current clock cycle arriving
early. So the transition detector could
mistakenly flag the early arrival of valid
data as an error. And such an event
might well occur again and again during
attempts at recovery, even
with a slower clock.

To prevent this from
happening, we had to
i nt ro duce some e x t r a
delay into the micropro-
ce s s or ’s sp e e d ie r c i r-
cuitry. This ensures that
the output of a given pipe-
line stage doesn’t switch
states while the transi-
tion detector connected
to it is still sensitive to
changes. Adding delay
to the faster circuits con-
sumes some power, but
it doesn’t diminish the
processor’s overall speed,
which remains limited by
how quickly the slowest
circuits can operate.

You might guess that
we also needed to add
some very complex cir-
cuitry to the microproces-
sor to enable it to repeat an
operation after a timing error occurs. In
fact, we did very little, because most of
the replay circuitry was already there.
It’s required to deal with one of the sub-
tle drawbacks of instruction pipelining—
the dependence that one instruction
often has on the outcome of the previous
instruction. That’s a problem for a pipe-
lined microprocessor, which must begin
processing the second instruction before
the result of the first one is known.

In such instances, the micropro-
cessor often guesses what the result
will be. The answer could determine,
for example, whether to jump to some
other part of the program. If the pro-
cessor guesses correctly, all is well. If
not, the microprocessor executes the
instruction once more using the correct
result as input. This was just the mech-
anism we needed to force the micropro-
cessor to replay operations when a tim-
ing error occurs.

T h e i n i t i a l v e rs i o n o f R a z o r
included both error-detection and cor-
rection circuitry within each copying
circuit, more than doubling the num-
ber of transistors needed to copy a
stage’s input data. The most recent ver-
sion of Razor, which we described pub-
licly in 2008, adds only error detection
to the various pipeline stages. It relies
entirely on the microprocessor’s exist-
ing replay circuitry for error correction.
This approach significantly reduces

the area on the chip and the amount of
energy the new circuitry consumes.

We’ve also limited the additional area
and power needed by adding Razor ele-
ments only to those portions of the cir-
cuitry that are prone to fail when the
operating voltage is reduced. This
requires a careful analysis to be done
up front for each microprocessor design.
But that effort pays off handsomely,
because only 10 to 30 percent of a proces-

to probe further
An overview of adaptive techniques for
microprocessor design (including Razor)
is presented in the chapter “Architectural
Techniques for Adaptive Computing,” by
Shidhartha Das, David Roberts, David Blaauw,
David Bull, and Trevor Mudge, in Adaptive
Techniques for Dynamic Processor Optimization:
Theory and Practice, Alice Wang and Sam
Naffziger, editors, Springer, 2008.

A more detailed description of the early
version of Razor is available in “A Self-Tuning
DVS Processor Using Delay-Error Detection
and Correction,” by S. Das, D. Roberts, S. Lee,
S. Pant, D. Blaauw, T. Austin, K. Flautner, and T.
Mudge, IEEE Journal of Solid-State Circuits, Vol.
41, no. 4, April 2006.

The newer strategy for Razor is described
more fully in “RazorII: In Situ Error Detection
and Correction for PVT and SER Tolerance,”
by S. Das, C. Tokunaga, S. Pant, W.‑H. Ma, S.
Kalaiselvan, K. Lai, D. M. Bull, and D.T. Blaauw,
IEEE Journal of Solid-State Circuits, Vol. 44, no. 1,
January 2009.

www.spectrum.ieee.org

Visit our website for thousands

of standard products

www.picoelectronics.com

From 1/4" X 1/4" • Surface Mount
Plug-in • Toriodal • Insulated Leads

Surface Mount • PC Board Mount
Single and Dual Output • Up to 10,000V Std.

AC-DC POWER SUPPLIERS
Linear • Switches • Open Frame

Low Profile • Up to 200 Watts

POWER FACTOR
CORRECTED MODULES

Universal Input • 47-440 hz
to 1000 Watts • 99 Power Factor

Miniaturized

Low Profile

TRANSFORMERS &
INDUCTORS

SURFACE
Mount

Plug-in

SURFACE
Mount

Plug-in

DC-DC CONVERTERS

High Power DC-DC CONVERTERS
Regulated, Up to 400 Watts

Up to 100 volts Standard

INdustrial Military

High Voltage DC-DC CONVERTERS
Up to 10,000 VCD Output

Up to 300 Watts
NEW Dual Outputs New Regulated Output

CYAN prints as Pantone 3268C

PICO Electronics,Inc.
143 Sparks Ave, Pelham, NY 10803-1837
E-Mail: info@picoelectronics.com

Call toll free
800-431-1064

for PICO Catalog
Fax 914-738-8225

A38.qxd 3/12/08 5:31 PM Page 1

sor’s copying circuits typically require
Razor’s protection against failure.

Although we’ve tried to minimize
the additional power used as much as
possible, the Razor circuitry does use
a small amount of energy at all times.
So if you were to run the modif ied
microprocessor at its standard operat-
ing voltage, it would use slightly more
power than normal. But the Razor cir-
cuitry doesn’t do that; it lowers the
operating voltage until the error rate is
about 0.04 percent. This saves far more
energy than the additional transistors
consume. Running the chip at still
lower voltages would, however, make
the error rate surge, requiring many
replays, which would slow computa-
tion appreciably and use more energy
overall. So the Razor circuitry senses
the error rate and adjusts the supply
voltage to keep the chip at its optimum
operating point—which depends not
only on the environment and manufac-
turing variations but also on the cal-
culations being performed at that time.
As they say, your mileage may vary, but
on average you can expect a 35 percent
savings in energy use.

Since our team f irst descr ibed
Razor, in 2005, several semiconduc-
tor companies have started to investi-
gate this approach. For example, at the
IEEE International Solid-State Circuits
Conference in February, researchers
from Intel presented a Razor-inspired
m e c h a n i s m fo r i m p r ov i n g h i g h-
performance chips. Instead of reduc-
ing the supply voltage to save energy,
the Intel team keeps that voltage con-
stant and uses a Razor-like technique
to boost computation speed by 25 to
32 percent. And one of us (Das) now
works full time with other researchers
at ARM, a British company that designs
and licenses reduced-instruction-set
computer processors, in an effort to har-
ness Razor’s ability to make processors
faster or less power hungry.

Razor is one of the more far-out
attempts to push microprocessors to
their limits—but we’re sure it ’s not
going to be the last of its kind. As tran-
sistors continue to shrink, we can
expect chip designers to invest a grow-
ing portion of their transistor budget
in circuitry to monitor, analyze, pre-
dict, correct, and adapt. Computers
might never obtain anything resem-
bling consciousness, but the micropro-
cessors they contain will surely become
increasingly self-aware.� o

SPONSORS:

Where today’s
technology gurus converge.

The brightest minds discussing the biggest topics.

Sign up today!
www.spectrum.ieee.org/webinar

AVAILABLE ON DEMAND WEBINARS:

Calibre Solutions for Advanced DRC
Lear about the latest Calibre solutions for advanced verification: eqDRC — Solutions
for Advanced Layout Checking, gridDRC — Solutions for Restrictive Design Rules,
and PERC — Solutions for Advanced ERC, ESD, and Multi Power Domain Checking.
www.spectrum.ieee.org/webinar/312390

Create Powerful Data Capture Solutions
and Gain a Competitive Edge
Learn first-hand how bar code scanning and imaging in the healthcare industry
can reduce errors and provide security and safety for patients.
www.spectrum.ieee.org/webinar/130483

Sense, Think, Act for Unmanned Robotic Systems
Learn how graphical system design tools are advancing sensing technologies, cutting
edge research in autonomy algorithms and novel approaches to actuation and mobility.
www.spectrum.ieee.org/webinar/65454

PGI x64+GPU Fortran & C99 Compilers
Learn how using the PGI accelerator-enabled compilers, programmers can accelerate
Linux applications on x64+NVIDIA platforms by adding OpenMP-like compiler directives
to existing high-level standard-compliant Fortran and C99 programs.
www.spectrum.ieee.org/webinar/65476

Multiphysics Simulation
Learn how multiphysics simulations enable innovative technology organizations
to advance their product development beyond the ordinary.
www.spectrum.ieee.org/webinar/64725

Colleges are Transitioning for the Future – Are You?
Set your educational goals and learn what opportunities are available to you as
undergraduates and working engineers.
www.spectrum.ieee.org/webinar/64722

www.spectrum.ieee.org

