
C264 978-4-86348-606-5 ©2017 JSAP 2017 Symposium on VLSI Circuits Digest of Technical Papers

C20-1
Recryptor: A Reconfigurable In-Memory Cryptographic Cortex-M0 Processor for IoT 

Yiqun Zhang, Li Xu, Kaiyuan Yang, Qing Dong, Supreet Jeloka, David Blaauw, Dennis Sylvester 
University of Michigan, Ann Arbor, MI    Email: zhyiqun@umich.edu 

 
Abstract 

This paper proposes Recryptor, an energy efficient and compact 
ARM Cortex-M0 based reconfigurable cryptographic processor using 
in-memory computing. Recryptor is capable of accelerating a wide 
range of cryptography algorithms and standards, including 
public/private key cryptography and hash functions, by augmenting 
the memory of a commercial general purpose IoT processor resulting 
in a highly compact implementation. The wide bit-width of memory 
is ideally suited for high bitwidth (64 – 512b) arithmetic operations 
common in cryptographic functions.  Recryptor (28.8 MHz at 0.7 V) 
achieves 6.8× average speedup and 12.8× average energy 
improvements over state-of-the-art software and hardware-accelerated 
implementations with only 0.128 mm2 area overhead in 40nm CMOS. 

Introduction 
Security is of utmost concern for Internet of Things (IoT) 

applications due to the potential pervasiveness of IoT devices. 
Different applications have different security demands, security 
algorithms and standards evolve over time, and limited computational 
resources on IoT platforms drive the need for a flexible and 
programmable cryptographic processor. Embedded processors tend to 
have 32-bit datapaths for energy/area reasons, but cryptographic 
functions can typically be made much more efficient with dedicated 
hardware support for high bit-width datapaths (64 – 512b). Previous 
work using ASICs achieve high throughput but are inherently 
inflexible [1], while cryptographic coprocessors typically have high 
area and power overhead since they implement an entire processor 
with fetch, decode, register file and local memory [2,6]. In this paper, 
we propose Recryptor, an IoT platform that accelerates primitive 
cryptographic operations by replacing a standard SRAM bank of a 
general purpose processor with a custom “Crypto-SRAM Bank” 
(CSB) with in-memory and near-memory computing. Recryptor is 
based on a 32-bit ARM Cortex M0 processor, which can directly 
program the CSB in software. We measure Recryptor’s speed-up and 
energy gains on core functions for symmetric and asymmetric 
cryptography as well as hash functions. Compared with a Cortex-M0 
baseline, we achieve energy gains of 9.1× for AES, >6.7× for elliptic 
curve cryptography (ECC) finite field multiplication and reduction 
(FFMR) and 4.9× for SHA-3 Keccak function, with energy gains of 
>4.1× across crypto algorithms relative to the literature.  

Energy Efficient Crypto Processor 
Recryptor (Fig. 1) is based on an ARM Cortex-M0 processor with 

32KB memory. Each of the four memory banks is 8KB, with three 
implemented using a standard memory compiler while the final bank 
is the custom designed CSB. The CSB is comprised of sub-banks 
where a sub-bank of width N supports an N-bit wide single-cycle 
vectorized operation as well as normal 32-bit memory accesses. Size 
and placement of the sub-banks were optimized at design time to 
support a wide range of security operation primitives. Our 
implementation supports various ECC security levels (163 bits to 409 
bits), SHA-3 (1600 bits) and AES (128 bits).  

Fig. 2 shows the detailed CSB bitcell and near-memory datapath. 
Read-decoupled 10T bitcells are used to enable low voltage bitline 
computation. By selecting different sense-amp read out data, we can 
read 1 word, compute NOT of 1 word, or compute OR/AND/XOR on 
two words. Following the readout sens-amps is a compact, wiring-
based shifter, which can left shift by 1/4/64 bits (LS1/4/64), right shift 
by 64 bits (RS64), right rotate 1/8 bits within 64bits (ROT1/8), and 
shift bytes as required in the ShiftRow and KeyGeneration steps of 
AES (SRow, KG). This output is one possible choice for writeback 
data (WData). The other three options are an arbitrary 64-bit rotator, 
DIN from the arbiter interfacing with the processor, and an AES SBox. 
The rotator uses 2 stages of 8-to-1 muxes (Fig. 3), where the 1st stage 
rotates 0~7 bits and 2nd stage rotates in multiples of 8 bits. In order to 

achieve low energy and stable operation at low voltage, we use 
transmission gates for the muxes and a negative clock-enabled latch 
between the two stages to reduce glitch power. By using wire meshes, 
compact layouts can be obtained for both 1st and 2nd stages. The Sbox 
is a key byte substitution module used in block ciphers, which uses a 
2-stage glitch-free near-memory implementation [1] (Fig. 2). Table 1 
shows the normalized area overhead of each custom module; note that 
the compiled SRAM uses push rules while for simplicity, the custom 
memory uses standard design rules allowing for future area reduction. 

Users can program the Cortex-M0 to use the CSB to accelerate 
various security algorithms. Two algorithms, LÓpez-Dahab (LD) 
finite-field multiplication and reduction (ECC), and the Keccak 
function (SHA-3), are shown with their vectorized CSB-based 
implementation. For LD, we pre-compute reduction related 
polynomials (  for better performance, which reduces overflow 
bits by shifting immediately after multiplication. Table 2 shows the 
comparison among standard base-line LD code, fixed register 
implementation [3] and the proposed CSB method; a 9.1× 
improvement is achieved in terms of number of basic operations. For 
Keccak, the proposed step modifies the intermediate results of each 
iteration to avoid the matrix transpose in the original step [4], which 
would normally require a large number of memory operations. This 
allows us to exploit the CSB’s row-wise vector capabilities for better 
performance and efficiency. Table 3 shows the operation comparison 
of baseline code and CSB, which offers a 5.2× improvement. 

Programming the CSB requires additional configuration 
instructions, which add overhead. To reduce this overhead and further 
improve efficiency, we implement a set of optional FSMs that directly 
control the CSB through customized control logic. These FSMs incur 
just 2 area overhead, and for example, on FFMR-233b, the 
FSM reduces cycle count from 2336 to 826, providing 2× energy gain. 
However, to maintain full flexibility, all functions are directly 
accessible to the Cortex-M0 processor as well. Fig. 4 shows the 
simulated power breakdown of the custom blocks when performing 
different security functions. The utilization of the added blocks differs 
across applications, but power overhead remains low across all. In 
addition, the M0 is clock-gated during CSB operations, saving up to 
6% of total system power. 

Measurements & Conclusion 
Recryptor is implemented in 40nm CMOS along with a separate 

baseline Cortex-M0 with four standard memory banks. Fig. 5 shows 
that the measured maximum frequencies of baseline and Recryptor are 
comparable across a range of supply voltages. It also compares the 
energy of running three different functions between Recryptor and the 
baseline. Table 4 compares the optimal energy and time required for 
different unit functions on Recryptor, the baseline and other state-of-
the-art implementations. Reference [5] is an ASIC design for SHA-3, 
while [6, 7] are coprocessor designs with limited applications. [3] uses 
hand-optimized assembly running on a standard Cortex-M0+, but only 
the 233-bit ECC implementation is provided. Compared to the 
baseline, Recryptor obtains 8.3×–18.6× runtime improvements and 
achieves 4.9×–11.8× energy gains for a variety of crypto functions. 
Compared to state-of-the-art, energy gains are at least 4.1×. Overall, 
Recryptor achieves 6.8× geometric average speedup and 12.8× energy 
improvements over baseline and the state-of-the-art. Therefore, 
Recryptor offers a compelling option for IoT platforms due to its 
performance, flexibility and efficiency. Fig. 6 shows the die photo. 

Acknowledgement 
We thank the TSMC University Shuttle Program for chip fabrication. 

References 
[1] Y. Zhang, et al, VLSI 2016.       [2] J. W. Lee, et al, ISSCC 2013.       
[3] R. de Clercq, et al. DAC 2014.            [4] Y. Wang, et al, EDSSC 2015.    
[5] P. Pessl, M. Hutter, CHES 2013.       [6] M. Hutter, et al, WISTP 2011. 
[7] G. Sayilar, et al, ICCAD 14.



C2652017 Symposium on VLSI Circuits Digest of Technical Papers

1.5mm1.1mm

Low 
Power
Serial 
Bus

0 1

01

...

RBL0 RBLB0

0 1

01

...

RBLn RBLBn

. . . . .

WLi

WLj

SA SA

Wli[0]  XOR WLj[0] Wli[n]  XOR WLj[n]

Ar
bi

to
r

ARM
Cortex-

M0

SRAM
32KB

Crypto
FSMs

(Optional)

Compiled
Bank1

Compiled
Bank2

Compiled
Bank3

LIM
Bank0

DE
CO

DE
R

Sub-Bank 0

256b64b128b64b

Logic Near Mem

Fig.1. Proposed Recryptor architecture, with ARM Cortex-M0 and 32 KB Memory.

Fig.2. Proposed Crypto-SRAM Bank (CSB). 

Table.4. Comparison table of different crypto algorithms & designs

0.85m
m

Fig.6. Die photo of Baseline and Recryptor in TSMC 40nm

Fig.5. Frequency and energy measurement of Baseline & Recryptor of different applications
[5,6,7]: Simulation only, no silicon implementation. [6]: 350nm; [7]: 45nm; [5]: 130nm;
[3]: No technology given, Cortex M0+ processor; only include mult., no reduction.

Freq Time ( Norm.) Energy ( Norm.)
(MHz) (us) (nJ)

Baseline 6358 24 265 (1x) 64.2 (1x)
[6] 5429 0.847 6410 (24x) 10259 (160x)
[7] 20 1000 0.02 (7.5E-5x) 124 (1.93x)

Recryptor 726 28.8 25.2 (0.1x) 7.05 (0.11x)
Baseline 5966 24 249 (1x) 62.4 (1x)
Recryptor 678 28.8 23.5 (0.09x) 9.30 (0.15x)
Baseline 8921 24 372 (1x) 93.4 (1x)

[3] 3672 48 76.5 (0.21x) 45.9 (0.49x)
Recryptor 826 28.8 28.7 (0.08x) 11.3 (0.12x)
Baseline 10809 24 450 (1x) 113 (1x)
Recryptor 916 28.8 31.8 (0.07x) 12.6 (0.11x)
Baseline 19319 24 805 (1x) 202 (1x)
Recryptor 1246 28.8 43.3 (0.05x) 17.1 (0.08x)
Baseline 23015 24 959 (1x) 238 (1x)

[5] 15427 1 15427 (16x) 211 (0.89x)
Recryptor 3329 28.8 116 (0.12x) 48.7 (0.2x)

Keccak

163 bits

233 bits

283 bits

409 bitsFi
ni

te
 F

iel
d 

Mu
lti

pl
ica

tio
n

 + 
Re

du
ct

io
n

AES

Applications Designs #cycles

0.65 0.70 0.75 0.80 0.85 0.90
1

10

100

1000

En
er

gy
 (n

J)

Supply Voltage (V)

0.65 0.70 0.75 0.80 0.85 0.90
0

20

40

60

80

100

Baseline
Recryptor

Supply Voltage (V)

Fm
ax

 (M
Hz

)

Shifter
(Wiring based)

64-bit
Rotator DIN

ROT

SHIFT

Write FF

Mux 
5 to 1

RBL
RWL WWL

BL

BitCells
RBL RBLB BL BLB

QB

S.A.
Q QB

S.A.
Q

Write
Buffer

OR
XOR/
NOT AND 1 Column

Operation

W
Da

ta

SBOXMux 
16 to1

SBOX

RBLB
RWLWWL

BLB

ReadOut Data

. .
A0

B0. . .
sh0

.. . .

.

..

.

. .
A1

. . .

.. . .

.

..

.

. .
A2

. . .
.. . .

.

..

.

sh1

B1

B2

MB
US

M0

ARB

8KB
SRAM

8KB
SRAM

8KB
SRAM

8KB
SRAM

MB
US

M0

ARB

8KB
SRAM

8KB
SRAM

8KB
SRAM

8KB Custom 
SRAM

0.85m
m

0.65 0.70 0.75 0.80 0.85 0.90
1

10

100

1000

En
er

gy
 (n

J)

Supply Voltage (V)

Baseline: AES
Recryptor: AES

0.65 0.70 0.75 0.80 0.85 0.90
1

10

100

1000

En
er

gy
 (n

J)

Supply Voltage (V)

Baseline: Keccak
Recryptor: Keccak

Energy of Finite Field Mult. & Reduction Energy of Keccak function

Voltage vs. Frequency Energy of AES Encryption

163b 233b 283b 409b
Baseline: 

163b 233b 283b 409b
Recryptor:

DOUT

DIN

Wire Mesh

Fig.3. 2-stage 64-bit Rotator

Wire Mesh

Fig.4. Simulated power breakdown of 
different security functions

First Stage
( Rotate 0~7 bits)

Second Stage
(Rotate 8x bits)

A[63:0] SH[7:0]
B[63:0]

sh0 sh1

EN D
Q

A[63:0] SH[7:0]
B[63:0]

Negative Latch

AES Encryption

Keccak

Table.1. Area comparison
Norm. Area

Compiled 1x

Bank
3.26x

Shifter
Rotator
Sbox

8KB SRAM

Custom CSB:
2.63x
0.55x
0.06x
0.02x

Others:  5.2%
Sbox:     2.6%
Rotator: 2.0%
Shifter:   5.9%

Bank
84.4%

Others:  2.0%
Sbox:     0.2%
Rotator: 2.1%
Shifter:   7.5%

Bank
88.2%

Finite field Mult. & Reduction

Others:  2.3%
Sbox:     0.3%
Rotator: 0.8%
Shifter:   6.2%

Bank
90.5%

Su
b-

Ba
nk

 1

Su
b-

Ba
nk

 3

Su
b-

Ba
nk

 2

Algorithm 1: López-Dahab multiplication & reduction in F2m 

[ ]

Input:  = ( -1… 0),   = ( -1… 0),  = ( -1… 0)
Output:  = ( -1… 0) =  mod 
[Note:   / /  /  is at 1 physical line in CSB  ]
1: Compute ( )  mod  for all polynomials  of degree lower than 
2: Compute ( )  for all polynomials  of degree lower than 
3:  0
4: for  / 1   do
5:  = (    ) & 0xF
6:  (   ( ), LS4)
7: = (   ) & 0xF
8:   ( )   
9: end for
10: return 

Algorithm 2: KECCAK-  function
Input: KECCAK[b]( ), where  = [0:4, ] is at 1 physical line,  [0, 4] 
Output: 
1: for  0 to  1 do
2:  step:  = [0] [1] [2] [3]  [4]
3:     = SHIFT( , LS64)  SHIFT(SHIFT( , RS64), ROT1)
4:    [ ] = [ ]  ,  [0, 4]
5:  step: read [ ] in 1 cycle, then [ , ] = ROT( [ , ], [ , ])
6: : [ ] = do SHIFT( [ ], LS64)  for  iterations
7:
8:  step: [ ] = SHIFT( [ ], LS64)
9: [ ] = [ ]  ( NOT [ ]) AND SHIFT( [ ], LS64)
10:  step: [0, 0] = [0, 0]  [ ] 
11: end for
12: return 

MEM
READ XOR SHIFT MEM 

WRITE
Total Operations 

[cycles]*
Baseline 1208 745 315 752 4980

[7] 705 745 315 249 2968
CSB 58 72 62 77 327

CSB 58 72 4 76 268

Multiplication

Reduction

Method

Table.2. Estimated required operations for finite field 
multiplication and reduction in F2233

* Memory operations are assume to require 2 cycles/operation, but for 
CSB, it is 1 cycle/operation due to direct write-back after read

* 

* Syntax SHIFT( , ): apply  
shifts to  vector using 

MEM 
READ

XOR/
NOT/AND SHIFT MEM 

WRITE Rotate Total
[cycles]*

Baseline 172 72 0 60 30 506
CSB 1 14 19 38 25 98

Table.3. Estimated required operations for Keccak-  (1 iteration)

FSMs


