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Abstract—Low duty-cycle mobile systems can benefit from 

ultra-low power deep neural network (DNN) accelerators. Analog 

in-memory computational units are used to store synaptic weights 

in on-chip non-volatile arrays and perform current-based 

calculations. In-memory computation entirely eliminates off-chip 

weight accesses, parallelizes operation, and amortizes readout 

power costs by reusing currents. The proposed system achieves 

900nW measured power, with an estimated energy efficiency of 

0.012pJ/MAC in a 130nm SONOS process. 

Keywords—low power; subthreshold; neuromorphic; in-

memory; non-volatile 

I. INTRODUCTION 

 Commercial hardware neural network algorithms rely on 

data connectivity to perform cloud-based computation, or high 

power digital processors for hardware acceleration [1,2]. Some 

applications, shown in Fig. 1, don’t require the high speeds and 

throughput (187 GMAC/s) achieved in these implementations, 

and would benefit from low peak-power in order to extend 

battery life. Low-power mobile applications could operate in a 

wake-up routine using a slow, always-ON subthreshold DNN, 

and a higher power, faster DNN that wakes up infrequently. 

Traditional hardware neural networks store weights in off-

chip non-volatile memories, calculating a given neuron dot-

product by cycling through its synaptic weights, multiplying 

them by input values and accumulating in a digital register. 

These approaches suffer from high power consumption due to 

the large number of off-chip memory accesses required, on the 

order of hundreds of thousands for state-of-the-art architectures 

[3]. Researchers are working to lower power consumption 

through reducing the total number of off-chip memory 

accesses. 

One method of reducing off-chip memory accesses is to use 

convolutional neural network (CNN) architectures, which 

heavily reuse weights [4]. Data sparsity in both inputs and 

synaptic weights also provides a reduction in memory accesses, 

allowing the system to selectively choose whether to fetch 

memory based on known values. Previous research has shown 

that data sparsity between 30-90% produces significant energy 

savings [4,5]. 

The proposed circuit expands upon these ideas by storing 

synaptic weights in an on-chip non-volatile memory. This 

allows for the complete elimination of off-chip synaptic weight 

accesses, reducing the total number of off-chip memory reads 

by 1/(N+1) times for an N neuron system. State of the art neural 

networks often employ thousands of neurons, making this 

memory reduction significant [3]. 

Using non-volatile memory cells as computational units 

through analog current summation allows for the amortization 

of synaptic weight read current with calculation current, the 

parallelization of all multiply-accumulate functions for a 

neuron, and an inherent use of data sparsity. Rather than cycling 

through synaptic weights one by one, the proposed system 

calculates a full dot-product for all inputs and weights of a 

given neuron simultaneously, increasing energy efficiency. 

Operating the memory cells in subthreshold allows for further 

reduction of current consumption, lowering the total peak 

power consumed by each neuron. 

The proposed system achieves 900nW power consumption in 

a 130nm SONOS process, storing 14,592 analog synaptic 

weights in on-chip memory. 

 

Fig. 1 Low-duty wake up routine applications can benefit from slow, ultra-
low power DNNs 

II. SUBTHRESHOLD COMPUTATION 

The following sections discuss the neuron dot-product 

calculation and how it is accomplished using in-memory 

subthreshold current computation. 

A. In-Memory Current Computation 

Synaptic weights are stored as threshold voltages in an array 

of 2T SONOS cells. Fig. 2 shows the basic computational unit 

proposed in this work. The unit consists of a SONOS cell which 

stores weights as threshold voltages, and an access transistor 
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which gates the current and takes a neural network input as its 

gate voltage. This 2T pair will function as a current source in 

an array, producing a current proportional to the multiplication 

of its input and synaptic weight. When tiled in a standard NOR 

flash topology, the currents produced by each computational 

unit will sum together along a shared bit line. The resulting 

current is equal to the full dot-product of the selected neuron. 

The goal of this work is to create a subthreshold compute cell 

whose current is equal to the linear multiplication of its input 

and threshold voltages. The equation shown in Fig. 2 is the 

subthreshold MOSFET current equation. In order to perform a 

linear multiplication, we cancel the exponential components of 

this equation. The threshold voltage is programmed via an 

offline routine to precisely set the voltage and current through 

each cell. Using an exponential synaptic weight mapping 

allows us to cancel the exponent related to Vth. Gate-to-source 

voltage represents the output value of a previous neuron, and 

can be mapped logarithmically to cancel its exponent as well. 

The equations developed in Fig. 2 (right) show how these terms 

are cancelled, producing a linear multiplication between Vth and 

Vgs. The following sections discuss how these mappings are 

implemented on-chip. 

 

Fig. 2 In-memory analog computation unit 

B. Off-Chip Weight Programming 

Synaptic weight programming is achieved via an offline 

write routine consisting of a series of program and read pulses. 

By using small enough program pulses (10s of microseconds), 

we are able to precisely set the on-chip threshold voltages to 

produce any arbitrary mapping. Setting these voltages to 

produce a logarithmic transfer function cancels the exponential 

component of the subthreshold current equation. 

Analog weight storage requires periodic re-writes in order to 

maintain precision. Estimated threshold voltage leakage would 

require top-off programming each day, based on simulations. 

C. Logarithmic Voltage Conversion 

In order to cancel the exponential effects of gate-to-source 

voltage, we can apply a logarithmic conversion from the output 

of one DNN layer to the input of another. Input voltages are 

determined by the output current of a previous layer, and 

applied to the gate of an access transistor in a subsequent layer, 

shown in Fig. 3. 

Amplifiers are used to precisely hold the drain-to-source 

voltages across all 2T SONOS cell pairs. This forces a low-

distortion operating condition, and also allows us to measure 

the amount of current consumed by an array of synaptic 

weights. Both amplifiers source and sink the current required to 

hold the drain and source voltages at a constant value. This 

current is equal to the neuron dot-product. 

By forcing current through a subthreshold diode connected 

MOSFET we can invert the current-to-voltage relationship and 

generate a logarithmic voltage output: Vout=ln(Ineuron×eVth).  The 

threshold voltage of the MOSFET is constant, producing a 

logarithmic voltage dependent only upon the neuron dot-

product current. This voltage is fed to the access gate of a 

subsequent layer current cell, and generates a linear relationship 

between the current in layer 1 versus the current in layer 2. The 

graphs in Fig. 3 show the relationship between current, voltage, 

and current in the subthreshold accelerator. 

 

Fig. 3 (Top) Logarithmic voltage generation and layer-to-layer connections 
(Bottom) Linear/Logarithmic current-voltage-current transformation 

D. Multiplexing Between Neurons 

When connected as a tiled array, neurons share gate voltages, 

but drain and source bit lines are separated, allowing for 

different current flows through each neuron. Using a force-

sense feedback structure, the amplifiers are multiplexed onto a 

selected neuron in order to calculate the dot-product. When 

selected, the amplifiers drive the drains and sources of the 

neuron to precise voltages, and measure the current. All other 

neurons are un-selected, their drain and source voltages are 

floating, and they draw no current. 

A tradeoff between peak power consumption, area, and 

throughput can be made by changing the number of multiplexed 

neurons. In a fully parallel architecture, each neuron has its own 

amplifier to source/sink its dot-product current, with no 

multiplexers, and all neuron, input and weight dot-products are 

calculated simultaneously. 

E. System Architecture 

The fabricated system architecture is shown in Fig. 4 and 

includes a 228×64 SONOS cell array, two charge pumps for 

program and erase functionality, drivers, multiplexers and a 

diode connected MOSFET for logarithmic voltage readout. For 

proof-of-concept purposes the amplifiers are sourced from off-

chip. The system includes one layer of a neural network, but 

has analog voltage pads and multiplexers to provide voltages to 

the access transistor inputs of the 2T current cells. To test the 
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functionality of a multi-layer system, currents are produced 

within the synaptic array, logarithmic voltages are read off-chip 

and then fed back into the chip via the analog pads to the access 

transistors. This forces a linear current to be produced again 

within the synaptic array. 

 

Fig. 4 Full system architecture 

III. MEASURED RESULTS 

The proposed circuit was fabricated in a 130nm SONOS 

process. With off-chip amplifiers, the in-memory analog 

computational units were characterized to determine the 

efficacy of subthreshold computation in non-volatile cells. 

A. Logarithmic Voltage Generation 

Measured results in Fig. 5 show the logarithmic output 

voltage generation achieved by the on-chip diode connected 

MOSFET. Between 0.1uA and 1uA total neuron current 

consumption the voltage at the output of the diode is 

logarithmic. With a logarithmic best fit the output voltage has 

an r-square value of 0.9989. 

 

Fig. 5 Logarithmic output voltage measurement 

Each point in the graph represents a read cycle during the 

program/read routine. In precisely setting the threshold 

voltages of the SONOS cells, we are able to fully characterize 

the cell current range, programming capability and logarithmic 

output voltage functionality.  

B. Current Generation and Dot-Product Calculation 

When applied to the gate of an access transistor, and using 

different threshold voltages, we can demonstrate the efficacy of 

the analog multiplication, shown in Fig. 6. Current produced by 

the multiplication of logarithmic input voltages, at different 

synaptic weights, is linear with r-squared values between 

0.9714 and 0.9991. In the opposite dimension, current produced 

by logarithmically transformed synaptic weights, at different 

input voltages, is also linear but with reduced linearity between 

0.9017 and 0.9932. Measured neuron current ranges between 0 

and 1µA for the full neuron dot-product, designed to be within 

the subthreshold region of operation for the diode connected 

MOSFET. 

Future work on this project could increase linearity in relation 

to threshold voltage by further analyzing programming 

characteristics, including fast-shift induced threshold voltages 

changes, leakage, and weak-programming caused by write 

disturbs. Nonlinearities within the multiplication function can 

also be calibrated out through the neural network training 

routine. Given a set of nonlinear neurons with measured 

transfer curves, a training routine can learn to compensate, 

adjusting synaptic weights appropriately to achieve high 

accuracy inference. 

 

Fig. 6 Current multiplication (Left) layer 2 current vs layer 1 current (Right) 

layer 2 current vs threshold voltage 

After each synaptic weight is programmed, a series of input 

voltages are applied to the neuron to produce a full dot-product 

summation. Because current sums in parallel along the shared 

bit line, we are able to compute the full dot-product of a single 

neuron in one cycle. To test the accuracy of the current 
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summation of all multiplied 2T cell currents, 626 combinations 

of both synaptic weights and input voltages were generated. 

Input voltages varied among 8 different analog values, and 

synaptic weights were defined on a range that produced 

currents less than 1uA in total, from Fig. 5 (top).  

Fig. 7 shows the measured results of the sub-threshold dot-

product calculations. Each point is a full dot-product 

calculation for a selected neuron, and is plotted against the 

expected value. The proposed system generates an output 

current with an r-squared error value of 0.9994. 

C. Power Consumption and Energy Estimations 

Neural networks are trained in order to maximize inference 

accuracy, and to minimize total cost, defined as synaptic weight 

values. Because of this cost function, synaptic weights typically 

exist in a mean zero Gaussian distribution. When mapped to 

hardware, with threshold voltages representing weights, we 

define a zero weight as a fully off cell, producing no current. A 

zero-value input is a voltage that produces zero current in the 

2T SONOS cells, regardless of Vth. 

The proposed circuit inherently exploits data sparsity in both 

synaptic weights and input values. If either value is zero, the 

current produced by the 2T cell will also be zero, consuming no 

power. Similar to the works presented in [4,5], the proposed 

system benefits from increased data sparsity, but does not 

require any additional circuitry to exploit it. 

Average current is estimated to be 50% of the total neuron 

current range, equal to 500nA. At 1.8V supply voltage, the 

system is measured at 900nW power consumption. A 

subthreshold amplifier presented in [6] operates at 75nW power 

consumption, with an estimated settling time of 1μs, based on 

its bandwidth neuron RC load. A full system would consist of 

a synaptic weight array where one bit line is driven by a 

subthreshold amplifier, and the other line is shorted to a supply. 

The total system has an estimated power consumption of 

975nW, at 1μs, with an energy efficiency of 0.012 pJ/MAC.  

Throughput of the system is estimated at 0.07 GMAC/s, but 

could be increased to 1.22 GMAC/s with a fully parallel 

implementation (one amplifier per neuron). 

 
Fig. 7 Full neuron dot-product current vs expected value 

D. Comparison to Prior Works 

Compared to prior hardware implementations, shown in 

Table I, the proposed system achieves a power consumption of 

900nW, a 79,000× reduction over the lowest power 

implementation presented in [5]. To achieve this reduction in 

power, we tradeoff performance, measured as GMAC/s, which 

is estimated at 0.07, when compared to the low power speed of 

31, this is 442× slower. Performance can be increased up to 1.22 

GMAC/s with a fully parallel implementation, drawing an 

estimated power consumption of 62.4μW. 

The system was fabricated in a 130nm SONOS process, 

and the die shot is shown in Fig. 8. The chip occupies a die area 

of 1.93mm×1.25mm, for a total area of 2.41mm2. 

TABLE I.  COMPARISON OF PRIOR WORK 

a.  Cycle time estimated at 1µs from simulation  

 
Fig. 8 Die shot of fabricated subthreshold DNN accelerator 

IV. CONCLUSION 

This works present a subthreshold accelerator for ultra-low 

power DNNs. The analog accelerator consumes 900nW, with 

an estimated 975nW total power consumption for a full system, 

operating at 1μs cycle time, with 0.012 pJ/MAC energy 

efficiency and 0.07 GMAC/s performance. 
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Power and Energy Comparison 

Units CM1K Tegra X1 Eyeriss VLSI ‘16 This Work 

Off-Chip 
Memory? 

 Yes Yes Yes Yes No 

Non-

Volatile? 
 No No No No Yes 

Technology nm 130 20 65 40 130 

Power W 0.3 5.1 0.278 0.071 900e-9 

Energy 
Efficiency 

pJ/MAC 11.06 30.47 12.02 2.27 0.012a 

Speed GMAC/s 27.1 187 23 31 0.07 


