
LOW COMPLEXITY OPTICAL FLOW USING NEIGHBOR-GUIDED
SEMI-GLOBAL MATCHING

Jiang Xiang*, Ziyun Li§, David Blaauw§, Hun Seok Kim§ and Chaitali Chakrabarti*

*School of Electrical, Computer and Energy Engineering, Arizona State University

§ Department of Electrical Engineering and Computer Science, University of Michigan
jiang.xiang@asu.edu, liziyun@umich.edu, blaauw@umich.edu, hunseok@umich.edu, chaitali@asu.edu

Abstract—This paper presents Neighbor-Guided Semi-

Global Matching (NG-fSGM), a new method for optical flow. It
is based on SGM, a popular dynamic programming algorithm
for stereo vision, where the disparity of each pixel is calculated
by aggregating local matching costs over the entire image to
resolve local ambiguity in texture-less and occluded regions.
Unlike conventional SGM, NG-fSGM operates on a subset of
the search space that has been aggressively pruned based on
neighboring pixels’ information. Our proposed method achieves
a fast approximation of SGM with significantly simpler cost
aggregation and flow computation. Compared to a prior SGM
extension for optical flow, the proposed NG-fSGM provides
about 9x reduction in the number of computations and 5x
reduction in the memory requirement with only 0.17% accuracy
degradation when evaluated with Middlebury benchmark test
cases.

Keywords—Optical flow; SGM; fSGM; Low complexity.

I. INTRODUCTION
Accurate optical flow is essential for many computer

vision applications such as object detection/tracking, video
compression, and autonomous navigation. The dense optical
flow algorithm calculates a motion vector for each pixel of
the image. The major challenges for optical flow estimation
include occlusion, perspective distortion, transparent objects,
low/uniform textures, and repeated patterns. For emerging
power-critical mobile applications such as autonomous
navigation of unmanned aerial vehicles, there is the added
challenge of real-time performance with stringent memory
and computational resource constraints.

Most existing optical flow algorithms optimize a global
energy function in the form of the weighted sum of data term
(consistency in optical flow) and prior term (flow field’s
favor such as flow smoothness), as stated in the taxonomy of
Baker et al. [1]. Of the optimization strategies, the continuous
optimization algorithm, such as those by Baker and
Matthews [2], Bruhn et al. [3] and Zimmer et al. [4],
typically require a large number of nonlinear computations.
In contrast, discrete optimization algorithms, often used in
stereo matching, enhance search efficiency by approximating
the solution space. See, for example, Lempitsky et al. [5],
Cooke [6], and Lei and Yang [7]. However, directly applying

a discrete optimization to 2D optical flow is challenging
because, unlike stereo, the complexity increases quadratically
with flow search range. For large flow displacements,
therefore, discrete optimization algorithms are typically
embedded into a coarse-to-fine approach [9] that incurs
inevitable accuracy degradation due to resolution loss at
higher hierarchical levels.

Addressing this technical challenge, this paper introduces
a new optical flow method, the Neighbor-Guided Semi-
Global Matching (NG-fSGM). The proposed method is based
on SGM [8], a popular concept in stereo matching, and
fSGM [9], a prior work that applies SGM to optical flow.
Our objective is to achieve performance comparable to fSGM
with significantly higher computational efficiency. The
algorithm-level techniques include: (1) reducing the search
space size by exploring flow similarity of neighboring pixels;
(2) approximating aggregated cost array and embedding
pixel-wise cost computation and flow computation in
aggregation. We show that the proposed NG-fSGM method
provides robust optical flow accuracy comparable to fSGM.
Furthermore, these techniques help in significant reduction
both in the computational complexity and in the memory
space, thus making this method suitable for implementation
in a mobile platform.

II. BACKGROUND
The SGM proposed by Hirschmüller for stereo [8]

achieves very high accuracy by applying dynamic
programming based cost function optimization over the
entire image. It first computes pixel-wise matching costs of
corresponding pixels in two frames for all disparities in the
search space. This is followed by cost aggregation along a
finite number of paths that penalizes abrupt disparity changes.
An extension of SGM algorithm for optical flow, fSGM, was
introduced in [9]. fSGM extends the search space from 1D
stereo to 2D flow. It is probably the closest approach to ours,
hence we briefly review fSGM here.

Step 1: Computation of pixel-wise matching costs C(p,o)
between pixel p = (x,y) in the previous image frame and pixel
q = p + o in the current image frame, for all flow vectors o =
(u,v), where u is the horizontal component and v is the

vertical component. The cost function can be based on Rank,
Census [10] and mutual information [11].

Step 2: Application of an additional constraint on
matching costs to get the smoothness of flow image. This is
done by penalizing abrupt changes of adjacent pixels’ flow
offsets. The cost Lr(p,o) of the pixel p for a flow vector o
accumulated along a path in the direction r is defined as

 (1)

with the cost regularization summand

(2)

where Pl is the penalty factor and ||i-o||1 is the L1 norm of two
flow vectors. Since the full linear model may result in over-
regularization, [9] also suggests optional truncation of the
linear model. The aggregated cost S(p,o) is the sum of Lr(p,o)
over all paths.

 (3)

Step 3: Flow computation. It uses winner-takes-all
strategy by selecting o with the minimum cost S(p,o).

The complexity of typical SGM-based methods is
O(WHD), where W is the width, H is the height and D is the
size of search space. Complexity of fSGM, therefore,
increases quadratically with the flow range (D = d2 where d
is one dimensional search range), making the algorithm
rather inefficient for a relatively large search range (e.g., D =
10000 for ±50 pixel search range per dimension). Addressing
this issue, fSGM is typically combined with a hierarchical
coarse-to-fine approach that incurs inevitable accuracy
degradation due to resolution loss at higher hierarchical
levels. It motivates the necessity of lower complexity
alternatives. We propose a new optical flow algorithm,
Neighbor-Guided fSGM (NG-fSGM) that achieves accuracy
comparable to fSGM but with significantly reduced memory
usage and reduced number of arithmetic/logic operations.

III. OPTICAL FLOW WITH NEIGHBOR-GUIDED SEMI-GLOBAL
MATCHING

 NG-fSGM reduces the complexity by aggressively
pruning the search space based on information from
neighbors. Using neighborhood information to prune the
search space has also been used in [13] and [14] in the
context of block matching for motion estimation. We extend
the idea to semi-global cost aggregation and also modify
flow computation functions to reduce the overall complexity.

A. Flow Subset Selection
The possibility that neighboring pixels in the image have

an identical or slowly changing flow vector is high since they
tend to belong to the same object, and thus have similar
motion. Small flow variation usually occur due to slanted
surface of objects, spinning objects, camera position, etc.
Large flow variations can occur in the edge of objects and are
typically due to occlusion and motion discontinuity. NG-
fSGM exploits this property by selecting a subset of search

space, Op for each pixel p, based on its neigbor pixels’ flow
results prior to the computation of pixel-wise matching costs.
The selection strategy is inspired by PatchMatch [12], which
initializes a random search space and propagates good
‘guesses’.

The subset selection for each pixel p is guided by its
neighboring pixels along every path in SGM, as shown in Fig.
1. Let Q denote a set of flow vectors. For pixel p, the best N
flow vectors Qp-r of previous pixel along path r with the
minimum cost Lr(p-r,o), are selected into the search subset.
We choose the best N vectors (and not just one), for
robustness to errors caused by accumulated cost variation
along a path and localized abnormality of pixel-wise matching
cost. Since the SGM applies a low aggregation penalty when
the flow varies smoothly, eight adjacent flow vectors
surrounding each of these best vectors are selected for cost
evaluation as well. To enable the algorithm adaptation to
rapid flow variation (e.g., occlusion and object discontinuity),
M random flow vectors are added to the subset. Note that for
pixels along the boundary of the image, some of the
neighboring pixels are not available. To allow simple and fast
initialization, the initial subset at these pixels is selected
randomly from a uniform distribution.

Fig. 1. Subset selection. For the center pixel p, the thick square represents
flow range. The solid arrows represents path directions in forward scan
while dash arrows represents path directions in backward scan. The selected
flow vectors, guided by neighbor p-r along path r, is the combination of B, A
and R. B corresponds to the N = 2 best flow vectors and A corresponds to
their adjacent flow vectors. R corresponds to M = 4 random flow vectors.

Typically, SGM approaches are implemented in two
scans, forward and backward, and paths are divided into two
groups as in Fig. 1. The forward scan processes every pixel
from top-left to bottom-right of the image in the raster scan
order, while the backward scan processes pixels in reverse
order. As a result, pixel p has different flow vector subset, Op1
and Op2, and aggregated cost, S1(p,o) and S2(p,o), for forward
scan and backward scan, respectively. The overall subset Op
should be union of Op1 and Op2 and the overall aggregated
cost S(p,o) should be sum of S1(p,o) and S2(p,o). We propose
in III-C an approximation strategy to combine forward and
backward aggregation. In the backward scan, N best flow
vectors with the forward scan minimum cost S1(p,o) and their
eight adjacent vectors (located in a 3 × 3 window) are added
to construct Op2 to increase algorithm accuracy. The purpose
is to prevent wrong selection in single scan since flow could
be inconsistent in certain directions.

The flow vectors chosen by different aggregation paths
may be redundant since neighboring pixels’ best vectors can
be identical and 3×3 adjacent windows (i.e., B’s in Fig.1) can
overlap. If redundancy is ignored (worst case), the total
number of vectors in the search subset is T = N × (P / 2 + 1)
× 9 + M, where P is the number of aggregation paths. The
complexity of the following steps in NG-fSGM is O(WHT),
which is independent of flow search range (D = d2). In actual
implementation, images with larger flow displacements are
more likely to experience this worst case condition, while
smaller flow images would have reduced average complexity
because of redundancy in the flow vectors from neighbors.

B. Pixel-wise Matching Cost
For pixel-wise matching cost, we adopt Hamming distance

of Census transform [10]. The Census transform has been
proven to represent image structure well and to be robust to
environment variations [15]. A bit string is assigned to every
p, where each bit is 1 (or 0) if the intensity of p is larger (or
smaller) than p’s neighboring pixels within a pre-defined
window. The cost is then computed by Hamming distance
between corresponding pixels.

In a typical implementation for SGM, the costs C(p,o) are
precalculated and stored in an integer (7 bit) array of size W ×
d × D. However in the proposed NG-fSGM, since a subset of
flow vectors is selected, the calculation of C(p,o) is part of the
cost aggregation step and performed only when o is selected.
We do not store the array of precomputed pixel-wise
matching cost C(p,o) in the memory. Instead, the Census
transform of two images is precalculated and stored in
memory (W × d × 30 bytes for a 11 × 11 Census window).

C.Cost Aggregation and Flow Computation
For cost aggregation, a linear or a truncated linear

function works relatively well [9]. We use single-step Potts
model instead since a simple linear function over-regularizes
and truncation of the linear function is expensive.

We modify the cost regularization summand Z as

 (4)

 }

where P1 and P2 are regularization penalties (P1 ≤ P2). The
modification penalizes neighboring eight flow vectors by a
smaller penalty (smoothness constraint) and all other vectors
by a larger penalty. Typical SGM-based methods store
Lr(p,o) in an array of size W × P × D × 2 (for 8 paths) in
order to compute Z. NG-fSGM uses the best N flow vectors
(Q) for each path and their costs to approximate the original
array so that the array size can be reduced to W × P × N × 2.
If the cost Lr(p-r,o) is not available in Qp-r along a certain
direction r, it is assigned the minimum value in Qp-r plus P2.

To compute flow, typical SGM-based methods store the
overall aggregated cost S(p,o) for all searched flow vectors
Op in an array of size W × H × D, and update the values by
accumulating path-wise aggregated cost Lr(p,o). NG-fSGM

avoids such a large memory usage by storing only the N best
flow vectors Bp with their corresponding aggregated cost
S1(p,o) from forward scan to approximate Op1 in backward
scan. As a result, the array size is reduced from W × H × D to
W × H × N.

In the backward scan, for each pixel p, cost aggregation
is directly followed by flow computation, where the total
number of flow vectors is determined by the union of best N
vectors, Bp, from forward scan and the neighbor-guided
vectors from backward scan, Op2. For the vectors whose cost
has not been calculated in either the forward or the backward
scan, the following rules are applied: The missing costs in
forward scan are assigned the maximum cost in Bp plus P2,
while the missing costs in backward scan are assigned the
maximum cost in Op2. The overall cost S(p,o) is the sum of
cost from two scans. Finally, the output flow vector o is the
one corresponding to the minimum cost S(p,o).

D.Post Processing
After the raw flow results are computed, post-processing

steps are applied to refine the flow image. We apply a
median filter on both channels (horizontal and vertical
components) of the flow image to remove errors and
smoothen flow fields. If the accuracy requirement is high, a
consistency check between previous and current frame
(similar to left-right check for stereo [8]) can be applied to
get the confidence map. Optical flow of low-confidence
pixels can be interpolated from surrounding high-confidence
pixels. For the evaluation results shown in Section IV, we
only consider a simple 3x3 median filter.

IV. RESULTS
We conducted comprehensive experiments on the

Middlebury optical flow benchmark [1] to evaluate the
performance of our method. The main objective is to quantify
the impact of various algorithm parameters on the accuracy
and complexity. The accuracy is quantified in terms of
endpoint error (radius = 2) percentage. The algorithm
complexity is measured in terms of the memory size and the
number of arithmetic/logic operations. A high-level summary
of our findings is given in Table I.

To identify the impact of pixel-wise cost function, we
evaluated different values of Census transform window size
given N = 3, M = 3 and P = 8. The mean error percentage is
7.00%, 5.26%, 4.71% and 4.82% for Census transform
window size of 7x7, 9x9, 11x11 and 13x13, respectively.
Since the memory requirement, is a function of the window
size, we conclude that 11 × 11 Census transform window
provides a reasonable tradeoff point for balancing complexity
and accuracy. For N = 3, M = 3 and 11 × 11 Census
transform window size, we study the effect of number of
paths P. We see that the mean error percentage is 11.17%,
5.24%, 4.71% and 4.68% while the relative execution time
on a 2.6 GHz Intel Core i5 processor changes from 1x, 1.37x,
1.72x to 2.64x for P values of 2, 4, 8 and 16, respectively.
Thus P = 8 provides a reasonable tradeoff point. For the 11
× 11 Census transform window, P = 8 configuration, we

found that P1 = 20, and P2 = 60 gives the best performance
and so in the rest of this study, we choose these parameter
settings.

TABLE I. SENSITIVITY OF ALGORITHM PARAMETERS

Parameters Impact on Accuracy Impact on Complexity
N moderate low
M low low

Census Window Size low moderate
The Number of Paths moderate high

In NG-fSGM, N and M are the key parameters that
control the algorithm accuracy and complexity by changing
the number of selected flow vectors in the search space.
Table II shows the algorithm performance and complexity
metrics for different values of N, when M = 4. We also
provide the percentage of selected flow vectors over the
entire search space to show the impact of different values of
N. Note that the complexity values in Table II are not the
worst-case but average values based on simulations on
different images. Table III shows the algorithm accuracy for
different values of M. While there is significant improvement
in accuracy compared to when M = 0, the relative
improvement diminishes with increasing M. Unlike N, the
value of M has much smaller impact on the number of
operations and almost no impact on memory requirement.
From the results in Tables II and III, we see that N=3, M=3
provides good accuracy with modest architectural cost.

TABLE II. PERFORMANCE AND COMPLEXITY OF NG-FSGM FOR
DIFFERENT VALUES OF N

N Selected Flow
Vectors

Endpoint Error Memory Space
(MB)

Number of Giga
Operations

1 6.15% 5.79% 2.37 2.17
2 7.83% 4.94% 3.38 2.96
3 9.27% 4.71% 4.39 4.33
4 10.40% 4.71% 5.40 6.31

TABLE III. PERFORMANCE AND COMPLEXITY OF NG-FSGM FOR
DIFFERENT VALUES OF M

N = 1 N = 3
M Endpoint Error Number of Giga

Operations
M Endpoint Error Number of Giga

Operations
0 7.30% 2.14 0 5.15% 4.25
1 5.85% 2.14 1 4.76% 4.27
2 5.77% 2.15 2 4.75% 4.29
3 5.76% 2.16 3 4.71% 4.31

Table IV shows the accuracy and complexity of NG-
fSGM (N = 3, and M = 3) compared to fSGM and Lucas-
Kanade [16], both with the same post-processing (Section
III.D) and a single-level pyramid scheme. Note that all three
methods can be embedded in a hierarchical scheme if
necessary. For fSGM, the parameters used were: 11 × 11
Census transform window, 8 aggregation paths, cost
regularization summand (eqn.(4)), P1 = 40, and P2 = 200.
Penalties in fSGM are larger since NG-fSGM is more likely
to get larger values from other flow vectors (3rd term in eqn.
(4)). Our algorithm provides significant benefit compared to
fSGM in complexity since NG-SGM only utilizes 10% flow
vectors to achieve comparable algorithm accuracy. We also

observe that NG-fSGM significantly outperforms Lucas-
Kanade in accuracy at the cost of increased memory area
requirement and a slightly higher number of computations.

To visualize the accuracy difference, Fig. 2 shows the
flow maps of image ‘Mequon’ on Middlebury for each
algorithm. NG-fSGM and fSGM both outperforms Lucas-
Kanade. The raw flow map output of NG-fSGM shows
blurry results along object edges but has fewer error patches
compared to fSGM. The neighbor dependency in NG-fSGM
is less reliable at the object edges when we apply aggressive
search space pruning. However, after post processing, this
difference becomes insignificant. Table IV confirms that the
overall accuracy of NG-fSGM after post processing is almost
identical to the original fSGM. Since NG-fSGM achieves an
order of magnitude complexity reduction, it is certainly an
attractive alternative to the original fSGM for low power and
resource limited applications.

TABLE IV. COMPARISON OF NG-FSGM, FSGM AND LUCAS KANADE

Algorithm Endpoint Error Memory Space
(MB)

Number of Giga
Operations

fSGM 4.54% 20.68 37.53
Lucas-Kanade 15.78% 1.47 3.15

NG-fSGM 4.71% 4.39 4.31

Fig. 2. Colored flow maps of ‘Mequon’ using different algorithms. Top-left:
input previous frame and color legend; top-right: NG-fSGM, N = 3; bottom-
left: fSGM; bottom-right: Lucas-Kanade.

V. CONCLUSIONS
This paper presented NG-fSGM, a low complexity

method for optical flow. The complexity reduction is
achieved by aggressively pruning the flow vector search
space using the information from neighbor pixels. The cost
aggregation and flow computation steps have been optimized
for further complexity reduction. NG-fSGM has been
evaluated on the Middlebury optical flow dataset. The
evaluation results show that ND-fSGM has comparable
performance with an order of magnitude reduction in
complexity compared to a prior work fSGM, and greatly
outperforms other similar-costly methods like Lucas-Kanade.
These advantages make NG-fSGM an attractive algorithm
for real-time and mobile applications.

References
[1] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black and R.

Szeliski, “A Database and Evaluation Methodology for Optical Flow,”
International Journal of Computer Vision, Vol. 92, pp. 1-31, 2011.

[2] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying
Framework,” International Journal of Computer Vision, Vol. 56(3), pp.
221-225, 2004.

[3] A. Bruhn, J. Weickert and C. Schnörr, “Lucas/Kanade meets
Horn/Schunck: combining local and global optic flow methods,”
International Journal of Computer Vision, Vol. 61(3), pp. 211–231,
2005.

[4] H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosen-
hahn and H.-P. Seidel, “Complementary optic flow,” Energy
Minimization Methods in Computer Vision and Pattern Recognition,
pp. 207-220, 2009.

[5] V. Lempitsky, S. Roth and C. Rother, “Fusion flow: discrete-
continuous optimization for optical flow estimation,” Computer Vision
and Pattern Recognition, pp. 1-8, 2008.

[6] T. Cooke, “Two applications of graph-cuts to image processing,”
Digital Image Computing: Techniques and Applications, pp. 498–504,
2008.

[7] C. Lei, Y.-H. Yang, “Optical flow estimation on coarse-to-fine region-
trees using discrete optimization,” International Conference on
Computer Vision, pp. 1562–1569, 2009.

[8] H. Hirschmueller, “Stereo processing by semiglobal matching and
mutual information,” Pattern Analysis and Machine Intelligence, Vol.
30, pp. 328–41, 2008.

[9] S. Hermann and R. Klette, “Hierarchical scan line dynamic
programming for optical flow using semi-global matching,” Computer
Vision-ACCV Workshops, pp. 556-567, 2012.

[10] R. Zabih and J. Woodfill, “Non-parametric local transforms for
computing visual correspondance,” European Conference on Computer
Vision, pp. 151–158, 1994.

[11] P. Viola and W. M. Wells, “Alignment by maximization of mutual
information,” International Journal of Computer Vision, Vol. 24(2), pp.
137–154, 1997.

[12] C. Barnes, E. Shechtman, A. Finkelstein and D. Goldman,
“PatchMatch: a randomized correspondence algorithm for structural
image editing” ACM Transactions on Graphics (Proc. SIGGRAPH) 28,
2009.

[13] Christoph Stiller, “Motion—Estimation for Coding of Moving Video at
8 kbit/s with Gibbs Modeled Vectorfield Smoothing” Proc. SPIE 1360,
Visual Communications and Image Processing '90: Fifth in a Series,
468 (September 1, 1990).

[14] G. de Haan, P. W. A. C. Biezen, H. Huijgen and O. A. Ojo, "True-
motion estimation with 3-D recursive search block matching," in IEEE
Transactions on Circuits and Systems for Video Technology, vol. 3,
no. 5, pp. 368-379, Oct 1993.

[15] H. Hirschmüller and D. Scharstein, “Evaluation of stereo matching
costs on images with radiometric differences,” IEEE Trans. Pattern
Analysis Machine Intelligence, Vol. 31, pp. 1582–1599, 2009.

[16] B.D. Lucas and T. Kanade, “An iterative image registration techinique
with an application to stereo vision,” International Joint Conference on
Artificial Intelligence, Vol. 81, pp. 674-679, 1981.

