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Abstract—This paper presents the Compute Cache archi-
tecture that enables in-place computation in caches. Compute
Caches uses emerging bit-line SRAM circuit technology to re-
purpose existing cache elements and transforms them into ac-
tive very large vector computational units. Also, it significantly
reduces the overheads in moving data between different levels
in the cache hierarchy.

Solutions to satisfy new constraints imposed by Compute
Caches such as operand locality are discussed. Also discussed
are simple solutions to problems in integrating them into a
conventional cache hierarchy while preserving properties such
as coherence, consistency, and reliability.

Compute Caches increase performance by 1.9× and reduce
energy by 2.4× for a suite of data-centric applications, includ-
ing text and database query processing, cryptographic kernels,
and in-memory checkpointing. Applications with larger frac-
tion of Compute Cache operations could benefit even more, as
our micro-benchmarks indicate (54× throughput, 9× dynamic
energy savings).

I. INTRODUCTION

As computing today is dominated by data-centric appli-

cations, there is a strong impetus for specialization for this

important domain. Conventional processors’ narrow vector

units fail to exploit the high degree of data-parallelism
in these applications. Also, they expend disproportionately

large fraction of time and energy in moving data over cache

hierarchy, and in instruction processing, as compared to the

actual computation [1].

We present the Compute Cache architecture for dramati-

cally reducing these inefficiencies through in-place (in-situ)

processing in caches. A modern processor devotes a large

fraction (40-60%) of die area to caches which are used for

storing and retrieving data. Our key idea is to re-purpose

and transform the elements used in caches into active com-

putational units. This enables computation in-place within

a cache sub-array, without transferring data in or out of it.

Such a transformation can unlock massive data-parallel com-

pute capabilities, dramatically reduce energy spent in data

movement over the cache hierarchy, and thereby directly

address the needs of data-centric applications.

Our proposed architecture uses an emerging SRAM circuit

technology, which we refer to as bit-line computing [2],

[3]. By simultaneously activating multiple word-lines, and

sensing the resulting voltage over the shared bit-lines, several

important operations over the data stored in the activated

bit-cells can be accomplished without data corruption. A

recently fabricated chip [2] demonstrates feasibility of bit-

line computing. They also show a stability of more than

six sigma robustness for Monte Carlo simulations, which is

considered industry standard for robustness against process

variations.

Past processing-in-memory (PIM) solutions proposed to

move processing logic near the cache [4], [5] or main

memory [6], [7]. 3D stacking can make this possible [8].

Compute Caches significantly push the envelope by enabling

in-place processing using existing cache elements. It is an

effective optimization for data-centric applications, where at

least one of the operands (e.g., dictionary in WordCount)

used in computation has cache locality.

Efficiency of Compute Caches arises from two main

sources: massive parallelism and reduced data movement. A

cache is typically organized as a set of sub-arrays; as many

as hundreds of sub-arrays, depending on the cache level.

These sub-arrays can potentially compute concurrently on

data stored in them (KBs of data) with little extensions to

the existing cache structures (8% of cache area overhead).

Thus, caches can effectively function as large vector compu-

tational units, whose operand sizes are orders of magnitude

larger than conventional SIMD units (KBs vs bytes). To

achieve similar capability, the logic close to memory in a

conventional PIM solution would need to provision more

than hundred additional vector functional units. The second

benefit of Compute Caches is that they avoid the energy

and performance cost incurred not only for transferring data

between the cores and different levels of cache hierarchy

(through network-on-chip), but even between a cache’s sub-

array to its controller (through in-cache interconnect).

This paper addresses several problems in realizing the

Compute Cache architecture, discusses ISA and system

software extensions, and re-designs several data-centric ap-

plications to take advantage of the new processing capability.

An important problem in using Compute Caches is sat-

isfying the operand locality constraint. Bit-line computing

requires that the data operands are stored in rows that share

the same set of bit-lines. We architect a cache geometry,

where ways in a set are judiciously mapped to a sub-array,

so that software can easily satisfy operand locality. Our

design allows a compiler to ensure operand locality simply

by placing operands at addresses that are page aligned (same

page offset). It avoids exposing the internals of a cache, such

as its size or geometry, to software.
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When in-place processing is not possible for an operation

due to lack of operand locality, we propose to use near-place
Compute Caches. In near-place design, the source operands

are read out from the cache sub-arrays, the operation is

performed in a logic unit placed close to the cache controller,

and the result may be written back to the cache.

Besides operand locality, Compute Caches brings forth

several interesting questions. How to orchestrate concurrent

computation over operands spreading across multiple cache

sub-arrays? How to ensure coherence between compute-

enabled caches? How to ensure consistency model con-

straints when computation is spread between cores and

caches? Soft errors are a significant concern in modern

processors. Can ECC be used for Compute Caches? When

not possible, what are the alternative solutions? We discuss

relatively simple solutions to address these problems.

Compute Caches support several in-place vector opera-

tions: copy, search, compare and logical operations (and,

or, xor, and not) which can accelerate a wide variety

of applications. We study two text processing applications

(word count, string matching), database query processing

with bitmap indexing, copy-on-write checkpointing in OS,

and bit matrix multiplication (BMM); a critical primitive

used in cryptography, bioinformatics, and image processing.

We re-designed these applications to efficiently represent

their computation in terms of Compute Cache supported

vector operations. Section V identifies a number of addi-

tional domains that can benefit from Compute Caches: data

analytics, search, network processing etc.

We evaluate the merits of Compute Caches for a multi-

core processor modeled after Intel’s SandyBridge [9] proces-

sor with eight cores, three levels of caches, and a ring inter-

connect. For the applications we study, on average, Compute

Caches improve performance by 1.9× and reduce energy

by 2.4× compared to a conventional processor with 32-byte

wide vector units. Applications with a higher fraction of

Compute Cache operations can benefit significantly more.

Through micro-benchmarks that manipulate 4KB operands,

we show that Compute Caches provide 9× dynamic energy

savings over a baseline using 32-byte SIMD units while

providing 54× better throughput on average.

In summary, this paper makes the following contributions:

• We make a case for caches that can compute. Using bit-

line computing, our Compute Caches naturally support

vector processing over large data operands (several KBs).

This dramatically reduces overhead due to data move-

ment between caches and cores. Furthermore, in-place

computing even avoids data transfer between a cache’s

sub-array and its controller.

• We present the Compute Cache architecture that ad-

dresses various architectural problems: operand locality,

managing parallelism across various cache levels and

banks, coherency, consistency, and reliability.
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Figure 1: Compute Cache overview. (a) Cache hierarchy. (b)

Cache Geometry (c) In-place compute in a sub-array.

• To support Compute Cache operations without operand

locality, we study near-place processing in cache.

• We re-designed several important applications (text pro-

cessing, databases, checkpointing) to utilize Compute

Cache operations. We demonstrate significant speedup

(1.9×) and energy savings (2.4×) compared to proces-

sors with conventional SIMD units. While our savings

for applications are limited by the fraction of their com-

putation that can be accelerated using Compute Caches

(Amdahl’s law), our micro-benchmarks demonstrate that

applications with larger fraction of Compute Cache op-

erations could benefit even more (54× throughput, 9×
dynamic energy savings).

II. BACKGROUND

This section provides a brief background of cache hierar-

chy, cache geometry, and bit-line computing in SRAM.

A. Cache Hierarchy and Geometry

Figure 1 (a) illustrates a multi-core processor modeled

loosely after Intel’s Sandybridge [9]. It has a three-level

cache hierarchy comprising of private L1 and L2, and a

shared L3. The shared L3 cache is distributed into slices

which are connected to the cores via a shared ring intercon-

nect. A cache consists of a cache controller and several banks

((Figure 1 (b)). Each bank has several sub-arrays connected

by a H-Tree interconnect. For example, a 2 MB L3 cache

slice has a total of 64 sub-arrays distributed across 16 banks.

A sub-array in a cache bank is organized into multiple

rows of data-storing bit-cells. The bit-cells in the same row

are connected to a word-line. The bit-cells along a column

share the same bit-line. Typically, in any cycle, one word-

line is activated, from where a data block is either read from,

or written to, through the column bit-lines.

B. Bit-line Computing

Compute Caches use emerging bit-line computing tech-

nology in SRAMs [2], [3] (Figure 2) which observes that,

when multiple word-lines are activated simultaneously, the
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BLB0 BL0

Vref

WLi

WLj
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0   1
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BLBn BLn

WLi NOR WLj WLi AND WLj

Figure 2: SRAM circuit for in-place operations. Two rows

(WLi and WLj) are activated. An AND operation is per-

formed by sensing bit-line (BL). All the bit-lines are initially

pre-charged to ‘1’. If both the activated bits in a column have

a ‘1’ (column ‘n’), then the BL stays high and it is sensed

as a ‘1’. If any one of the bits were ‘0’ it will lower the

BL voltage below Vref and will be sensed as a ‘0’. A NOR
operation can be performed by sensing bit-line bar (BLB).

shared bit-lines can be sensed to produce the result of and
and nor on the data stored in the two activated rows. Data

corruption due to multi-row access is prevented by lowering

word-line voltage to bias against write of the SRAM array.

Jeloka et al. [2]’s measurements across 20 fabricated test

chips demonstrate that data-corruption does not occur even

when 64 word-lines are simultaneously activated during such

an in-place computation. They show a stability of more

than six sigma robustness for Monte Carlo simulations,

which is considered industry standard for robustness against

process variations. Also, note that, by lowering the word-

line voltage further, robustness can be improved at the cost

of increase in delay. Even with it, Compute Caches will still

deliver significant savings given its potential (Section VI,

54× throughput, 9× dynamic energy savings).

Section IV-B discusses our extensions to bit-line comput-

ing enabled SRAM to support additional operations: copy,

xor, equality comparison, search, and carryless multiplica-

tion (clmul).

III. A CASE FOR COMPUTE CACHES

In-place Compute Cache has the potential to provide

massive data-parallelism, while also dramatically reduc-

ing the instruction processing and on-chip data movement

overheads. Figure 3 pictorially depicts these benefits by

comparing a scalar core, a SIMD core with vector processing

support, and Compute Caches.

The bottom half in Figure 3 depicts the area proportioning

and processing capability of the three architectures. Signif-

icant fraction of die area in a conventional processor is for

caches. A Compute Cache re-purposes the elements used in

this large area into compute units for a small area overhead

(8% of cache area). A typical last-level cache consists of

hundreds of sub-arrays distributed across different banks

core alu data-mov

Cache

Core Core
(a) Scalar Core

CacheCache

(b) SIMD Core (c) Compute Cache
Core

Figure 3: Proportion of energy (top) for bulk comparison

operation and area (bottom). Red dot depicts logic capability.

Cache cache-ic (h-tree) cache-access

L1-D 179 pJ 116 pJ

L2 675 pJ 127 pJ

L3-slice 1985 pJ 467 pJ

Table I: Cache energy per read access

which can potentially compute concurrently on cache blocks

stored in them. This enables us to exploit large scale data

level parallelism (e.g. a 16MB L3 has 512 sub-arrays and

can support 8 KB operands) dwarfing even a SIMD core.

The top row of Figure 3 shows relative energy consump-

tion for a comparison operation over several blocks of 4KB

operands (Section VI-D). In a scalar core, less than 1% of the

energy is expended on the ALU operation, while nearly three

quarters of the energy is spent in processing instructions in

the core, and one-fourth is spent on data movement. While

vector processing (SIMD) support (Figure 3 (b)) in general-

purpose and data-parallel accelerators reduce the instruction

processing overhead to some degree, it does not help address

the data movement overhead. Compute Cache architecture

(Figure 3 (c)) can reduce the instruction processing over-

heads by an order of magnitude, by supporting SIMD

operation on large operands (tens of KB). Also, it avoids

the energy and performance cost due to data movement.

In-place Compute Cache reduces on-chip data movement
overhead, which consists of two components. First, is the

energy spent on data transfer. This includes not only the

significant energy spent on the processor interconnect’s

wires and routers, but also the H-Tree interconnect used for

data transfer within a cache. A near-place Compute Cache

solution can solve the former but not the latter. As shown

in Table I, H-Tree consumes nearly 80% of cache energy

spent in reading from a 2MB L3 cache slice.

Second, is the energy spent when reading and writing in

the higher-level caches. In a conventional processor, a data

block trickles up the cache hierarchy all the way from L3

to L1 cache, and into a core’s registers, before it can be

operated upon. An L3 Compute Cache can eliminate all this

overhead. A shared L3 Compute Cache can also reduce the
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Opcode Src1 Src2 Dest Size Description

cc copy a - b n b[i] = a[i]
cc buz a - - n a[i] = 0
cc cmp a b r n r[i] = (a[i] == b[i])
cc search a k r n r[i] = (a[i] == k)
cc and a b c n c[i] = a[i] & b[i]
cc or a b c n c[i] = (a[i] || b[i])
cc xor a b c n c[i] = a[i] ⊕ b[i]
cc clmulX a b c n ci = ⊕(a[i] & b[i])
cc not a - b n b[i] =!(a[i])
a,b,c,k: addresses r:register ∀i, i ∈ [1, n] , X = [ 64/128/256 ]

Table II: Compute Cache ISA.

cost of sharing data between two cores, as it would avoid

write-back from a source core’s L1 to shared L3, and then

a transfer back to a destination core’s L1.

IV. COMPUTE CACHE ARCHITECTURE

Figure 1 illustrates the Compute Cache (CC) architecture.

We enhance all the levels in the cache hierarchy with in-

place compute capability. Computation is done at the highest

level where the application exhibits significant locality. In-

place compute is based on the bit-line computing technology

we discussed in Section II. We enhance these basic in-

place compute capabilities to support xor and several in-

place operations (copy, search, comparison, and carryless

multiplication).

In-place computing is possible only when operands are

mapped to sub-arrays such that they share the same bit-lines.

We refer to this requirement as operand locality. We discuss

a cache geometry that allows a compiler to satisfy operand

locality by ensuring that the operands are page-aligned.

Each cache controller is extended to manage the parallel

execution of CC instructions across its several banks. It also

decides the cache level to perform the computation and

fetches the operands to that level. Given that a Compute

Cache can modify data, we discuss its implication in ensur-

ing coherence and consistency properties. Finally, we discuss

design alternatives for supporting ECC in Compute Caches.

In the absence of operand locality, we propose to compute

near-place in cache. For this, we add a Logic Unit in

the cache controller. Although near-place cache computing

requires additional functional units, and cannot save H-

Tree interconnect energy inside caches, it successfully helps

reduce the energy spent in transferring and storing data in

the higher-level caches.

A. Instruction Set Architecture (ISA)

Compute Cache (CC) ISA extensions are listed in Table II.

It supports several vector instructions, whose operands are

specified using register indirect addressing. Operand sizes

are specified through immediate values and can be as large

as 16K. It supports vector copying, zeroing, and logical oper-

ations. It also supports vector carry less multiply instruction

(cc clmul) at single/double/quad word granularity.

It also supports equality comparison and search. We limit

the operand size (n) of these instructions to 64 words (512

bytes), so that the result can be returned as a 64-bit value

to a processor core’s register. For the search instruction, the

key size is set to 64 bytes. For smaller keys, the programmer

can either duplicate the key multiple times starting from the

key’s address (if its size is a word multiple), or pad the key

and source data operands to be 64 bytes.

B. Cache Sub-arrays with In-Place Compute

BLB0 BL0

Vref

WLi

WLj

SA SA SA SA

0   1

0   11 0

0   1

BLBn BLn

Destination
Enabled

Copy_Wr
Enable

Wr_Enable

D0Db0 Dn Dbn

0            1 0             1 

0                1 0               1 

Figure 4: In-place copy operation (from row i to j).

Compute Caches is made possible by our SRAM sub-

array design that facilitates in-place computation. We start

with the basic circuit framework proposed by Jeloka et
al. [2], which supports logical and and nor operations.

To a conventional cache’s sub-array, we add an additional

decoder to allow activating two wordlines, one for each

operand. The two single-ended sense amplifiers required for

separately sensing both the bit-lines attached to a bit-cell

are obtained by re-configuring the original differential sense

amplifier.

In addition to and and nor operations, we extend the

circuit to support xor operation by NOR-ing bit-line and

bit-line complement. We realize compound operations such

as compare and search by using the results of bitwise xor.

To compare two words, the individual bit-wise xor results

are combined using a wired-NOR. Comparison is utilized to

do iterative search over cache blocks stored in sub-arrays.

By feeding the result of the sense-amplifiers back to the

bit-lines, one word-line can be copied to another without

ever latching the source operand. We leverage the fact that

the last read value is same as the data to be written in the

next cycle, and coalesce the read-write operation to enable

more energy-efficient copy operation as shown in Figure 4.

By resetting input data latch before a write we can enable

in-place zeroing of a cache block.

Finally, the carryless multiplication (clmul) operation is

done using a logical and on two sub-array rows, followed

by xor reduction of all the resultant bits. This is supported

by adding a xor reduction tree to each sub-array.
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Our extensions have negligible impact on the baseline

read/write accesses as they use the same circuit as the base-

line, including differential sensing. An in-place operation

takes longer than a single read or write sub-array access, as

it requires longer word-line pulse to activate and sense two

rows to compensate for the lower word-line voltage. Sensing

time also increases due to the use of single-ended sense

amplifiers, as opposed to differential sensing. However,

note that this is still less than the delay baseline would

incur to accomplish an equivalent in-place operation, as it

would require multiple read accesses and/or write access.

Section VI-C provides the detailed delay, energy and area

parameters for compute capable cache sub-arrays.

C. Operand Locality

For in-place operations, the operands need to be physi-

cally stored in a sub-array, such that they share the same set

of bitlines. We term this requirement as operand locality. In

this section, we discuss cache organization and software con-

straints that can together satisfy this property. Fortunately,
we find that software can ensure operand locality as long as
operands are page-aligned, i.e., have the same page offset.
Besides this, the programmer or the compiler does not need
to know about any other specifics of the cache geometry.
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Figure 5: Cache organization example, address decoding

([i][j] = set i, way j), alternate address decoding for parallel

tag-data access caches

Operand locality aware cache organization: Figure 5

illustrates a simple cache with one bank each with four sub-

arrays. Rows in a sub-array share the same set of bitlines.

We define a new term, Block Partition (BP). Block par-

tition for a sub-array is the group of cache blocks in that

sub-array that share the same bitlines. In-place operation is

possible between any two cache blocks stored within a block

partition. In our example, since each row in a sub-array has

two cache blocks, there are two block partitions per sub-

array. In total, there are eight block partitions (BP0-BP7).

In-place compute is possible between any blocks that map

to the same block partition ( e.g. blocks in sets S0 and S2).

Cache Banks BP Block size Min. address bits match

L1-D 2 2 64 8

L2 8 2 64 10

L3-slice 16 4 64 12

Table III: Cache geometry and operand locality constraint.

We make two design choices for our cache organization

to simplify operand locality constraint. First, all the ways in

a set are mapped to the same block partition as shown in

Figure 5(a). This ensures that operand locality would not be

affected based on which way is chosen for a cache block.

Second, we use a portion of set-index bits to select the

block’s bank and block partition, as shown in Figure 5(b).

As long as these are the same for two operands, they are

guaranteed to be mapped to the same block partition.

Software requirement: The number of address bits that

must match for operand locality varies based on the cache

size. As shown in Table III, even the largest cache (L3) in

our model requires that only least 12 bits are the same for

two operands (we assume pages are mapped to a NUCA

slice closest to the core actively accessing them). Given that

our pages are 4KB in size, we observe that as long as the

operands are page aligned, i.e., have the same page offset,

then they will be placed in the address space such that the

least significant bits (12 for 4 KB page) in their addresses

(both virtual and physical) match. This would trivially satisfy

the operand locality requirement for all the cache levels and

sizes we study. Note that, we only require operands to be

placed at the same offset of 4KB memory regions, and it is

not necessary to place them in separate pages. For super-

pages that are larger than 4KB, operands can be placed

within a page while ensuring 12-bit address alignment.

We expect that for data-intensive regular applications that

operate on large chunks of data, it is possible to satisfy

this property. Many operating system operations that involve

copying from one page to another are guaranteed to exhibit

operand locality for our system. Compiler and dynamic

memory allocators could be extended to optimize for this

property in future.

Finally, a binary compiled with a given address bit align-

ment requirement (12 bits in our work) is portable across a

wide range of cache architectures as long as the number of

address bits to be aligned is equal to or less than what they

were compiled for. If the cache geometry changes such that

it requires greater alignment, then the programs would have

to be recompiled to satisfy that stricter constraint.

Column Multiplexing: With column multiplexing, mul-

tiple adjacent bit-lines are multiplexed to a single bit data

output, which is then observed using one sense-amplifier.

This keeps area overhead of peripherals under check and

improves resilience to particle strikes. Fortunately, in column

multiplexed sub-arrays, adjacent bits in a cache block are

interleaved across different sub-arrays such that their bitlines
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are not multiplexed. In this case, the logical block partition

that we defined would be interleaved across the sub-arrays.

Thus, an entire cache block can be accessed in parallel.

Given this, in-place concurrent operation on all the bits in a

cache block is possible even with column multiplexing.

Our design choice of placing ways of a set within a block

partition does not affect the degree of column multiplexing

as we interleave cache blocks of different sets instead.

Way Mapping vs Parallel Tag-Data Access: We chose

to place all the ways of a set within a block partition, so

that operand locality is not dependent on which way is

chosen for a block at runtime. However, this prevents us

from supporting parallel tag-data access, where all the cache

blocks in a set are pro-actively read in parallel with the

tag match. This optimization is typically used for L1 as it

can reduce the read latency by overlapping tag match with

read. But it incurs a high read energy overhead (4.7× higher

energy per access for L1 cache) for modest performance gain

(2.5% for SPLASH-2[10]). Given the significant benefits of

L1 Compute Cache, we think it is a worthy trade-off to forgo

this optimization for L1.

D. Managing Parallelism

Cache controllers are extended to provision for CC con-

trollers which orchestrate the execution of CC instructions.

The CC controller breaks a CC instruction into multiple

simple vector operations whose operands span at most a

single cache block and issues them to the sub-arrays. Since

a typical cache hierarchy can have hundreds of sub-arrays

(16MB L3 cache has 512 sub-arrays), we can potentially

issue hundreds of concurrent operations. This is only limited

by two factors. First, the bandwidth of the shared intercon-

nects used to transmit address/commands. Note that we do

not replicate the address bus in our H-tree interconnects.

Second, number of sub-arrays activated at same time can be

limited to limit peak power drawn.

The controller at L1-cache uses an instruction
table to keep track of the pending CC instructions.

The simple vector operations are kept track of in the

operation table. The instruction table tracks metadata

associated at instruction level (i.e., result, count of simple

vector operations completed, next simple vector operation

to be generated). The operation table, on other hand, tracks

status of each operand associated with the operation and

issues request to fetch the operand if it is not present in

the cache (Section IV-E). When all operands are in cache,

we issue the operation to the cache sub-array. As operations

complete they update the instruction table, and the L1-cache

controller notifies the core when an instruction is complete.

To support search instruction, CC controller replicates key

in all the block partitions where the source data resides. To

avoid doing this again for the same instruction, we track

such replications per instruction in a key table.

CORE

free
free
free

B : dirty
A : clean

free

L1

1. Core issues cc_and
to L1 controller

L2

2. L1 forwards operation to L2

4. L3 fetches C from memory

B : clean
A : clean

free

L3

3. L2 writebacks B to L3, 
forwards operation to L3

cc_and A, B, C, 8

5. L3 performs operation

6. L3 notifies L1

7. L1 controller notifies 
completion of operation 
to Core

Memory

C : clean

Set0

Set0

Set0

B : dirty

Figure 6: Compute Caches in action

Finally, if the address range of any operand of a CC in-

struction spans multiple pages, it raises a pipeline exception.

The exception handler splits the instruction into multiple CC

operations such that each of its operands are within a page.

E. Fetching In-Place Operands

The Compute Cache (CC) controllers are responsible

for deciding the level in the cache hierarchy where CC

operations need to be performed, and issuing commands

to the cache sub-array to execute them. To simplify our

design, in our study, the CC controller always performs the

operations at the highest-level cache where all the operands

are present. If any of the operands are not cached, then the

operation is performed at lowest-level cache (L3). Cache

allocation policy can be improved in future by enhancing

our CC controller with a cache block reuse predictor [11].

Once a cache level is picked, CC controller fetches any

missing operands to that level. The controller also pins

the cache-lines the operands are fetched in while the CC

operation is under way. To avoid the eviction of operands

while waiting for missing operands, we promote the cache

blocks of that operand to the MRU position in the LRU

chain. However, on receiving a forwarded coherence request,

we release the lock to avoid deadlock and re-fetch the

operand. Getting a forwarded request to a locked cache line

will be rare for two reasons. First, in DRF [12] compliant

programs, only one thread will be able to operate on a cache

block while holding its software lock. Second, as operands

of a single CC operation are cache block wide, false sharing

will be low. Nevertheless, to avoid starvation in pathological

scenarios, if CC operation fails to get permission after

repeated attempts (set to two), processor core will translate

and execute a CC operation as RISC operations.

Figure 6 shows a working example. Core issues operation
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cc and with address operands A, B and C to L1 controller

( 1 ). Each is of size 64 bytes (8 words) spanning an entire

cache block. For clarity, only one cache set in each cache

level is shown. None of the operands are present in L1 cache.

Operand B is in L2 cache and is dirty. L3 cache has clean

copy of A and a stale copy of B. C is not in any cache.

L3 cache is chosen for the CC operation, as it is the

highest cache level where all operands are present. L1 and

L2 controllers will forward this operation to L3 ( 2 , 3 ).

Before doing so, L2 cache will first write-back B to L3.

Note that caches already write-back dirty data to next cache

level on eviction and we use this existing mechanism.

On receiving the command, L3 fetches C from memory

( 4 ). Note that, as an optimization, C need not be fetched

from memory as it will be over-written entirely. Once all

the operands are ready, L3 performs the CC operation ( 5 )

and subsequently notifies the L1 controller ( 6 ) of it’s

completion, which in turn notifies the core ( 7 ).

F. Cache Coherence

Compute Cache optimization interacts with the cache

coherence protocol minimally and as a result does not

introduce any new race conditions. As discussed above,

while the controller locks cache lines while performing CC

operation, on receipt of a forwarded coherence request, the

controller releases the lock and responds to the request.

Thus, a forwarded coherence request is always responded

to in cases where it would be responded to in the baseline

design.

Typically, higher-level caches writeback dirty data to the

next-level cache on evictions. Coherence protocols already

support such writebacks. In the Compute Cache architecture,

when a cache level is skipped to perform CC operations, any

dirty operands in the skipped level need to be written back

to next level of cache to ensure correctness. To do this, we

use the existing writeback mechanism and thus require no

change to the underlying coherence protocol.

G. Consistency Model Implications

Current language consistency models (C++ and Java) are

variants of the DRF model [12], and therefore a processor

only needs to adhere to the RMO memory model. While

ISAs providing stronger guarantees (x86) exist, they can

be exploited only by writing assembly programs. As a

consequence, while we believe stronger memory model

guarantees for Compute Caches is an interesting problem

(to be explored in future work), we assume RMO model

in our design. In RMO, no memory ordering is needed

between data reads and writes, including all CC operations.

Individual operations within a vector CC instruction can also

be performed in parallel by the CC controller.

Programmers use fence instructions to order memory

operations, which is sufficient in the presence of CC in-

structions. Processor stalls commit of a fence operation until

preceding pending operations are completed, including CC

operations. Similar to conventional vector instructions, it is

not possible to specify a fence between scalar operations

within a single vector CC instruction.

H. Memory Disambiguation and Store Coalescing

Similar to SIMD instructions, Compute Cache (CC) vec-

tor instructions require additional support in the processor

core for memory ordering. We classify instructions in CC

ISA into two types. CC-R type (cc_cmp, cc_search)

only read from memory. The rest of the instructions are

CC-RW type as they both read and write from memory.

Under RMO memory model, CC-R can be executed out-of-

order, whereas CC-RW behaves like a store. In the following

discussion, we refer to CC-R as load, and CC-RW as store.

Conventional processor cores use a load-store queue

(LSQ) to check for address conflicts between a load and

the preceding uncommitted stores. As vector instructions

can access more than a word, it is necessary to enhance the

LSQ with the support for checking address ranges, instead of

just one address. For this reason, we use a dedicated vector

LSQ, where each entry has additional space to keep track

of address ranges for the operands of a vector instruction.

Similar to LSQ, we also split the store buffer into two, one

for scalar stores and another for vector stores. The vector

store buffer supports address range checks (max 12 com-

parisons/entry). Our scalar store buffer permits coalescing.

However, it is not possible to coalesce CC-RW instructions

with any store, because their output is not known till they

are performed in a cache. As the vector store buffer is non-

coalescing, it is possible for the two store buffers to contain

stores to the same location. If such a scenario is detected,

the conflicting store is stalled until the preceding store is

complete which ensures program order between stores to

the same location. We augment the store buffer with a field

which points to any successor store and a stall bit. The stall

bit is reset when the predecessor store completes.

Data values are not forwarded from vector stores to any

loads, or from any store to a vector load. Code segments

where both vector and scalar operations access the same

location within a short time span is likely to be rare. If

such a code segment is frequently executed, the compiler

can choose to not employ Compute Cache optimization.

I. Error Detection and Correction

Systems with strong reliability requirements employ Error

Correction Codes (ECC) for caches. ECC protection for

conventional and near-place operations are unaffected in our

design. For cc copy simply copying ECC from source to

destination suffices. For cc buz, ECC of zeroed blocks can

be updated. For comparison and search, ECC check can be

performed by comparing the ECCs of the source operands.

An error is detected if data bits match, but the ECC bits

don’t, or vice versa.
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For in-place logical operations (cc and, cc or, cc xor,

cc clmul, and cc not), it is challenging to perform the

check and compute the ECC for the result. We propose two

alternatives. One alternative is to read out the xor of the two

operands and their ECCs, and check the integrity at the ECC

logic unit (ECC(A xor B) = ECC(A) xor ECC(B)).
This unit also computes the ECC of the result. Our sub-

array design permits computing the xor operation alongside

any logical operation. Although the logical operation is still

done in-place, this method will incur extra data transfers to

and from the ECC logic unit. Cache scrubbing during cache

idle cycles [13] is a more attractive option. Since soft errors

in caches are infrequent (0.7 to 7 errors/year [14]), periodic

scrubbing can be effective while keeping performance and

energy overheads low.

J. Near-Place Compute Caches

In the absence of operand locality, we propose to compute

instructions “near” the cache. Our controller is provisioned

with additional logic units (not arithmetic units) and registers

to temporarily store the operands. The source operands

are read from the cache sub-array into the registers at the

controller, and then computed results are written back to the

cache. In-place computation has two benefits over near-place

computation. First, it provides massive compute capability

for almost no additional area overhead. For example, a 16

MB L3 with 512 sub-arrays allows 8KB of data to be

computed in parallel. To support equivalent computational

capability, we would need 128 vector ALUs, each of width

64-bytes. This is not a trivial overhead. We assume one

vector logic unit per cache controller in our near-cache

design. Second, in-place compute avoids data transfer over

H-Tree wires. This reduces in-place compute latency (14

cycles) compared to near-cache (22 cycles). Also, 60%-80%

of total cache read energy is due to H-Tree wire transfer (See

Table I), which is eliminated with in-cache computation.

Nevertheless, near cache computing retains the other benefits

of Compute Caches, by avoiding transferring data to the

higher-level caches and the core.

V. APPLICATIONS

Our Compute Cache design supports simple but common

operations, which can be utilized to accelerate diverse set of

data intensive applications.

Search and Compare Operations: Compare and search

are common operations in many emerging applications,

especially text processing. Intel recently added seven new

instructions to the x86 SSE 4.2 vector support that effi-

ciently perform character searches and comparison [15]. The

Compute Cache architecture can significantly improve the

efficiency of these instructions. Similar to specialized CAM

accelerators [16], our search functionality can be utilized to

speed up applications such as, search engines, decision tree

training and compression and encoding schemes.

Configuration 8 core CMP

Processor 2.66 GHz out-of-order core, 48 entry LQ, 32 entry SQ

L1-I Cache 32KB, 4-way, 5 cycle access

L1-D Cache 32KB, 8-way, 5 cycle access

L2 Cache inclusive, private, 256KB, 8-way,11 cycle access

L3 Cache inclusive, shared, 8 NUCA slices, 2MB each, 16-way, 11
cycle + queuing delay

Interconnect ring, 3 cycle hop latency, 256-bit link width

Coherence directory based, MESI

Memory 120 cycle latency

Table IV: Simulator Parameters

Logical Operations: Compute Cache logical operations

can speedup processing of commonly used bit manipulation

primitives such as bitmaps. Bitmaps are used in graph and

database indexing/query processing. Query processing on

databases with bitmap indexing requires logical operation on

large bitmaps. Compute Caches can also accelerate binary

bit matrix multiplication (BMM) which has uses in numerous

applications such as error correcting codes, cryptography,

bioinformatics, and Fast Fourier Transform (FFT). Given its

importance, it was implemented as a dedicated instruction

in Cray supercomputers [17] and Intel processors provision

a x86 carryless multiply (clmul) instruction to speed it.

Inherent cache locality in matrix multiplication makes BMM

suitable for Compute Caches. Further, our large vector

operations can allow BMM to scale to large matrices.
Copy Operation: Prior research [7] makes a strong

case for optimizing copy performance which is a common

operation in many applications in system software and ware-

house scale computing [18]. The operating system spends a

considerable chunk of its time (more than 50%) copying bulk

data [19]. For instance copying is necessary for frequently

used system calls like fork, inter-process communication,

virtual machine cloning and deduplication, file system and

network management. Our copy operation can accelerate

checkpointing, which has a wide range of uses, including

fault tolerance and time-travel debugging. Finally, our copy

primitive can also be employed in bulk zeroing which is an

important primitive required for memory safety [20].

VI. EVALUATION

In this section we demonstrate the efficacy of Compute

Caches (CC) using both micro-benchmark study and a suite

of data-intensive applications.

A. Simulation Methodology
We model a multi-core processor using SniperSim [21],

a Pin-based simulator per Table IV. We use McPAT [22] to

model power consumption in both cores and caches.

B. Application Customization and Setup
In this section we describe how we redesigned applica-

tions in our study to utilize CC instructions.
WordCount: WordCount [23] reads a text file (10MB)

and builds a dictionary of unique words and their fre-

quency of appearance in the file. While the baseline does
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a binary search over the dictionary to check if a new

word is found, we model the dictionary as alphabet in-

dexed (first two letters of word) CAM (1KB each). As the

dictionary is large (719KB) we perform search operations

in L3 cache. CC search instruction returns a bit vector

indicating match/mismatch for multiple words and hence

we also model additional mask instructions which report

match/mismatch per word.

StringMatch: StringMatch [23] reads words from a text

file (50MB), encrypts them and compares them to a list of

encrypted keys. Encryption cannot be offloaded to cache,

hence, encrypted words are present in L1-cache and we

perform CC search in it. By replicating an encrypted key

across all sub-arrays in L1, a single search instruction can

compare it against multiple encrypted words. Similar to

WordCount we also model mask instructions.

DB-BitMap: We also model FastBit [24] a bitmap index

library. The input database index is created using data sets

obtained from a real physics experiment, STAR [25]. A

sample query performs logical OR or AND of large bitmap

bins (several 100 KBs each). We modify the query to use

cc or operations ( each processes 2KB of data). We measure

average query processing time for a sample query mix

running over uncompressed bitmap indexes.

BMM: Our optimized baseline BMM implementation

(Section V) uses blocking and x86 CLMUL instructions.

Given the reuse of matrix we perform cc clmul in L1-cache.

We model 256× 256 bit matrices.

Checkpointing: We model in-memory copy-on-write

checkpointing support at page granularity for SPLASH-

2 [10] benchmark suite (checkpointing interval of 100,000

application instructions).

C. Compute Sub-Array: Delay and Area Impact

Compute Caches have negligible impact on the baseline

read/write accesses as we still support differential sensing.

To get delay and energy estimates, we perform SPICE

simulations on a 28nm SOI CMOS process based sub-array,

using standard foundry 6T bit-cells. 1 A and/or/xor 64-byte

in-place operation is 3× longer as compared to single sub-

array access while rest of CC operations are 2× longer. In

terms of energy, cmp/search/clmul are 1.5×, copy/buz/not

are 2×, and the rest are 2.5× baseline sub-array access. The

area overhead is 8% for a sub-array of size 512 × 512 2.

Note, our estimates account for technology variations and

process, voltage and temperature changes. Further, these

estimates are conservative when compared to measurements

on silicon [2] in order to provision for robust margin against

1SRAM arrays we model are 6T cell based. Lower-level caches (L2/L3)
are optimized for density and employ 6T-based arrays. However, L1-cache
can employ 8T cell based designs. To support in-place operations in such
a design, a differential read-disturb resilient 8T design [26] can be used.

2The optimal sub-array dimension for L3 and L2 caches we model are
512× 512 and 128× 512 bits respectively.

cache write read cmp copy search not logic

L3 2852 2452 840 1340 3692 1340 1672

L2 1154 802 242 608 1396 608 704

L1 375 295 186 324 561 324 387

Table V: Cache energy (pJ) per cache-block (64-byte)

read disturbs and to account for circuit parameter variation

across technology nodes.

We use the above parameters in conjunction with energy

per cache access from McPAT to determine the energy of CC

operations (Table V). CC operations cost higher in lower-

level caches as they employ larger sub-arrays. However, they

do deliver higher savings (compared to baseline read/write(s)

needed) as they have larger in-cache interconnect compo-

nents. For search, we assume a write operation for key; this

cost will get amortized over large searches.

D. Microbenchmark Study

To demonstrate the efficacy of Compute Caches we model

four microbenchmarks: copy, compare, search and logical-

or. We compare Compute Caches to a baseline(Base 32)

which supports 32-byte SIMD loads and stores.

Figure 7 (a) depicts the throughput attained for different

operations for operand size of 4KB. For this experiment,

all operands are in L3 cache and the Compute Cache

operation is performed therein. Among the operations, for

baseline, search achieves highest throughput as it incurs

single cache miss for the key and subsequent cache misses

are only for data. Compute Cache accelerates throughput

for all operations: 54× over Base 32 averaged across the

four kernels. Our throughput improvement has two primary

sources: massive data parallelism exposed in presence of

independent sub-arrays to compute in, and latency reduction

due to avoiding data movement to the core. For instance, for

copy operation, data parallelism exposes 32× and latency

reduction exposes 1.55× throughput improvement.

Figure 7 (b) depicts the dynamic energy consumed for

operand size of 4KB. Dynamic energy depicted is broken

down into core, cache data access (cache-access), cache

interconnect (cache-ic) and network-on-chip (noc) compo-

nents. We term data movement energy to be everything

except the core component. Overall, CC provides dynamic

energy savings of 90%, 89%, 71% and 92% for copy, com-

pare, search and logical (OR) kernels relative to Base 32.

Large vector CC instructions help bring down core com-

ponent of energy. Further, CC successfully eliminates all

the components of data movement. Writes incurred due to

key replication limit efficacy of search CC operation in

bringing down L3 cache energy components. As data size

to be searched increases, key replication overheads will get

amortized increasing effectiveness of CC.

Figure 7 (c) depicts total energy consumed broken down

into static and dynamic components. Due to reduction in

execution time, CC can significantly reduce static energy.
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Figure 7: Benefit of CC for 4KB operand. a) Throughput b) Dynamic energy c) Total energy
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b) Savings in dynamic energy for 4KB operand for different cache levels
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Figure 9: a) Total energy benefit b) Per-

formance improvement of CC for appli-

cations

Overall, averaged across the four kernels studied, CC pro-

vides 91% in total energy savings relative to Base 32.

Near-place design: In our analysis so far, we have

assumed perfect operand locality i.e. all Compute Cache

operations are performed in-place. Figure 8 (a) depicts the

total energy for near-place and in-place CC configurations.

Recall that in-place computation enables far more paral-

lelism than near-place and offers larger savings in terms of

performance and hence total energy. For example, our L3-

cache allows 8KB data to be operated in parallel. Near-place

design would need 128 64-byte wide logical units to provide

equivalent data parallelism. This is not a trivial overhead.

As such, for 4KB operands, in-cache provides 3.6× total

energy savings and 16× throughput improvement on average

over near-place. Note however that, near-place can still offer

considerable benefits over the baseline architecture.

Computing at different cache levels: We next evaluate

the efficacy of Compute Caches when operands are present

in different cache levels. Figure 8 (b) depicts the difference

in dynamic energy between CC configurations and their

corresponding Base 32 configurations. As expected, the

absolute savings are higher, when operands are in lower-

level caches. However, we find that doing Compute Cache

operations in L1 or L2 cache can also provide significant

savings. As the number of CC instructions stays same

regardless of cache level, core energy savings is equal for

all cache levels. Overall, CC provides savings of 95% and

34% for L1 and L2 caches respectively relative to Base 32.

E. Application Benchmarks

In this section we study the benefits of Compute Caches

for five applications. Figure 9 (b) shows the overall speedup

of Compute Caches for four of these applications. We see

a performance improvement of 2× for WordCount, 1.5×
for StringMatch, 3.2× for BMM, and 1.6× for DB-BitMap.

Figure 9 (a) shows ratio of total energy of CC to baseline

processor with 32-byte SIMD units. We observe average

energy savings of 2.7× across these applications. Majority

of benefits come from three sources: data parallelism ex-

posed by large vector operations, reduction in number of

instructions and data movement.

For instance, recall that while baseline WordCount does

a binary search over dictionary of unique words, Compute

Cache does a CAM search using cc search instructions.

Superficially it may seem that binary search will outperform

CAM search. However, we find that CC version has 87%

fewer instructions by doing away with book keeping instruc-

tions of binary search. Further, our vector cc search enables

energy efficient CAM searches. These benefits are also

evident in StringMatch, BMM and DB-BitMap (32%, 98%

and 43% instruction reduction respectively). The massive

data level parallelism we enable benefits data intensive

range and join queries in DB-BitMap application. Recall

that this benchmark performs many independent logical OR
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Figure 11: Total energy with and without checkpointing

operations over large bitmap bins. Since these operations are

independent, many of them can be issued in parallel.

Significant cache locality exhibited by these applications

makes them highly suitable for Compute Caches. As cache

accesses are cheaper than memory accesses, computation in

cache is more profitable for data with high locality or reuse.

The dictionary in WordCount has high locality. BMM has

inherent locality due to the nature of matrix multiplication.

In DB-BitMap, there is significant reuse within a query due

to aggregation of results into a single bitmap bin, and there

is potential reuse of bitmaps across queries. In StringMatch,

locality comes due to repeated use of encrypted keys.

Figure 10 depicts the overall checkpointing overhead for

SPLASH-2 applications as compared to baseline with no

checkpointing. In absence of SIMD support, this overhead

can be as high as 68% while in presence of it the average

overhead is 30%. By further reducing instruction count and

avoiding data movement, CC brings down this overhead to a

mere 6%. CC successfully relegates checkpointing to cache,

avoids data pollution of higher level caches and relieves the

processor of any checkpointing overhead. Figure 11 shows

significant energy savings due to Compute Caches. Note

that, for checkpointing, all operations are page-aligned and

hence we achieve perfect operand locality.

VII. RELATED WORK

Past processing-in-memory (PIM) solutions move com-

pute near the memory [6]. This can be accomplished using

recent advancements in 3D die-stacking [8]. There have

also been few proposals that talk about adding hardware

structures near the cache, which track information that helps

improve efficiency of copy [5] and atomic operations [27].

Associative processor [28] uses CAMs (area and energy inef-

ficient compared to SRAM caches) as caches and augments

more logic around CAM to orchestrate computation on them.

None of these solutions exploit the benefits of in-place bit-

line computing cache noted in Section III. We get massive

number of compute units by re-purposing cache elements

that already exist. Also, in-place Compute Cache reduces

data movement overhead between a cache’s sub-arrays and

its controller. On the flip side, in-place cache computing

imposes restrictions on the type of operations that can be

supported and placement of operands, which we address

in the paper. When in-place operation is not possible, we

used near-place Compute Cache for copy, logical, and search

operations, which has also not been studied in the past.

Row-clone [7] enabled data copy from a source DRAM

row to a row buffer and then to a destination row. Thereby,

it avoided data movement over the memory channels. A

subsequent CAL article [29] suggested that data could be

copied to a temporary buffer in DRAM, from where logical

operations could be performed. Row-clone’s approach is also

a form of near-place computing, which requires that all

operands are copied to new DRAM rows before they can

be operated upon. Bit-line in-place operations may not be

feasible in DRAM, as DRAM reads are destructive (one of

the reasons why DRAMs need refreshing).

Recent research enhanced non-volatile memory technol-

ogy to support certain in-memory CAM [16] and bitwise

logic operations [30]. Compute Cache architecture is more

efficient when at least one of the operands has cache locality

(e.g., dictionary in word count). Ultimately, the locality

characteristics of an application should guide in which level

of memory hierarchy the computation must be performed.

Bit-line computing in SRAMs has been used to implement

custom accelerators: approximate dot products in analog

domain for pattern recognition [31] and CAMs [32]. How-

ever, it has not been used to architect a compute cache

in a conventional cache hierarchy, where we need general

solutions to problems such as operand locality, coherence

and consistency which are addressed in this paper. We also

demonstrated the utility of our Compute Cache enabled

operations to accelerate a fairly diverse range of applications

(databases, cryptography, data analytics).

VIII. CONCLUSION

In this paper we propose the Compute Cache (CC) ar-

chitecture which unlocks hitherto untapped computational

capability present in on-chip caches by exploiting emerging

SRAM circuit technology. Using bit-line computing enabled

caches, we can perform several simple operations in-place in

cache over very-wide operands. This exposes massive data

parallelism saving instruction processing, cache interconnect

and intra-cache energy expenditure. We present solutions

to several challenges exposed by such an architecture. We

demonstrate the efficacy of our architecture using a suite of

data intensive benchmarks and micro-benchmarks.
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