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Abstract 
We present a complete, fully functional energy-autonomous audio 

sensor node with 6×5×4mm3 form factor. The system uses a new au-
dio processing IC integrated with a MEMS microphone, general pur-
pose 32-bit processor, 8Mb Flash, RF transceiver with custom 3D an-
tenna, PV cells for energy harvesting 
processing IC performs audio acquisition with 4-32× compression. 
The complete stand-alone system achieves 38mins of speech record-
ing and energy-autonomous operation in room light. 

Introduction 
Realizing a millimeter-scale audio processing platform enables a 

number of new IoT applications such as distributed audio recording, 
event logging, and security monitoring. While several efforts [1-2] 
have sought to miniaturize audio sensors, their centimeter-scale vol-
ume and >20mW power severely limit use as an unobtrusive, self-
powered sensing node. This work is the first to demonstrate a fully 
functional and self-contained audio sensor node in millimeter-scale 
size including recording, storage and transmission of the recording 
over a 20m wireless link all when operating on a 16 -film bat-
tery. The complete audio sensor is enabled by stacked-die integration 
of a new audio processing IC with other system components. The au-
dio IC consumes only 4.7  for signal acquisition and compression. 

Audio Processing IC 
Fig. 1 shows the architecture of the proposed audio processing IC 

that integrates AFE, ADC and compression engine. The AFE and 
ADC operate at 1.4V and 0.9 V respectively, directly provided by on-
chip LDOs from the battery (3.6-4.2V) to decouple them from the 
noisy digital supply. The compression engine operates at 0.6V with 
standard Vth transistors. These logic blocks are power gated in sleep 
mode. The 1.2V bus controller and configuration register file are al-
ways on and thus use high Vth devices, reducing leakage.  

The AFE shown in Fig. 2 consists of LNA, variable gain amplifier 
(VGA) and charge pump. The charge pump biases the MEMS trans-
ducer at 10V. The LNA gain (29dB) is set by CM/CF1, and the gain 
and bandwidth of VGA are tuned by CI2 and CL2, respectively. RF1, 2 
sets input common mode voltage and removes offset. To maximize 
noise efficiency, OTA1 and OTA2 use inverter-based cascode ampli-
fier and their input-pair transistors operate in subthreshold region. Fig. 
2 shows measured input referred noise (IRN) spectrum of AFE with 
the MEMS transducer. The LNA and VGA consume 1.54μW and 
1.11μW, respectively, to achieve 20.1μVrms IRN with 4kHz of band-
width. The 8bit synchronous SAR ADC (Fig. 2) operates on two sep-
arate clocks: an 8kHz clock (CLK_S) for sample and hold obtained 
from a 32kHz crystal and an inaccurate 150kHz clock (CLK_F) for 
internal ADC control from a power-efficient RO at 0.6V.  

Compression of the audio stream is critical to minimize Flash stor-
age size, access power and RF transmission power. In the proposed 
compression algorithm (Fig. 3 (a)), incoming samples are first con-
verted to the frequency domain using polyphase subband filtering. 
The power of each subband is accumulated during 1 frame (6 samples) 
and then N subbands with the highest power are selected. All sub-
bands whose power is lower than a programmable threshold are elim-
inated. To reduce power, we apply a mathematically-equivalent but 
computationally efficient polyphase quadrature filtering (PQF) [3] 
that uses inverse FFT for its inverse discrete cosine transform (Fig. 3 
(d)). Complexity is reduced by 94% in total from this algorithm opti-
mization as shown in Fig. 3 (c). A comparison between the proposed 
and other off-the-shelf algorithms is shown in Fig. 3 (b). Maintaining 
similar sound quality, the proposed algorithm has 1000× lower com-
plexity than CELP and 3.9× better compression than ADPCM. 

The compression engine architecture is shown in Fig. 4. The pro-
posed PQF operates on 512 consecutive samples. Data streaming is 

handled in a block basis using a 32-entry FIFO. Until the next block 
shift, registers are clock gated, resulting in 32× power reduction. We 
observe that 25% of PQF coefficients are zero, allowing us to inacti-
vate unused samples. Compression is performed in a frame basis with 
clock gating to avoid unnecessary data switching on shared data bus, 
buffers and computation logic (59% power reduction; simulated). The 
proposed sorting unit uses a tree structure (Fig. 5) where all PEs com-
pare and forward their inputs in the 1st cycle to obtain the top result. 
Then, in each subsequent cycle the winning PE zeros its value and 
only its path is updated to produce the next highest values. Compared 
with a conventional parallel sorter, such as bitonic, this implementa-
tion shows 42% less dynamic energy for sorting top 16 out of 32. Af-
ter pruning, subband power values are log-domain quantized with 
leading-one detector, implemented with round approximation.  

Complete Integrated System 
The complete system (Fig. 6) consists of 6 heterogeneous stacked 

ICs: 1) The proposed audio processor acquires and compresses audio 
signal. 2) 8Mb of custom embedded Flash [4] stores compressed audio 
at 120pJ/bit. 3) An RF transceiver co-designed with a 3D antenna [5] 
communicates with a gateway up to 20m away. 4) The energy har-
vester charges the battery using stacked photovoltaic (PV) cells [6] 
and also protects it from reverse current. 5) The power management 
unit [7] converts battery voltage to 1.2V and 0.6V to provide multiple 
voltage domains to the ICs. 6) An ARM Cortex M0 processor coordi-
nates system operation and enables additional signal processing such 
as event detection. The stacked ICs communicate via ultra-low power 
Mbus [8]. The system integration strategy is carefully devised to 
achieve minimal volume. On the bottom side of a custom 6×5 mm2 
PCB substrate, we stack 2 rechargeable thin-film Li batteries together 
with ICs. We place a MEMS transducer directly adjacent to the 
stacked ICs to minimize the system volume and improve SNR by lim-
iting the parasitic capacitance between the transducer and Audio IC. 
A 3D-printed custom lid covers all electronics, including a 32kHz 
crystal and 3 caps for the RF transceiver to generate an acoustic back 
chamber. By combining the cavity for the sound chamber with the 
location of all electronics, system volume is aggressively reduced and 
also protects the electronics from light. At the same time, air volume 
is also increased compared to a commercial package which improves 
the  sensitivity and low frequency response. The top side 
contains a sound hole for air passage, and a 3D magnetic dipole an-
tenna. The magnetic dipole does not require physical separation from 
the electronics, further enabling compact integration. PV cells are 
mounted on top of the antenna and covered with clear epoxy to pro-
vide protection while allowing light to reach the PV cells.  

Measurements 
The proposed audio processing IC is fabricated in 180nm CMOS. 

Measured A-weighted input referred noise of AFE 
2), showing 61dBA of SNR at 94dBSPL (1kHz) input sound. As 
shown in Fig. 7, the proposed IC compresses audio signals with a var-
iable rate, >15x for speech, enabling 38mins of recording with 8Mb 
custom Flash. Measured compression ratio and quality tradeoff is con-
trolled by N (Fig. 8) and power threshold setting. The audio pro-
cessing IC consumes including from the compres-
sion engine (Fig. 9). Fully functional operation, including audio ac-
quisition, compression, storage and RF transmission, of a mm-scale 
unit identical to that pictured in Fig. 6 was demonstrated when oper-
ating stand-alone powered only by its internal battery and energy har-
vesting. Measured power profile of the stand-alone operation is shown 
in Fig. 11. With harvesting from 2.6×3mm2 PV cell (1klux), 10.5hr of 
charge recovery time is needed after 38mins of recording. The meas-
ured RF transmission power is 79 , and the system sleep power is 
7.2nW. Measured system parameters are summarized in Fig. 12. 
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Fig. 3. (a) Proposed compression algorithm and (b) performances with comparison;  (c) The complexity reduction and (d) principles of optimization.

Fig. 4. Proposed compression engine architecture with power reduction techniques.

Fig. 2. Analog front-end (AFE), ADC and the measured input referred 
noise spectrum of AFE (bottom right).  

Fig. 1. Overall architecture of audio processing IC.

Fig. 7. Measured compression 
engine performance (averaged).
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Fig. 5. Proposed sorting unit.

Fig. 8. Measured compression 
ratio vs. sound quality trade-off. 

Fig. 10. Die photo.

Fig. 12. Performance summary of Audio IC (left) 
and the complete sensor system (right).

Fig. 11. Measured power profile of audio sensor node. 

Fig. 9. Measured power 
breakdown of Audio IC.
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Fig. 6. The 6 5 4mm3 audio sensor node: 
(a) cross sectional diagram, (b) top-facing 

view, and (c) bottom-facing view.
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