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Abstract—This paper presents an ultra-low power acoustic
sensing and object recognition microsystem for Internet of Things
applications. The microsystem is targeted for unattended ground
sensor nodes where long-term (decades) life time is desired with-
out the need for battery replacement. The system incorporates
an microelectromechanical systems microphone as a frontend
sensor along with active circuitry to identify target objects. We
introduce an algorithm-circuit cross optimization to realize a 12-
nW stand-alone microsystem that integrates the analog frontend
with the digital backend signal classifier. The frequency-domain
analysis of target audio signals reveals that the system can operate
with a relatively low bandwidth (<500 Hz) and SNR (>3 dB)
which significantly relaxes power constraints on both analog
frontend and digital backend circuits. To further relax the current
requirement of the preceding amplifier, we propose an 8-bit
SAR-analog-to-digital converter that is designed to have a highly
reduced sampling capacitance (<50 fF). For the digital backend,
we propose a feature extractor using the serialized tones-of-
interest discrete Fourier transform, replacing a conventional
high-power/area-consuming parallel feature extraction using the
fast Fourier transform. This approach reduces area and thus
leakage power which often dominates the overall power con-
sumption. The proposed system successfully identifies a number
of target objects including an electrical generator, a small car,
and a truck with >95% reliability and consumes only 12 nW
with continuous monitoring.

Index Terms— Amplifier, analog-to-digital converter (ADC),
discrete Fourier transform (DFT), low-noise, microphone,
subthreshold, support vector machine (SVM), ultra-low
power (ULP).

I. INTRODUCTION

NTERNET of Things (IoT) devices are becoming increas-
ingly intelligent and context aware. Such context aware-
ness has been enabled by various types of sensors that are
“always-on.” In the past, sensors on mobile platforms were
activated periodically or passively by the user to constrain
their battery power consumption. As a result, information loss
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on surrounding activities was unavoidable, making them far
from being “ambient intelligent.” On the other hand, recent
mobile devices in the market are distinguished by their always-
on functionality while adopting a full spectrum of sensors
that ranges from accelerometers, gyroscopes, magnetometers
to acoustic, image, and pressure sensors. Among these vari-
ous sensory inputs used to realize context-aware intelligence,
sound is an attractive sensory modality that is information
rich but not as computationally demanding as other alterna-
tive modalities such as vision or radar. It has a relatively
low bandwidth of <20 kHz and also serves as a natural
user interface. The use of always listening technology has
become popular in various applications such as voice activated
intelligent personal assistants. New applications of always-on
intelligent acoustic sensing includes agricultural monitoring
to detect pests or precipitation, infrastructure health tracking
to recognize acoustic symptoms of structural changes, and
security/safety monitoring to identify intruders or dangerous
conditions. This paper focuses on incorporating such always-
on technology into small and extremely power constrained
IoT devices.

The remainder of the paper is organized as follows.
Section II provides an overview of the proposed system.
Sections III through V present a detailed circuit description
and analysis of system components: analog frontend, ADC,
and digital backend. Section VI describes measurement results
of the test chip. Finally, Section VII summarizes the key
contributions of the work and concludes the paper.

A major challenge for the adoption of always-on, context-
aware sensing in ultra-small unattended IoT devices is
low-power consumption, as these devices require long-term
operation without battery replacement. Ideally, unattended
systems should be able to operate perpetually using harvested
energy or should have decades of lifetime on small batteries.
System power consumption less than 20 nW is required in
order to run continuously with a 1-mm? solar cell under dim
indoor light (100 lux), or to sustain ten years lifetime using a
small coin cell battery (4.8 mm, 2 mAh). Current state-of-the-
art acoustic sensing systems [1], [2] show power consumption
in the microwatt range, which is more than two orders of mag-
nitude higher than the proposed 20-nW target. A 3-nW ultra-
low power (ULP) signal acquisition IC was introduced
in [3] but it does not include backend signal classification.
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An ECG monitoring system [4] includes backend signal clas-
sification but its power consumption exceeds 60 nW. To our
knowledge, no sub-20-nW sensing microsystems have demon-
strated complete operation with an integrated sensor, an analog
frontend, and the digital backend for signal classification.

This paper reports an ULP acoustic sensing microsystem
that meets the aforementioned 20-nW power constraint. The
system continuously monitors its environment and identi-
fies an event-of-interest while satisfying the stringent power
budget without compromising event identification accuracy.
This is accomplished through several features: 1) an micro-
electromechanical systems (MEMS) microphone integrated
in package with the rest of the electronics to provide a
low-capacitance interface; 2) an SAR-analog-to-digital con-
verter(ADC) exploiting a unique digital-to-analog converter
(DAC) topology with extremely small (<50 fF) input capac-
itance to enable sufficient gain-bandwidth product for a
frontend amplifier with nanowatt-level power consumption;
3) a serialized discrete Fourier transform (DFT) feature
extraction performed only on discrete tones-of-interest (Tol)
to avoid a high-power/area-consuming conventional parallel
feature extraction using the fast Fourier transform (FFT); and
4) a power efficient classification engine using a programmable
support vector machine (SVM).

II. SYSTEM OVERVIEW

Fig. 1 shows the overall system block diagram. The system
includes a signal chain consisting of an MEMS microphone,
an active audio amplifier followed by an ADC, and a digital
signal processing (DSP) unit. Other peripherals include a

Capacitive
% MEMS
Microphone

- saed

Sound Hole

Fig. 3. System integration approach.
current source, charge pump, and clock source. Other than the
MEMS microphone, the system is fully integrated on a single
chip and does not need any external voltage/current sources.

The system aims to detect various machinery targets such
as a generator, truck, and car. Spectrograms of these three
different targets are shown in Fig. 2. Target sound in the
frequency domain shows that features are mainly concentrated
within a relatively narrow bandwidth of under 500 Hz. This
allows the system to use a fairly slow clock of 1 kHz for
all active components. Also, target features are concentrated
in a few narrow sparse tones with high-power levels. This,
along with the proposed DSP backend algorithm (presented
in Section V), allows the system to operate with only 3-dB
SNR (at the output of ADC). Overall, these two key factors
enable the microsystem to continuously search for targets with
only 12-nW total power consumption.

Fig. 3 shows the proposed system integration approach. The
proposed system uses a custom printed circuit board (PCB)
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to place the passive MEMS microphone device close to the
application specific integrated circuit (ASIC). This helps mini-
mize the wirebonding length and reduces parasitic capacitance,
which is important to minimize signal amplitude degradation.
For packaging, a 3-D-printed lid is used to provide a back
chamber for the passive MEMS microphone. The lid also
covers the ASIC to avoid any light sensitivity. Avoiding light
exposure is particularly important in the ULP circuit design
as picoampere-biased components are susceptible to photo-
generated currents.

III. ANALOG FRONTEND

Fig. 4 shows the detailed structure of the analog frontend.
A capacitive (passive) MEMS microphone is used as a trans-
ducer to convert acoustic signal into an electrical signal. It is
the most commonly used microphone type due to its low-
power consumption and high sensitivity [5]. The following
active audio amplifier consists of two stages: a fixed-gain
low-noise amplifier and a variable gain amplifier. On-chip
charge pump and current source provide the bias voltage and
current for the MEMS microphone and amplifier, respectively.
Following sections provide implementation details on each
component in the analog frontend shown in Fig. 4.

A. MEMS Microphone

We first discuss the capacitive microphone package and its
operating principle depicted in Fig. 5. The MEMS microphone
consists of a perforated back plate (fixed) and a sensing mem-
brane (movable). Once a bias voltage is applied, the charges
between the backplate and membrane will be trapped through
a high resistance node connection, creating a near-constant
charge condition. The acoustic wave enters the sound port of
the package and actuates the membrane motion, resulting in a
voltage change between the membrane and the backplate. The
voltage change is sensed by the following audio amplifier.

Lid =3
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EIDVB
MEMS
bl Back-plate

Fig. 5. Capacitive MEMS microphone package and its operating principle.
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Fig. 6 shows the relationship between the MEMS micro-
phone sensitivity and its bias voltage where the sensitivity is
proportional to the MEMS bias voltage. As the bias voltage
increases, a larger amount of charge is trapped between the
membrane and backplate. As a result, a larger voltage variation
is generated for an equivalent sound pressure level (SPL).
However, the bias voltage cannot be increased indefinitely as
there exists a critical bias voltage called the pull-in voltage,
where the membrane will collapse and the device ceases to
operate properly. Increased MEMS sensitivity relaxes the noise
constraint on the following amplifier. As a result, the required
current consumption of the amplifier is inversely proportional
to the MEMS bias voltage. We assume a noise efficiency
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factor (NEF) of 2- and 3-dB SNR at 40-dB Z-weighted
(i.e., zero frequency weighting) [6], [7] SPL to estimate the
amplifier power plotted in Fig. 6. The MEMS bias voltage
is generated from a charge pump whose power consumption
increases with the bias voltage. Power in Fig. 6 is estimated
using a Dickson charge pump architecture. Since the capacitive
MEMS microphone is a passive device, there is negligible
load current on the charge pump output. Thus, the charge
pump consumes only 100 s of pWs as it can operate at a
low frequency. In the end, the total power consumption is
dominated by the amplifier as the charge pump overhead is
negligible. In this paper, we bias the MEMS device as high as
possible, close to the pull-in voltage, to minimize the overall
power consumption.

The MEMS microphone is dc biased with a charge
pump through a resistor. In this scheme, the microphone
capacitance (Cvems) and bias resistance (Rpyas) sets the
high-pass cut-off frequency (=1/27 RgiasCmems). Therefore,
Rpias should be large enough to set the corner frequency
to be below the MEMS microphone input frequency range
(20 Hz-20 kHz). In this paper, a Cvems of 5.4 pF
requires > 1.5 GQ Rpjas, which would consume a large area
with a passive resistor implementation. Thus, subthreshold
MOSFET-based pseudo-resistor has been used. Although,
pseudo-resistors are not highly controllable, the corner has
been pushed far enough to the low-frequency range (<20 Hz)
to ensure proper operation across process corners. Since the
following amplifier uses a differential structure, a dummy
capacitor and a resistor are added on the other side to match
the input impedance.

B. Amplifier

The system operates with a relatively low SNR (3 dB)
and bandwidth (<500 Hz), which reduces the burden on the
amplifier noise performance. Under this specification,
the amplifier can be implemented to consume only a few
nanowatt unlike conventional MEMS microphone readout cir-
cuitry [8], [9] that typically consumes at least a few microwatt.
Even with a relaxed noise constraint, the first-stage amplifier
design is still noise limited due to the low system power
budget. The first-stage amplifier determines the overall noise

o
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(a) Detailed structure of the first-stage amplifier. (b) CMFB. (c) Bias generation.
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Fig. 8. Relationship between input coupling capacitor (C) and SNR at the
amplifier output.

performance as the target noise specification on the amplifier
renders the noise from the MEMS microphone to be negligible.

Fig. 7 shows the structure of the first-stage amplifier, the
common-mode feedback (CMFB), and the bias generation.
To achieve high noise efficiency, the amplifier uses a current-
reuse topology where an inverter-based input stage is used to
double the input transconductance (g;,;). Also, input transistors
are biased in a subthreshold regime to maximize g,,. In low-
bandwidth applications, the flicker noise often dominates the
overall noise level. The effects of the flicker noise can be
minimized by having an input pair with large gate areas. Note
that the dynamic offset-cancellation techniques such as auto-
zeroing or chopping are not suitable for this work due to a
limited power budget. The relaxed noise constraint allows the
flicker noise to become negligible even with moderate size of
input pairs (W/L = 45 um/500 nm). However, as increased
input pair size also increases the noise gain of the amplifier,
it cannot be increased indefinitely.

Amplifier current consumption is set to 3 nA to meet the
SNR requirement at the lower bound of the target sensitivity
SPL of 40 dB (Z-weighted; this represents a very quiet
environment). Given the resulting gain-bandwidth product,
a closed-loop gain of 32 dB can be achieved while meeting
the target signal bandwidth (0.5 kHz). A telescopic structure
is used to provide sufficient open-loop gain (>70 dB in simu-
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lation) to minimize gain nonlinearity errors [10]. Furthermore,
pMOS and nMOS input transistors are separately biased,
increasing headroom and thereby output swing to preserve
linearity over the entire dynamic range (40-94 dB SPL).
A dc servo loop is added to minimize dc offset to prevent
output saturation. This loop also sets the high-pass corner,
which is designed to be less than 20 Hz to avoid signal
degradation. The dc servo-loops set the dc bias voltage of the
nMOS input pair and the bias generation circuit [Fig. 7(c)]
generates the dc bias voltages of pMOS input pair and the
core amplifier (Vp and Vp3).

The signal and noise gain at the output of the first-stage
amplifier can be expressed as follows:

Signal Gain = CumemsCi (1)
C2(Cmems + C1 + Cpke)
C1(Cmems + Cpkg) + C2 + Cin

G

where Cpge is a parasitic capacitance between MEMS and
ASIC interface and Cj, is a parasitic capacitance at the
amplifier input. Since, MEMS and parasitic capacitances are
known, the size of the series capacitor C; is chosen for a fixed
closed-loop gain so that the amplifier operates at the optimal
SNR point (Fig. 8).

The following second-stage amplifier is bandwidth
limited unlike the noise-limited first stage. Hence, its
current consumption is directly impacted by the load
capacitance. This motivates the extremely low input loading
capacitance (<50 fF) of the proposed ADC, allowing the
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Fig. 11. (a) Schematic of voltage doubler [11]. (b) Delay cell used in the
oscillator [13].

second-stage bias current to be reduced to 100 s of pAs.
As the amplifier design is not noise limited, a simple single-
stage op amp (Fig. 9) is used instead of the current-reuse
topology to provide better output swing. The second-stage
amplifier provides a closed-loop gain up to 32 dB by adjusting
the C3, which is sufficient to cover the target input signal
range (40-94 dB SPL). Fig. 10 summarizes the overall
datapath signal level planning from the first-stage amplifier
input to the second-stage amplifier output (i.e., ADC input).

C. Peripheral Circuits

The charge pump provides a bias voltage across the
MEMS sensor, setting the sensitivity of MEMS device. The
charge pump consists of cascaded voltage doublers (see
Fig. 11(a), [11]) with 12 stages in total. The first two stages
can be bypassed, allowing the output voltage to vary from
11.19 to 13.35 V based on the configuration (10x to 12x,
simulation results). As there is negligible conduction loss,
small transistors are used to minimize voltage drop due
to charge sharing. A decoupling capacitor is added at the
charge pump output to reduce output ripple. This capacitor
is implemented with a metal-oxide-metal (MOM) capacitor
to avoid breakdown. The operating frequency is variable from
7.81 Hz to 1 kHz in a binary fashion.
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The current source is based on a self-biased Nagata current
reference [12]. Subthreshold biased MOSFETSs are used to
generate 100 s of pA of current. Also, a pseudo-resistor is
used instead of a passive resistor to save area. Its resistance
is controlled by adjusting the MOSFET gate voltage. Voltage
control uses a 128-stage diode stack from 1.2-V supply voltage
realizing 10-mV steps.

The voltage-controlled oscillator (VCO) is used as the clock
source. An nMOS header adjusts the virtual supply of the
oscillator while the unit cell is implemented with a thyristor-
based oscillator (see Fig. 11(b), [13]) to avoid short-circuit
current. The oscillator consists of ten stages where different
phases of the clock are combined to generate a duty-cycled
clock. The duty ratio can be adjusted from 60% to 90% of the
entire clock period with 10% step.

A single commercial I/O pad in the given technology
consumes >1 nA which is intolerable. Therefore, custom
pads have been designed which only includes small diodes
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(20 um %20 um) reducing current consumption to 1 pA
(at 25 °C in simulation). Furthermore, pads for interconnecting
the MEMS and the amplifier are composed of metal layers
only to have ultra-low current level. Note that pW-level
I/O pads are nearly as robust to electrostatic discharge events
as conventional commercial I/O pads [14].

IV. ANALOG-TO-DIGITAL CONVERTER

In conventional low resolution (<10 b) SAR-ADCs,
the unit capacitance of the binary DAC array is usually
limited by mismatch rather than kT/C noise. In our tar-
get process technology, 4-fF unit capacitance is required
to ensure worst case differential non-linearity (DNL)
(30) is less than 1 LSB (10 k Monte Carlo runs).
This translates into 1 pF of the load capacitance for the
preceding variable gain amplifier, which would require more
than 10 nA of current consumption to achieve the required
performance (32-dB gain, settling within 1 LSB at 1-kHz
sampling rate). To overcome this issue, we separate the
sampling capacitor (Cs) from the capacitive DAC (Fig. 12).
This is done by inserting the sampling capacitor in series
between the DAC and the comparator. In this way, the size
of the sampling capacitor is reduced to less than 50 fF. As a
result, the load capacitance seen by the preceding amplifier is
dramatically reduced while the unit capacitance of the DAC
stays the same. Since the preceding variable gain amplifier
(VGA) is bandwidth limited, this enables significant power
savings.

During the sampling phase, the DAC is disconnected
from C, and purges all its charge while the input is sampled
on Cy. At the beginning of the bit-cycling phase, the DAC
top plate (Vrop) is connected to Cg, and the rest of the
conversion process is identical to a conventional approach due
to charge conservation on node Vcomp. While the proposed
scheme reduces the size of the sampling capacitance, it raises
two issues. First, kT/C noise is determined by the small C;
rather than the DAC capacitance as in conventional scheme.
However, resulting noise is still negligible (~300 uVimg)
compared to quantization noise (>1 mVyys). The second
issue, which is more significant, is that the ADC becomes
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sensitive to parasitic capacitors on the top plate. Specifically
in this scheme, parasitic capacitors Cp1 through Cp3 create a
gain error, common-mode voltage shift, and comparator gain
loss (Fig. 13, which assumes single-ended view for simplicity).
Taking these parasitic capacitors into account, the compara-
tor input (Veomp) during conversion can be expressed as
follows:
Ci

Veomp = k [(1 +nm)Vem — Vin + C—TmVREF:| 3)
where C| is sum of all capacitance connected to the reference
voltage (Vrgr) during conversion and C7 is the total capaci-
tance of the DAC array. In (3), n is the common-mode shifting
factor, k is comparator gain loss, and m is gain error, which
are expressed as follows, respectively:

Cps
Cp2+ C (CT+Cp1 +Cp2+cp3//cs)
n= s )
Cr +Cp1 +Cp3//Cy — Cs
= C; Cr+Cp1 +Cp3//Cy — Cy )
Cs +Cp3 Cr + Cp1 + Cpa + Cp3//C
C
m = ] 6)

Cr+Cp1 +Cp3//C -G,

It is evident that the Cp3 to Cy ratio has the most significant
impact and therefore should be kept low. To minimize this
ratio, Metal-insulator—Metal capacitors are used for Cy where
the top plate faces the comparator input to minimize Cp3.
To further reduce the effect of parasitic capacitors, the
DAC unit capacitor structure uses the bottom plate to enclose
the top plate. Consequently, the gain error reduces the ADC
dynamic range by 8% but this is acceptable as the overall
SNR is limited by the amplifier noise. Also, the resulting 12%
comparator gain loss is not an issue because comparator power
in an 8-bit configuration is insignificant and the common-mode
voltage shift is negligible (<1%).

The amplifier operates at 1.2 V while the ADC operates
at 0.6 V to reduce power. Therefore, the common-mode
voltages of these two blocks do not match. To solve this

issue, we sample the amplifier output against its common-
mode voltage 0.6 V to shift the common mode-voltage down
to 0.3 V during the hold phase (Fig. 14). With this approach,
we can match the dynamic range of the amplifier output with
the ADC input. Fig. 15 provides a timing diagram of the ADC.
The ADC operates asynchronously to avoid a high-speed
clock, reducing power. The SAR control logic is implemented
with I/O devices to minimize leakage. The sampling time is
maximized by adjusting the duty cycle of an on-chip oscillator
to further save power on the preceding amplifier.

V. DIGITAL SIGNAL PROCESSING BACKEND

The DSP backend consists of three main blocks. First,
the ADC output is directly fed into the feature extraction block
that generates target features. Then, the following classifier
generates classification results based on these features. Finally,
post processing is performed to generate an object identifica-

tion result.
We first discuss feature extraction that is based on the

frequency-domain analysis. A conventional FFT generates
the entire spectrum in parallel but consumes high-power
and large area. Existing ULP FFT designs (see [15]) still
consume >400 nW, far exceeding our system power budget.
To eliminate the need for full FFT computation, we use the
stationary and sparse signal property that is evident in our
target machinery objects’ spectrogram as shown in Fig. 2.
We propose a feature extraction scheme based on a partial
DFT that is performed only on discrete Tols instead of the
entire spectrum. Furthermore, DFT is performed on a tone-
by-tone basis using serialized computation, where the system
only monitors one frequency band (tone) at a time and then
switches to the next tone. The DFT of a particular Tol index k
is obtained by the following equation:

(k+1)N . 2w nToly
X[Tokl= > e/ 7 x[n] (7
n=kN-+1

where x[n] is ADC output, N is the DFT size, and the set of
integer Tol indices is defined as Tolj, Tol,, Tols, ..., Tolg.
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These Tol indices consist of feature tones of target objects and
some background noise tones to be used to obtain reference
noise level. The Tol DFT output X[Tolx] for the kth Tol is
computed using samples arriving at kN + 1,kN + 2,...,
(k + 1) N time indices. That is, each ADC sample x[n] is
used only once for a particular Tol index, and not for other
indices. As the DSP runs at a low clock frequency of 1 kHz, its
power consumption is dominated by static rather than dynamic
power. By listening to one tone at a time, logic area is reduced
significantly which consequently reduces the leakage power.
It is important to note that serial computation does not degrade
the system performance because the system is designed to
recognize machinery target object sounds that are inherently
stationary.

Fig. 16 shows the overall serialized Tol DFT architecture,
which greatly simplifies the computation to be performed in
each clock cycle. By simply changing the phase accumulation
rate (A@), the DFT weight sequence on any particular Tol can
be obtained. Trigonometric functions (sin 8 and cos ) for
DFT are implemented using a compact look-up table storing
only one quadrant (0 < 6 < z/4) of cosine values. The
other quadrants along with the sine values are generated by
manipulating the address and negating stored values using
the symmetry of the trigonometric function. This technique
reduces power by 30% (simulation) compared with a coordi-
nate rotation digital computer [16]. Generated sine and cosine
values are multiplied with input samples and accumulated.
After 512 cycles (DFT size, programmable), the final fre-
quency domain power for a Tol is computed by squaring
and adding two accumulated values (real and imaginary). The
Tol power value is converted to log scale and then stored
into a local memory. The design also includes digital gain
control by monitoring the average input power. The digital gain
control scales the 8-bit input into 4-bit representation to reduce
the complexity of the DSP system and thus to save power
consumption. Due to the relatively low SNR requirement,
quantization noise from such reduction does not degrade the
overall performance of the system. The design supports three
configurations with different number of feature tones and DFT
sizes, allowing tradeoffs in latency and feature bandwidth for
feature extraction.

While the Tol DFT computation is always-on, the classifier
logic can be clock gated until DFT sequentially generates
all desired Tol results. Due to the low Tol DFT throughput

(e.g., a period of 4.096 s for 8 Tols, 512-point DFT, 512 cycles
per Tol, and 1-kHz clock), a moderately sophisticated classifi-
cation scheme can be used with a negligible power overhead.
Fig. 17 shows the overall classifier architecture, which is based
on the SVM. Computationally, demanding SVM training is
performed off-line, resulting in a 1 x K weight vector and
a constant offset (BIAS) per object to be classified. These
training results are stored in a programmable memory. Com-
putations in SVM classification are also performed serially by
accumulating multiplication results to reduce power consump-
tion. Before obtaining the SVM output, a fixed threshold is
applied to suppress any significant outliers. Then, SVM out-
puts undergo a post processing step consisting of a moving
average window to perform low pass filtering. The size of
the moving average window (m) sets the initial latency of the
system. For example, averaging five SVM outputs (m = 5)
results in 20 s of initial latency (5 x 4.096 s for 8 Tols). The
averaged result is compared against a constant (programmable)
threshold to make a final decision. Once the initial latency is
elapsed, the final decision is updated whenever a new SVM
output is available (every 4.096 s for the same example).
Note that the relatively long initial latency is a secondary
concern when the system is always-on and the detection target
is stationary.

Overall DSP power consumption is dominated by the
always-on feature extraction block and its corresponding
leakage power. We observed that leakage power consump-
tion would be 21 nW while dynamic power consumption is
only ~2 nW (simulation result with PEX) when standard
cells for nominal devices are used for DSP implementation.
To resolve this leakage dominated condition, custom library
cells-based on I/O devices are implemented and used through-
out the entire DSP design. As a result, leakage power is
reduced by 160x to 132 pW and total power is reduced
by 93%.

VI. MEASUREMENTS

The test chip was implemented in 180-nm CMOS with an
active area of 0.75 mm?. Fig. 18 shows the die photograph, and
Fig. 19 shows the photographs of the assembled microsystem.
The PCB is 6.5 by 3 cm and includes a sound hole on its
backside for the MEMS device. Inside the lid, the chip is
placed as close as possible to the MEMS device to minimize
signal degradation.
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Fig. 19. Photographs of the integrated system.

A. Block Measurements

Fig. 20(a) shows the measured amplifier transfer function.
Midband gain ranges from 32 to 59 dB with a 3-dB bandwidth
of 470 Hz. Estimated low-frequency corner is ~85 mHz.
The first-stage low-noise amplifier shows 800 nV/,/(Hz) noise
floor at 100 Hz with a 1/f corner at ~20 Hz [Fig. 20(b)].
Integrated noise under this curve from near dc to 1.6 kHz
gives 17 uVms of the input referred noise level. It can be
seen that 1/f is not a dominant noise source as discussed
in Section III-B. The first-stage amplifier consumes 3.4 nA
resulting in a 1.8 NEF. Overall amplifier including the second
stage consumes 4.6 nA achieving 2 NEF. Fig. 21 shows the
measured amplifier output spectrum with 1.5% total harmonic
distortion for 94 dB(z) SPL at 20 Hz. Measured power supply
rejection ratio is >62 dB in the passband.

The ADC operates with a 0.6-V supply at a sampling rate
of 1 kS/s. Measured DNL and integral non-linearity (INL)
are shown in Fig. 22(a). The peak DNL and INL are
+0.34/—0.65 LSB and +0.67/—0.63 LSB, respectively, across
five different chips. Fig. 22(b) shows the measured power
spectrum with input signal at near-Nyquist rate. Measured
spurious-free dynamic range is 60.04 dB and signal-to-noise
and distortion ratio (SNDR) is 48.26 dB, which corresponds
to 7.7 b effective number of bits (ENOB). This SNDR is
maintained throughout the full bandwidth. The ADC consumes
2.7 nW exhibiting a 13 fJ/convstep figure-of-merit.

The charge pump consumes 240-840 pW while operating
from 31 Hz to 1 kHz (Fig. 23). In this operating range,
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Fig. 20. Measured amplifier. (a) Frequency response. (b) Noise.
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Fig. 21. Measured amplifier output spectrum with 94 dB(z) SPL at 20 Hz.

the output voltage varies from 9 to 13 V. In this paper, we use
an operating point where the charge pump runs at 250 Hz to
output 12.5 V.

Fig. 24 shows the measured system power breakdown.
The complete system consumes 12 nW. The overall power
is relatively evenly distributed with the most power-dominant
component (frontend amplifier) consuming less than half of
the total power. Table I summarizes the performance of the
test chip and compares with prior works.
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B. System Measurements

Fig. 25 shows the testing environment for system level
measurements. A desktop computer plays the target sounds,
using an audio amplifier to drive a passive speaker. A refer-
ence microphone measures the actual SPL near the proposed
system. The sound database is provided by a third party
research lab for the three different target objects (a generator,
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Fig. 25. Testing environment for system level measurements.

car, and truck), which are recorded in an anechoic chamber.
Performance of the proposed system is tested in a realistic
environment with 68-72 dB (Z) SPL background noise.

Fig. 26 shows the measured output spectrum of the ampli-
fier, where feature tones appear only when each target is ON.
Fig. 27 shows the classifier outputs for various test cases.
Object identification is triggered when the filtered classifica-
tion metric exceeds the threshold of 0. When the generator is
running, the decision metric is well above 0 while it is below
0 when the generator is OFF. Notice the decision metrics of
the other two targets, car and truck, are consistently below
0 when the generator sound is present. Similar results are
observed when the truck is the target. The car is the most
difficult to distinguish as seen by smaller separation between
the decision metrics. There exists no threshold that can achieve
100% detection accuracy without a false alarm. False alarm is
an important metric given that this type of system would serve
as a wakeup to a more power-hungry and higher performance
audio detection system. In such case, the average power
consumed would depend on the false alarm (i.e., false positive
rate) and the power of the more complex system. Assuming
that upon detection a system that is 1000 x more power hungry
is employed for a span of 4 s (detection rate of the wakeup
system), a false positive rate of 0.1% would be an ideal target
to balance the power between the wakeup and main systems.
Relationship between the generator classification accuracy and
SNR is analyzed with receiver operating characteristic curves
shown in Fig. 28. As expected, generator detection accuracy
monotonically improves as SNR increases. Distinguishing a
generator from a truck is more challenging than generator
versus car distinction. Fig. 28 shows classifying a generator
eventually reaches a perfect classification point (0, 1) with
>6 dB SNR. To render realistic environmental noise, the
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Fig. 28. Accuracy of generator classification depending on the SNR.

system has been tested with a sound data recorded in rural set to have O false alarms, the rural and urban conditions
and urban areas. Fig. 29 shows the classifier output detecting show 98% and 96% of detection accuracy, respectively, for the
a generator in different environments. When a threshold is same SNR condition (~6 dB). Miss-detection mainly occurs
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TABLE 1
PERFORMANCE SUMMARY AND COMPARISON TABLE
This Work K. Badami, et al B. Rumberg, et al Y. Chen, et al P. Harpe, et al
JSSC Jan. 2016 [1] | JETCAS 2011 [2] | JSSC Jan. 2015 [4] | JSSC Jan. 2016 [3]
Target of Interest Sound Sound Sound ECG ECG
Technology 0.18um 90nm 0.5um 65nm 65nm
Supply Voltage 1.2v N/A 0.6V 0.6V
. -4uwW 16.8nW
N Power 34nALNA) 1.20AVGA) | 0.96,W(LNA), SEn-4uW(VGA) 22.5nA(LNA), 5.4nA(VGA) nW
[}
= Gain 31 ~59dB 32.5~83.5dB 51 ~96dB 32dB
3 Off-chip
£ Bandwidth 470Hz 3kHz 250Hz 1.5-370Hz
< -
Input referred Noise 17uVms 32.5UVms 6.52UVms 26UV ms
1.8 (wlo VGA) 2.4" (w/o VGA) 2.0 (w/o VGA)
NEF 2.0 (w/ VGA) N/A 2.64 (w/ VGA) N/A(\fvw(/) VGA))
Supply Voltage 0.6V 0.6V 0.6V
Power 2.7nW 1.8nW 1nW
Sampling Rate 1KkS/s ~ ModeB: 500S/s 1.1kS/s
I2) - - Mixed-signal Classifier - -
[a) Resolution 8bit Off-chip 8bit 10bit
< Mode C:
ENOB 7.7 Off-chip ADC is used 7.14 9.2
: : DNL: +0.34/-0.65LSB DNL: +1.0/-1.0LSB DNL: +0.7"/-0.87LSB
Linearity INL: +0.67/-0.63LSB INL: +1.8/-1.8LSB INL: +0.5'/-0.96LSB
FOM [fJ/conv: step] 13.0 255 1.7
Supply Voltage 0.6V N/A N/A 0.4V
Power 2nW 2.6uW (Mode B) 51uW 45nW
Clock Frequency 1kHz N/A N/A 10kHz
% Feature Type Digital Analog Analog Digital N/A
o Classifier On-chip On-chip Off-chip On-chip
20
Latency Min: 1s, Msax:131s <100ms 100ms NIA
>95% for Generator, HR SP 89% >90% for Car, and
Accuracy Car, and Truck detection HR Non SP 85% Truck detection N/A
3.8uW
Total System Power 12.2nW (Hybrid mode A+B+C) 51uW 64nW 3nW
1. Estimated number.
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Fig. 29. Identification of the generator in different environments (N =512, K = 8, and m = 5).

when the target signal sound is masked by various ambient
noise sources (e.g., airplane) that are not present in the testing
lab environment.

system demonstrates a consistent >95% detection rate for all

tests.

Overall, the proposed Tol-based SVM exhibits reliable VIL. CONCLUSION

performance for our target objects whose features are sta-
tionary in time and sparse in the frequency domain. The

An ULP always-on acoustic sensing and object recognition
microsystems are proposed. The system exploits the stationary
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and sparse target signal characteristics to reduce the required
SNR and signal bandwidth. An 8-bit SAR-ADC with unique
DAC structure is introduced to significantly decrease the size
of sampling capacitance which reduces power consumption of
the preceding amplifier. Serialized Tol DFT feature extrac-
tion is proposed for the digital backend, replacing a high-
power/area-consuming conventional FFT. The overall system
successfully identifies target objects with >95% accuracy
while operating continuously with 12 nW of power consump-
tion. The proposed work focused on detecting targets sounds
with relatively low-frequency content (<500 Hz). However,
as the key idea of this paper is the overall system architecture
including the co-optimization of the analog frontend and the
DSP, sounds of interest that have higher frequency content
would still benefit from the overall architecture as long as
they can be characterized via the TOI DFT approach, even
though the power level itself would be necessarily higher.
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