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Abstract—This paper presents Neighbor-Guided Semi-

Global Matching (NG-fSGM), a new method for optical flow. It 
is based on SGM, a popular dynamic programming algorithm 
for stereo vision, where the disparity of each pixel is calculated 
by aggregating local matching costs over the entire image to 
resolve local ambiguity in texture-less and occluded regions. 
Unlike conventional SGM, NG-fSGM operates on a subset of 
the search space that has been aggressively pruned based on 
neighboring pixels’ information. Our proposed method achieves 
a fast approximation of SGM with significantly simpler cost 
aggregation and flow computation. Compared to a prior SGM 
extension for optical flow, the proposed NG-fSGM provides 
about 9x reduction in the number of computations and 5x 
reduction in the memory requirement with only 0.17% accuracy 
degradation when evaluated with Middlebury benchmark test 
cases.  
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I. INTRODUCTION 
Accurate optical flow is essential for many computer 

vision applications such as object detection/tracking, video 
compression, and autonomous navigation. The dense optical 
flow algorithm calculates a motion vector for each pixel of 
the image. The major challenges for optical flow estimation 
include occlusion, perspective distortion, transparent objects, 
low/uniform textures, and repeated patterns. For emerging 
power-critical mobile applications such as autonomous 
navigation of unmanned aerial vehicles, there is the added 
challenge of real-time performance with stringent memory 
and computational resource constraints. 

Most existing optical flow algorithms optimize a global 
energy function in the form of the weighted sum of data term 
(consistency in optical flow) and prior term (flow field’s 
favor such as flow smoothness), as stated in the taxonomy of 
Baker et al. [1]. Of the optimization strategies, the continuous 
optimization algorithm, such as those by Baker and 
Matthews [2], Bruhn et al. [3] and Zimmer et al. [4], 
typically require a large number of nonlinear computations. 
In contrast, discrete optimization algorithms, often used in 
stereo matching, enhance search efficiency by approximating 
the solution space. See, for example, Lempitsky et al. [5], 
Cooke [6], and Lei and Yang [7]. However, directly applying 

a discrete optimization to 2D optical flow is challenging 
because, unlike stereo, the complexity increases quadratically 
with flow search range. For large flow displacements, 
therefore, discrete optimization algorithms are typically 
embedded into a coarse-to-fine approach [9] that incurs 
inevitable accuracy degradation due to resolution loss at 
higher hierarchical levels.  

Addressing this technical challenge, this paper introduces 
a new optical flow method, the Neighbor-Guided Semi-
Global Matching (NG-fSGM). The proposed method is based 
on SGM [8], a popular concept in stereo matching, and 
fSGM [9], a prior work that applies SGM to optical flow. 
Our objective is to achieve performance comparable to fSGM 
with significantly higher computational efficiency.  The 
algorithm-level techniques include: (1) reducing the search 
space size by exploring flow similarity of neighboring pixels; 
(2) approximating aggregated cost array and embedding 
pixel-wise cost computation and flow computation in 
aggregation.  We show that the proposed NG-fSGM method 
provides robust optical flow accuracy comparable to fSGM. 
Furthermore, these techniques help in significant reduction 
both in the computational complexity and in the memory 
space, thus making this method suitable for implementation 
in a mobile platform.  

II. BACKGROUND 
The SGM proposed by Hirschmüller for stereo [8] 

achieves very high accuracy by applying dynamic 
programming based cost function optimization over the 
entire image. It first computes pixel-wise matching costs of 
corresponding pixels in two frames for all disparities in the 
search space. This is followed by cost aggregation along a 
finite number of paths that penalizes abrupt disparity changes. 
An extension of SGM algorithm for optical flow, fSGM, was 
introduced in [9]. fSGM extends the search space from 1D 
stereo to 2D flow. It is probably the closest approach to ours, 
hence we briefly review fSGM here. 

Step 1: Computation of pixel-wise matching costs C(p,o) 
between pixel p = (x,y) in the previous image frame and pixel 
q = p + o in the current image frame, for all flow vectors o = 
(u,v), where u is the horizontal component and v is the 



vertical component. The cost function can be based on Rank, 
Census [10] and mutual information [11].  

Step 2: Application of an additional constraint on 
matching costs to get the smoothness of flow image. This is 
done by penalizing abrupt changes of adjacent pixels’ flow 
offsets. The cost Lr(p,o) of the pixel p for a flow vector o 
accumulated along a path in the direction r is defined as

          (1)  

with the cost regularization summand 

(2)

where Pl is the penalty factor and ||i-o||1 is the L1 norm of two 
flow vectors. Since the full linear model may result in over-
regularization, [9] also suggests optional truncation of the 
linear model. The aggregated cost S(p,o) is the sum of Lr(p,o) 
over all paths. 

                          (3) 

Step 3: Flow computation. It uses winner-takes-all 
strategy by selecting o with the minimum cost S(p,o).

The complexity of typical SGM-based methods is 
O(WHD), where W is the width, H is the height and D is the 
size of search space. Complexity of fSGM, therefore, 
increases quadratically with the flow range (D = d2 where d 
is one dimensional search range), making the algorithm 
rather inefficient for a relatively large search range (e.g., D = 
10000 for ±50 pixel search range per dimension). Addressing 
this issue, fSGM is typically combined with a hierarchical 
coarse-to-fine approach that incurs inevitable accuracy 
degradation due to resolution loss at higher hierarchical 
levels. It motivates the necessity of lower complexity 
alternatives. We propose a new optical flow algorithm, 
Neighbor-Guided fSGM (NG-fSGM) that achieves accuracy 
comparable to fSGM but with significantly reduced memory 
usage and reduced number of arithmetic/logic operations. 

III. OPTICAL FLOW WITH NEIGHBOR-GUIDED SEMI-GLOBAL 
MATCHING 

 NG-fSGM reduces the complexity by aggressively 
pruning the search space based on information from 
neighbors. Using neighborhood information to prune the 
search space has also been used in [13] and [14] in the 
context of block matching for motion estimation. We extend 
the idea to semi-global cost aggregation and also modify 
flow computation functions to reduce the overall complexity.

A. Flow Subset Selection 
The possibility that neighboring pixels in the image have 

an identical or slowly changing flow vector is high since they 
tend to belong to the same object, and thus have similar 
motion. Small flow variation usually occur due to slanted 
surface of objects, spinning objects, camera position, etc. 
Large flow variations can occur in the edge of objects and are 
typically due to occlusion and motion discontinuity. NG-
fSGM exploits this property by selecting a subset of search 

space, Op for each pixel p, based on its neigbor pixels’ flow 
results prior to the computation of pixel-wise matching costs. 
The selection strategy is inspired by PatchMatch [12], which 
initializes a random search space and propagates good 
‘guesses’. 

The subset selection for each pixel p is guided by its 
neighboring pixels along every path in SGM, as shown in Fig. 
1. Let Q denote a set of flow vectors. For pixel p, the best N 
flow vectors Qp-r of previous pixel along path r with the 
minimum cost Lr(p-r,o), are selected into the search subset. 
We choose the best N vectors (and not just one), for 
robustness to errors caused by accumulated cost variation 
along a path and localized abnormality of pixel-wise matching 
cost. Since the SGM applies a low aggregation penalty when 
the flow varies smoothly, eight adjacent flow vectors 
surrounding each of these best vectors are selected for cost 
evaluation as well. To enable the algorithm adaptation to 
rapid flow variation (e.g., occlusion and object discontinuity), 
M random flow vectors are added to the subset. Note that for 
pixels along the boundary of the image, some of the 
neighboring pixels are not available. To allow simple and fast 
initialization, the initial subset at these pixels is selected 
randomly from a uniform distribution. 

 
Fig. 1. Subset selection. For the center pixel p, the thick square represents 
flow range. The solid arrows represents path directions in forward scan 
while dash arrows represents path directions in backward scan. The selected 
flow vectors, guided by neighbor p-r along path r, is the combination of B, A 
and R. B corresponds to the N = 2 best flow vectors and A corresponds to 
their adjacent flow vectors. R corresponds to M = 4 random flow vectors. 

Typically, SGM approaches are implemented in two 
scans, forward and backward, and paths are divided into two 
groups as in Fig. 1. The forward scan processes every pixel 
from top-left to bottom-right of the image in the raster scan 
order, while the backward scan processes pixels in reverse 
order. As a result, pixel p has different flow vector subset, Op1 
and Op2, and aggregated cost, S1(p,o) and S2(p,o), for forward 
scan and backward scan, respectively. The overall subset Op 
should be union of  Op1 and Op2 and the overall aggregated 
cost S(p,o) should be sum of S1(p,o) and S2(p,o). We propose 
in III-C an approximation strategy to combine forward and 
backward aggregation. In the backward scan, N best flow 
vectors with the forward scan minimum cost S1(p,o) and their 
eight adjacent vectors (located in a 3 × 3 window) are added 
to construct Op2 to increase algorithm accuracy. The purpose 
is to prevent wrong selection in single scan since flow could 
be  inconsistent in certain directions. 



The flow vectors chosen by different aggregation paths 
may be redundant since neighboring pixels’ best vectors can 
be identical and 3×3 adjacent windows (i.e., B’s in Fig.1) can 
overlap. If redundancy is ignored (worst case), the total 
number of vectors in the search subset is  T = N × ( P / 2 + 1) 
× 9 + M, where P is the number of aggregation paths. The 
complexity of the following steps in NG-fSGM is O(WHT), 
which is independent of flow search range (D = d2). In actual 
implementation, images with larger flow displacements are 
more likely to experience this worst case condition, while 
smaller flow images would have reduced average complexity 
because of redundancy in the flow vectors from neighbors. 

B. Pixel-wise Matching Cost 
For pixel-wise matching cost, we adopt Hamming distance 

of Census transform [10]. The Census transform has been 
proven to represent image structure well and to be robust to 
environment variations [15]. A bit string is assigned to every 
p, where each bit is 1 (or 0) if the intensity of p is larger (or 
smaller) than p’s neighboring pixels within a pre-defined 
window. The cost is then computed by Hamming distance 
between corresponding pixels. 

In a typical implementation for SGM, the costs C(p,o) are 
precalculated and stored in an integer (7 bit) array of size W × 
d × D. However in the proposed NG-fSGM, since a subset of 
flow vectors is selected, the calculation of C(p,o) is part of the 
cost aggregation step and performed only when o is selected. 
We do not store the array of precomputed pixel-wise 
matching cost C(p,o) in the memory. Instead, the Census 
transform of two images is precalculated and stored in 
memory (W × d × 30 bytes for a 11 × 11 Census window). 

C.Cost Aggregation and Flow Computation 
For cost aggregation, a linear or a truncated linear 

function works relatively well [9]. We use single-step Potts 
model instead since a simple linear function over-regularizes 
and truncation of the linear function is expensive. 

We modify the cost regularization summand Z as 

                       
                                                   (4) 

                            }  

where P1 and P2 are regularization penalties (P1 ≤ P2). The 
modification penalizes neighboring eight flow vectors by a 
smaller penalty (smoothness constraint) and all other vectors 
by a larger penalty. Typical SGM-based methods store 
Lr(p,o) in an array of size W × P × D × 2 (for 8 paths) in 
order to compute Z. NG-fSGM uses the best N flow vectors 
(Q) for each path and their costs to approximate the original 
array so that the array size can be reduced to W × P × N × 2. 
If the cost Lr(p-r,o) is not available in Qp-r along a certain 
direction r, it is assigned the minimum value in Qp-r plus P2. 

To compute flow, typical SGM-based methods store the 
overall aggregated cost S(p,o) for all searched flow vectors 
Op in an array of size W × H × D, and update the values by 
accumulating path-wise aggregated cost Lr(p,o). NG-fSGM 

avoids such a large memory usage by storing only the N best 
flow vectors Bp with their corresponding aggregated cost 
S1(p,o) from forward scan to approximate Op1 in backward 
scan. As a result, the array size is reduced from W × H × D to 
W × H × N. 

In the backward scan, for each pixel p, cost aggregation 
is directly followed by flow computation, where the total 
number of flow vectors is determined by the union of best N 
vectors, Bp, from forward scan and the neighbor-guided 
vectors from backward scan, Op2. For the vectors whose cost 
has not been calculated in either the forward or the backward 
scan, the following rules are applied: The missing costs in 
forward scan are assigned the maximum cost in Bp plus P2, 
while the missing costs in backward scan are assigned the 
maximum cost in Op2. The overall cost S(p,o) is the sum of 
cost from two scans. Finally, the output flow vector o is the 
one corresponding to the minimum cost S(p,o).  

D.Post Processing 
After the raw flow results are computed, post-processing 

steps are applied to refine the flow image. We apply a 
median filter on both channels (horizontal and vertical 
components) of the flow image to remove errors and 
smoothen flow fields. If the accuracy requirement is high, a 
consistency check between previous and current frame 
(similar to left-right check for stereo [8]) can be applied to 
get the confidence map. Optical flow of low-confidence 
pixels can be interpolated from surrounding high-confidence 
pixels. For the evaluation results shown in Section IV, we 
only consider a simple 3x3 median filter. 

IV. RESULTS 
We conducted comprehensive experiments on the 

Middlebury optical flow benchmark [1] to evaluate the 
performance of our method. The main objective is to quantify 
the impact of various algorithm parameters on the accuracy 
and complexity. The accuracy is quantified in terms of 
endpoint error (radius = 2) percentage. The algorithm 
complexity is measured in terms of the memory size and the 
number of arithmetic/logic operations. A high-level summary 
of our findings is given in Table I. 

To identify the impact of pixel-wise cost function, we 
evaluated different values of Census transform window size 
given N = 3, M = 3 and P = 8. The mean error percentage is 
7.00%, 5.26%, 4.71% and 4.82% for Census transform 
window size of 7x7, 9x9, 11x11 and 13x13, respectively. 
Since the memory requirement, is a function of the window 
size, we conclude that 11 × 11 Census transform window 
provides a reasonable tradeoff point for balancing complexity 
and accuracy. For N = 3, M = 3 and 11 × 11 Census 
transform window size, we study the effect of number of 
paths P. We see that the mean error percentage is 11.17%, 
5.24%, 4.71% and 4.68% while the relative execution time 
on a 2.6 GHz Intel Core i5 processor changes from 1x, 1.37x, 
1.72x to 2.64x for P values of 2, 4, 8 and 16, respectively. 
Thus P = 8 provides a reasonable tradeoff point. For the  11 
× 11 Census transform window, P = 8 configuration, we 



found  that P1 = 20, and P2 = 60 gives  the best performance 
and so in the rest of this study, we choose these parameter 
settings. 

TABLE I. SENSITIVITY OF ALGORITHM PARAMETERS  

Parameters  Impact on Accuracy  Impact on Complexity  
N moderate low 
M low low 

Census Window Size low moderate 
The Number of Paths moderate high 

In NG-fSGM, N and M are the key parameters that 
control the algorithm accuracy and complexity by changing 
the number of selected flow vectors in the search space. 
Table II shows the algorithm performance and complexity 
metrics for different values of N, when M = 4. We also 
provide the percentage of selected flow vectors over the 
entire search space to show the impact of different values of 
N. Note that the complexity values in Table II are not the 
worst-case but average values based on simulations on 
different images. Table III shows the algorithm accuracy for 
different values of M. While there is significant improvement 
in accuracy compared to when M = 0, the relative 
improvement diminishes with increasing M. Unlike N, the 
value of M has much smaller impact on the number of 
operations and almost no impact on memory requirement. 
From the results in Tables II and III, we see that N=3, M=3 
provides good accuracy with modest architectural cost.  

TABLE II. PERFORMANCE AND COMPLEXITY OF NG-FSGM FOR 
DIFFERENT VALUES OF N  

N Selected Flow 
Vectors  

Endpoint Error  Memory Space 
(MB)  

Number of Giga 
Operations 

1 6.15% 5.79% 2.37 2.17 
2 7.83% 4.94% 3.38 2.96 
3 9.27% 4.71% 4.39 4.33 
4 10.40% 4.71% 5.40 6.31 

TABLE III. PERFORMANCE AND COMPLEXITY OF NG-FSGM FOR 
DIFFERENT VALUES OF M 

N = 1 N = 3 
M Endpoint Error  Number of Giga 

Operations  
M Endpoint Error  Number of Giga 

Operations  
0 7.30% 2.14 0 5.15% 4.25 
1 5.85% 2.14 1 4.76% 4.27 
2 5.77% 2.15 2 4.75% 4.29 
3 5.76% 2.16 3 4.71% 4.31 

Table IV shows the accuracy and complexity of NG-
fSGM (N = 3, and M = 3) compared to fSGM and Lucas-
Kanade [16], both with the same post-processing (Section 
III.D) and a single-level pyramid scheme. Note that all three 
methods can be embedded in a hierarchical scheme if 
necessary. For fSGM, the parameters used were: 11 × 11 
Census transform window, 8 aggregation paths, cost 
regularization summand (eqn.(4)), P1 = 40, and P2 = 200. 
Penalties in fSGM are larger since NG-fSGM is more likely 
to get larger values from other flow vectors (3rd term in eqn. 
(4)). Our algorithm provides significant benefit compared to 
fSGM in complexity since NG-SGM only utilizes 10% flow 
vectors to achieve comparable algorithm accuracy. We also 

observe that NG-fSGM significantly outperforms Lucas-
Kanade in accuracy at the cost of increased memory area 
requirement and a slightly higher number of computations. 

To visualize the accuracy difference, Fig. 2 shows the 
flow maps of image ‘Mequon’ on Middlebury for each 
algorithm. NG-fSGM and fSGM both outperforms Lucas-
Kanade. The raw flow map output of NG-fSGM shows 
blurry results along object edges but has fewer error patches 
compared to fSGM. The neighbor dependency in NG-fSGM 
is less reliable at the object edges when we apply aggressive 
search space pruning. However, after post processing, this 
difference becomes insignificant. Table IV confirms that the 
overall accuracy of NG-fSGM after post processing is almost 
identical to the original fSGM. Since NG-fSGM achieves an 
order of magnitude complexity reduction, it is certainly an 
attractive alternative to the original fSGM for low power and 
resource limited applications.  

TABLE IV. COMPARISON  OF NG-FSGM, FSGM AND LUCAS KANADE 

Algorithm Endpoint Error  Memory Space 
(MB) 

Number of Giga 
Operations  

fSGM 4.54% 20.68 37.53 
Lucas-Kanade 15.78% 1.47 3.15 

NG-fSGM 4.71% 4.39 4.31 
 

 

 
Fig. 2. Colored flow maps of ‘Mequon’ using different algorithms. Top-left: 
input previous frame and color legend; top-right: NG-fSGM, N = 3; bottom-
left: fSGM; bottom-right: Lucas-Kanade. 

V. CONCLUSIONS 
This paper presented NG-fSGM, a low complexity 

method for optical flow. The complexity reduction is 
achieved by aggressively pruning the flow vector search 
space using the information from neighbor pixels. The cost 
aggregation and flow computation steps have been optimized 
for further complexity reduction. NG-fSGM has been 
evaluated on the Middlebury optical flow dataset. The 
evaluation results show that ND-fSGM has comparable 
performance with an order of magnitude reduction in 
complexity compared to a prior work fSGM, and greatly 
outperforms other similar-costly methods like Lucas-Kanade. 
These advantages make NG-fSGM an attractive algorithm 
for real-time and mobile applications.
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