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Deep learning has proven to be a powerful tool for a wide range of applications,
such as speech recognition and object detection, among others. Recently there
has been increased interest in deep learning for mobile IoT [1] to enable
intelligence at the edge and shield the cloud from a deluge of data by only
forwarding meaningful events. This hierarchical intelligence thereby enhances
radio bandwidth and power efficiency by trading-off computation and
communication at edge devices. Since many mobile applications are “always-on”
(e.g., voice commands), low power is a critical design constraint. However, prior
works have focused on high performance reconfigurable processors [2-3]
optimized for large-scale deep neural networks (DNNs) that consume >50mW.
Off-chip weight storage in DRAM is also common in the prior works [2-3], which
implies significant additional power consumption due to intensive off-chip data
movement. 

We introduce a low-power, programmable deep learning accelerator (DLA) with
all weights stored on-chip for mobile intelligence. Low power (<300μW) is
achieved through 4 techniques: 1) Four processing elements (PEs) are located
amidst the weight storage memory of 270kB, minimizing data movement
overhead; 2) A non-uniform memory hierarchy provides a trade-off between small,
low-power memory banks for frequently used data (e.g., input neurons) and
larger, high density banks with higher power for the large amount of infrequently
accessed data (e.g., synaptic weights). This exploits the key observation that deep
learning algorithms can be deterministically scheduled at compilation time,
predetermining optimal memory assignments and avoiding the need for traditional
caches with significant power/area overhead; 3) A 0.6V 8T custom memory is
specifically designed for DNNs with a sequential access mode, bank-by-bank
drowsy mode control, power-gating for peripheral circuits, and voltage clamping
for data retention; 4) Highly flexible and compact memory storage is realized via
independent control of reconfigurable fixed-point bit precision ranging from 6–
32b for neurons and weights. These techniques were implemented into a complete
deep learning processor in 40nm CMOS, including the DLA, an ARM Cortex-M0
processor, and MBus [4] interface to enable integration into a complete sensor
system (Fig. 14.7.1). The DLA consumes 288μW and achieves 374GOPS/W
efficiency. We demonstrate full system operation for two mobile-oriented
applications, keyword spotting and face detection. 

In the DLA, a non-uniform memory access (NUMA) architecture is carefully
designed to strike a balance between memory area and access energy. Fig. 14.7.1
shows that smaller SRAM banks have lower access energy with relatively worse
density, while the opposite is true for larger banks. The number of NUMA
hierarchical levels and the memory size of each hierarchy were determined via
extensive simulations that analyzed NUMA configurations for various DNN
topologies. In the proposed architecture, NUMA memory has 67.5kB in total with
four banks in each level of hierarchy. Unit bank sizes are 0.375, 1.5, 3, and 12kB
(Fig. 14.7.1). The DLA operations are optimized for implementing the fully-
connected layer (FCL) in deep neural networks. The FCL performs matrix-vector
multiplication, offset addition, and a non-linear activation function. The proposed
NUMA architecture leverages the energy efficiency of the NUMA architecture by
partitioning a large FCL to form multiple smaller ‘tiles’ to optimally fit in the
proposed NUMA architecture (Fig. 14.7.2). A matrix-vector tile uses the same
input vector for all rows. Therefore, we strategically map the input vector to the
nearest local memory so that the DLA can reuse it as many times as possible
once loaded. An example of NUMA-based FCL computation is illustrated in Fig.
14.7.2, where a weight (W) matrix is first partitioned into two tiles, input neurons
for each tile are then loaded to nearby memory, and finally the output neurons of
each tile are accumulated using local memory. Infrequently accessed W tiles are
loaded from dense (but higher access energy) upper hierarchy memory. At

compilation time, the optimal memory access pattern is statically scheduled, and
corresponding W matrix tiling is determined to maximize energy efficiency by
exploiting NUMA. Simulations show that combining NUMA with the tiling strategy
for 4 PEs leads to >40% energy saving with 2% area overhead compared to UMA
(unit bank = 16kB) for the same tasks and total memory capacity (Fig. 14.7.1).
The tiling approach exploiting NUMA locality is also used to perform energy
efficient FFT operations by the DLA. By incorporating FFT operations, the DLA can
support convolutional layers by transforming convolution to a matrix-vector
multiplication in the frequency domain.  

Figure 14.7.3 shows the overall DLA architecture. The DLA has four PEs
surrounded by their memory with a 4-level NUMA architecture (Fig. 14.7.4). Each
PE has an instruction buffer, status register, data buffers, controller, ALU, memory
address mapping unit, and memory arbitration unit. Data buffers perform data
unpacking (packing) from (to) 96b to enable configurable data precisions;
6/8/12/16b for weights and neurons, and 16/24/32b for accumulation, which are
shifted and truncated when stored as next layer neuron inputs. The PE is
programmed by two ping-pong CISC instruction registers, which are 192b long
including start address, size, precision, and operation-specific flags. The
reconfigurable PE CISC operations are: 1) FCL processing, 2) FFT, 3) data-block
move, and 4) LUT-based non-linear activation function. The memory address
mapping unit and memory arbitration unit in each PE governs prioritized memory
access arbitration, enabling a PE to access another PE’s memory space. PEs can
be programmed via offline scheduling optimization to avoid memory access
collisions and contamination. The DLA operation sequence is controlled by the
Cortex-M0, which loads data and instructions into PE memory. As a PE instruction
can take many cycles to complete, the Cortex-M0 supports clock-gating and it
wakes upon PE completion. An external host processor can program the Cortex-
M0 and DLA using a serial bus interface.

PE NUMA memory uses custom SRAM banks with a HVT 8T bitcell for low
leakage.  Each bank consists of sub-arrays to share an address decoder and read-
out circuits for access power reduction (Fig. 14.7.4). PE memory uses gating
circuits to prevent unnecessary signal switching in hierarchical memory accesses.
That is, lower level memory access signals do not propagate to higher levels (Fig.
14.7.4). The optimal tiling and deterministic scheduling allow further optimization
of the memory address decoder using a sequential access mode. Given that only
a few banks are actively accessed in a specific PE while the others stay idle during
the majority of processing time (due to the static tiling schedule), we employ a
dynamic drowsy mode for SRAM leakage reduction. Each PE dynamically controls
power gating and clamping headers of SRAM peripheral circuits and arrays, bank-
by-bank based on the schedule (Fig. 14.7.4). During drowsy mode, peripherals
are power-gated, but array voltage is clamped with an NMOS header and a
programmable on-chip VREF to ensure data retention. 

Measurement results of the 40nm CMOS test chip confirm effectiveness of the
proposed NUMA and drowsy mode operation (Figs. 14.7.5, 14.7.6). Measured
data access power consumption in L1 is 60% less than in L4. Memory drowsy-
mode operation reduces leakage by 54%, which is mainly attributed to peripheral
circuits as the bitcell is inherently low leakage. The test chip achieves peak
efficiency of 374GOPS/W while consuming 288μW at 0.65V and 3.9MHz. Keyword
spotting (10 keywords) and face detection (binary decision) DNNs are successfully
ported onto the proposed DLA with layer dimensions and precision mapping
specified in Fig. 14.7.6. Both DNN classifications fit into the 270kB on-chip
memory and exhibit <7ms latency, allowing for real-time operation. Fig. 14.7.6
compares against state-of-the-art prior work and Fig. 14.7.7 shows the die photo. 
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Figure 14.7.1: SRAM area and access energy trade-off (top left). Proposed
NUMA memory for a PE (top right). Area and energy comparison with UMA &
NUMA and proposed techniques (bottom).

Figure 14.7.2: A neural network with fully-connected layers (top left). Proposed
tiling of fully-connected layer (top right). Proposed operation sequence of fully-
connected layer (bottom).

Figure 14.7.3: Top-level diagram of proposed deep learning accelerator (DLA)
(left). DLA PE instruction example (top). DLA PE block diagram (right).

Figure 14.7.5: Memory access power consumption (top left). Memory leakage
power comparison (top right). SRAM bank leakage break-down (bottom left).
Performance and efficiency across voltage (bottom right).

Figure 14.7.6: Performance summary for neural networks with a variety of layer
specification (top). Comparison table (bottom).

Figure 14.7.4: PE NUMA memory floorplan with signal gating circuits (left). L4
bank floorplan (top right). Power-gates and clamping headers, and dynamic
drowsy mode operation (bottom right).
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Figure 14.7.7: Die photo.


