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Abstract— Thispaper presents a single-chip, high-performance,
and energy-efficient stereo vision depth-estimation processor for
micro aerial vehicles (MAVs). The proposed processor imple-
ments the state-of-the-art semi-global matching (SGM) algorithm
to deliver full high-definition (HD, 1920 × 1080) stereo-depth
outputs with a maximum of 38 frames/s throughput. Algorithm–
architecture co-optimization is conducted, introducing overlap-
ping block-based processing that eliminates very large on-chip
memory and off-chip DRAM. We exploit inherent data paral-
lelism in the algorithm by processing 128 local disparity costs
and aggregating the SGM costs along four paths for all 128 dis-
parities in parallel. A dependence-resolving scan associated with
16-stage deep pipeline is introduced to hide the data dependence
between neighboring pixels in the SGM algorithm. Moreover,
we propose a customized ultra-high bandwidth dual-port SRAM
that utilizes the unique memory access characteristic of SGM to
achieve highly energy-efficient memory access at a very high on-
chip memory bandwidth of 1.64 Tb/s. The fabricated processor
produces 512 levels of depth information for each pixel at full
HD resolution with 30-frames/s performance, consuming 836 mW
from a 0.75-V supply in TSMC 40-nm GP CMOS. We ported
the design on a quadcopter MAV to demonstrate its performance
in realistic real-time flight.

Index Terms— 8T-SRAM, autonomous navigation, semi-global
matching (SGM), stereo vision.

I. INTRODUCTION

PRECISE depth estimation is essential to realize auto-
nomous navigation on micro aerial vehicles (MAVs),

robots, and self-driving cars. Depth estimation serves as a
key kernel function in simultaneous localization and mapping,
3-D scene understanding and reconstruction, object recog-
nition, and obstacle avoidance, as depicted in Fig. 1.
Real-time reliable autonomous navigation requires the depth
estimation to be dense, accurate, wide range, and high perfor-
mance. Emerging mobile platforms such as MAVs introduce
additional size, weight, and power (“SWaP”) constraints on
depth estimation systems. For mobile applications, the sys-
tem must be small (e.g., 50 cm3), lightweight (<100 g),
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Fig. 1. Drone with stereo vision system and its applications.

fast (∼30 ms response time), and low power (<1 W) [1].
Fig. 1 highlights the requirements of real-time stereo-depth
estimation for MAV applications. Light detection and rang-
ing (LIDAR) [2], RADAR [3], ultrasonic sensor [4], or IR
sensor [5] are conventional approaches for depth sensing.
IR sensors typically have low resolution and accuracy and
ultrasonic sensors have limited ranging distance [6]. Therefore,
they are not widely adopted on autonomous systems. While
24G RADAR is accurate and robust, it has a limited field
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Fig. 2. Comparison between stereo-depth estimation and LIDAR-based depth
estimation.

of view (∼30° horizontal angle) and will still need other
sensors for wide-range, large-scale 3-D scene construction.
LIDAR is the most frequently used sensor for 360° 3-D scene
construction in autonomous systems. Fig. 2 visualizes the
difference between the depth map acquired by LIDAR and
that obtained with stereo vision correspondence. Nowadays,
even the most advanced LIDAR-based ranging systems suffer
from a limited field of view (e.g., ∼30° vertical view angle,
which accounts for the top blackout region of the LIDAR
image in Fig. 2), weigh >600 g, and consume 10 W [2].
In contrast, depth estimation from stereo vision is fast, energy
efficient, and lightweight when mounted on an MAV platform.

There are prior application-specified integrated circuit
(ASIC) implementations of stereo vision depth esti-
mation based on various algorithms [7]–[11]. These
designs [7]–[11] employ hardware-oriented algorithmic opti-
mizations to enable depth estimation in real-time systems,
but there are deficiencies associated with these ASIC designs.
Some use local matching [7] or aggressively truncated global
algorithms [8], which result in inferior quality. Other works
limit their disparity range to 32 or 64 pixels and there-
fore fail to support industry standard automotive scene
benchmarks [7]–[11]. Semi-global matching (SGM)-based
field-programmable gate array (FPGA) implementation is
demonstrated in [12], but it is not applicable for robust
navigation of power constrained MAV platforms because of its
limited performance (∼30 frames/s for 320×240 QVGA) and
high-power consumption (∼3 W for QVGA). Prior advanced
driver assistance system system-on-chips [5], [13], [14] are
not favorable for SGM because of the memory bandwidth
bottleneck. Due to the high memory requirement of SGM,
prior methods [8]–[10] use external DRAM to store inter-
mediate results, limiting frame rate and power efficiency.

Fig. 3. Illustration of principles in stereo vision.

Several alternative approaches have been explored to reduce
the high complexity of global methods [15] using dynamic
programming [16], belief propagation [17], [18], flow vector
search space pruning [19], and pseudo-random flow candidate
selection [20]. However, SGM (and its variations) is clearly
one of the most widely used algorithms in industry standard
benchmarks, such as KITTI [21].

In this paper (extended from [22]), we first study the
computation, memory, and bandwidth bottlenecks of the
SGM algorithm and the proposed algorithm–architecture
co-optimization techniques that significantly reduce the hard-
ware cost with negligible accuracy degradation. We propose
a deeply pipelined hardware architecture with a dependence-
resolving scan to handle the critical-path data dependence
in the algorithm and to significantly improve throughput.
We also introduce a custom-designed dual-port 8T-SRAM that
leverages the unique memory access characteristics of the
SGM algorithm to enable ultra-high bandwidth (1.64 Tb/s)
and energy-efficient on-chip memory access. The fabricated
chip employs a standard USB3.0-compliant interface, allowing
effortless integration with a wide range of commercial off-
the-shelf stereo cameras and general purpose mobile appli-
cation processors (APs). Integrated with a ZED camera [23]
and ODRIOD-5422 mobile AP on the ODRIOD-XU4 [24],
the fabricated chip was successfully mounted on a quadcopter
MAV for a system demonstration in realistic flight scenarios.
The chip delivers 512 levels of stereo depth for each pixel at
full high-definition (HD) (1920 × 1080) resolution with real-
time 30-frames/s throughput, while consuming 836 mW.

II. OVERVIEW OF STEREO VISION ALGORITHMS

A. Local Approach

Vision-based depth estimation is computed by stereo corre-
spondence. As shown in Fig. 3, a point P in the real world
will be horizontally displaced at the pixel positions p and q
in stereo images because the left and right cameras are placed
apart by distance b. This horizontal displacement between a
pixel in the left image p = (x, y) and its matching pixel in the
right image q = (x ′, y) is defined as disparity (x ′ − x). The
depth Z is inversely proportional to the disparity as follows:

Z = f
b

x ′ − x
(1)

where f represents the focal length of the camera.
The most straightforward approach to compute disparity is

local matching. As shown in Fig. 4, local matching compares
each pixel (e.g., the white pixel in the far left image) with
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Fig. 4. Local matching method of stereo-depth estimation.

Fig. 5. Problems of local matching. (a) Input image. (b) Local matching.

all its matching candidates and then finds the best match-
ing pixel (e.g., the black pixel in the next image to the
right) associated with the minimum matching cost within the
search range (depicted by the white bar in Fig. 4). Typically,
to enhance robustness, local matching is performed based
on a window that consists of a group of pixels surrounding
the matching pixel. The same step is applied to determine
the disparity of all of the pixels. An example disparity map
resulting from using local matching is shown in Fig. 4. In the
local approach, every pixel in the image can be processed
independently in parallel to improve throughput.

The accuracy of a local approach is unreliable since it
typically fails to resolve ambiguities in many challenging but
realistic scenarios such as occlusions, texture-less regions,
transparency, and repetitive patterns. As shown in Fig. 5,
almost all of the pixels of the wall on the right are saturated
and texture-less due to strong illumination. The disparity
results obtained from a local approach on this texture-less
region will be completely incorrect, as shown in Fig. 5,
because many matching pixels will appear identical with the
same cost. As seen in other less challenging regions in Fig. 5,
the disparity map derived from using a local approach has
substantial noise that cannot be easily removed by advanced
post processing.

B. Semi-Global Matching and Its Complexity

Recently, various global methods [25]–[27] have been pro-
posed to improve accuracy. In these global algorithms, infor-
mation from neighboring pixels is (semi-)globally propagated
to the current processing pixel to enhance the correspondence

Fig. 6. Comparison between local matching, original SGM, and overlapping
block-based SGM.

matching accuracy. The SGM algorithm introduced in [28]
is one of the most popular global methods. SGM is favored
for its robustness and high accuracy under various scenarios.
SGM has been validated to achieve good accuracy in various
industry standard benchmarks [21]. In particular, it effectively
handles low texture regions with its dynamic programming-
based global optimization of the disparity over the entire
image. Fig. 6 visualizes the output difference between the
local sum of the absolute difference [25] algorithm and SGM,
clearly illustrating the higher quality obtained with SGM.

SGM consists of three steps: 1) pixel-wise matching
cost computation; 2) semi-global aggregation; and 3) dis-
parity selection. To compute the pixel-wise matching cost,
N × N census transform [29] is performed on both the left and
right images. Census transform IL(p) of a pixel p is computed
by comparing the grayscale intensity of center pixel p with
all of its neighboring pixels within the N × N window. As a
result, each pixel in the image is converted to a bit string of
the length N2− 1. We use a 7 × 7 census for our design,
and each pixel is represented by a 48-bit string as a result of
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Fig. 7. SGM algorithm processing flow.

the census transform. The pixel-wise matching cost C(p, d)
for a pixel p with a disparity d is evaluated by the Hamming
distance [31] between the census-transformed left image pixel
IL(p) and the right image pixel IR(p − d), as shown in (2),
where | |H denotes the Hamming distance

C(p, d) = |IL(p) − IR(p − d)|H . (2)

This operation is repeated for all disparity candidates per pixel.
Since each pixel will have 128 matching candidates, the local
matching costs evaluation results in a cube of dimension
H × W × 128, as shown in Fig. 7, where H × W is the
image height × width in the number of pixels. For each pixel,
a 128-entry depth vector is generated as the local matching
cost associated with 128 disparities.

Global aggregation is then performed on local matching
costs. SGM aggregation takes the current processing pixel p
and propagates information from neighboring pixels along
eight paths r over the entire image using (3) as depicted
in Fig. 8. The term Lr(p, d) denotes the aggregated cost
for a given pixel p with disparity d along path r. The
aggregated costs of neighboring pixels associated with the
same (d) or similar (d ± 1 and d ± 2) disparities are
merged into the aggregated cost for the current pixel with
zero or small (P1, P2) penalty. Eventually, ‘good’ disparities
with low matching costs (when neighboring pixels all see
smaller matching costs in general) will propagate from far
positions to the current pixel through recursive aggregation (3).
This is particularly useful for propagating “good” match-
ing candidates for the center of a low texture region from

Fig. 8. Eight-path aggregation diagram.

texture-rich boundary pixels

Lr(p, d)

= C(p, d)+min
{
Lr(p−r, d), Lr(p−r, d − 1)+ P1,

Lr(p−r, d+1)+ P1, min
i

Lr(p−r, i)+ P2)
}

− min
k

Lr(p−r, k). (3)

The SGM aggregation is performed along eight paths (the
size of the r set is eight) separately, as shown in Fig. 8, and
the aggregated costs on eight paths are summated together as
follows:

S(p, d) =
∑

r

Lr(p, d). (4)
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TABLE I

LOW EFFICIENCY ON CPU/GPU/FPGA PLATFORMS

TABLE II

SUMMARY OF SGM CHALLENGES AND ALGORITHM–ARCHITECTURE-CIRCUIT OPTIMIZATIONS

The disparity d with the minimum summated costs S(p, d)
is eventually selected as the integer level of disparity for the
processing pixel p. To obtain a sub-integer pixel disparity
precision, we select three minimums from all of the sum-
mated costs S(p, d) for a given p and perform a bilinear
interpolation [32] on these three minimums. This generates
an additional 2-bit sub-integer pixel disparity resolution and
eventually generates 512 levels of depth (disparity) for each
pixel.

Although SGM provides superior accuracy compared with
local approaches, it poses significant hardware challenges.
The original SGM requires massive computation (∼2TOP/s),
extremely high-bandwidth (38.6 Tb/s), and very large mem-
ory (∼386 MB) for 30 frames/s full HD resolution. Therefore,
when realized in general-purpose computing platforms, it leads
to very low frame rates and energy efficiency. Specifically,
this SGM complexity translates to ∼20 s runtimes for a full
HD image pair on a 3-GHz CPU with >35 W power consump-
tion [33]. Although server/mobile GPUs achieve higher energy
efficiency, they still consume a few Joules to process a single
full HD frame with ∼5 frames/s throughput [34]. Table I pro-
vides a comparison of the estimated performance, power and
memory for different platforms. To resolve these challenges
and address “SWaP” requirements of MAVs, we propose a
highly optimized ASIC solution attained via a cross-layer
optimization conducted across algorithm, micro-architecture,
and circuit levels.

III. ALGORITHM, ARCHITECTURE, AND

CIRCUIT OPTIMIZATIONS

A high-level summary of our cross-layer optimizations
designed to tackle the challenges of SGM is illustrated

in Table II. First, strong data parallelism in the algorithm
is exploited so that the processor computes 128 local costs,
aggregates 128 disparities, and accumulates four paths all
in parallel. Second, instead of processing the whole image
frame, we propose an overlapping block-based processing to
eliminate the very large on-chip memory requirement and
to achieve a single-chip SGM implementation without off-
chip DRAM accesses. Moreover, a dependence-resolving scan
with a 16-stage deep pipeline is proposed to hide the data
dependence and improve throughput by 3×. Finally, we also
custom designed an ultra-high bandwidth dual-port SRAM that
leverages unique memory access patterns of SGM for high-
performance and energy-efficient memory access.

A. Algorithm: Overlapping Block-Based SGM Processing

The original SGM algorithm consists of forward and back-
ward scans as shown in Fig. 8, where each scan aggregates
costs for each pixel along four paths. This two-scan approach
is unavoidable to allow eight-path aggregation over the entire
image frame. The partial (four paths) aggregated costs (12 bit
each) for every pixel are stored in the memory during the
forward scan and then later combined with the backward scan
results for the remaining four paths. This two-scan imposes
significant on-chip memory and bandwidth requirement for
storing 128 (number of disparities) aggregated costs (∼16 bits
each) for every (2 M for full HD) pixel in the image. Therefore,
the memory requirement of SGM is not scalable to various
image resolutions, and a single full HD image pair will
require ∼386 MB storage for temporary aggregated costs.
A prior work [35] reduced the amount of temporary memory
usage without significant accuracy degradation by selectively
storing sparse aggregated costs. Similarly, we only store three
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Fig. 9. Quantitative evaluation with overlapping block-based SGM over
194 KITTI test images.

disparities associated with the three minimum summated costs
for each pixel. This allows the temporary memory in our
SGM implementation to be independent of the disparity search
range (the number of disparities evaluated per pixel). However,
the temporary memory size still depends on the image size,
and storing sparse aggregated costs with their associated
disparities for a full HD image would still require ∼20 MB of
memory. This memory requirement will significantly degrade
energy efficiency if it is mapped to external DRAM.

To further reduce the on-chip memory requirement and
to eliminate the need for external DRAM, we first evaluate
the sensitivity of accuracy with different overlapping window
size on 194 KITTI cases. While the original SGM achieves
6.5% outlier, overlapping blocks of 200 × 200, 150 × 150,
100 × 100, and 50 × 50 achieve 6.61%, 6.62%, 6.75%, and
7% outliers, respectively. From the evaluation, we observe
that inter-pixel correlation diminishes when pixel pairs are
more than 50 pixels apart. Therefore, instead of processing
the whole image, the proposed design uses an overlapping
block-based processing to partition the input image into units
of 50 × 50 pixel overlapping blocks to minimize on-chip
memory size, as shown in Fig. 7 top left. Adjacent blocks are
overlapped by 8 pixels to allow cost aggregation across block
boundaries. This technique achieves 95.4% memory reduction
for storing intermediate aggregation costs for a full HD image.
We evaluate this technique with standard Middlebury [36] and
KITTI [21] benchmarks. Fig. 6 shows a side-by-side quali-
tative comparison of this block-based SGM and the original
SGM on Middlebury test case, which yields almost identical
results. Fig. 9 presents the accumulated density function
evaluated on 194 realistic KITTI automotive test cases. The
proposed overlapping blocked-based SGM suffers only 0.5%
outlier percentage degradation compared with the original
SGM throughout 194 KITTI evaluation cases. An outlier is
a pixel that has a disparity error of more than three integer
levels.

B. Energy-Efficient Hardware Architecture

The proposed block-based SGM processing procedure
is shown in Fig. 7, and the chip architecture is shown
in Fig. 10. One 32-bit parallel interface streams input image

data and processing instructions into the chip, and the other
32-bit parallel interface is used to stream the final dispar-
ity results of the chip. The control registers and on-chip
input images are memory mapped and can be accessed with
a USB interface through an external USB-to-parallel con-
verter [37]. To maximize the input bandwidth, a streaming
mode is supported so that input/output image data are streamed
to/from the chip continuously. The block-partitioned left and
right images are stored in two on-chip interleaved image
(ping-pong) buffers (30 Kb each). Processing is concur-
rently performed with input/output image blocks streaming to
achieve real-time performance.

As the first step, 7 × 7 census transformations are per-
formed on the processing pixel as well as its matching
candidates at 128 different disparity locations using their
surrounding (7 × 7 window) pixels. This census transform
computing on-the-fly scheme would result in ∼6000 compare
operations for every processing pixel and thus have poor
energy efficiency. We observe that 127 out of 128 census-
transformed matching candidates of previous pixels overlap
with the census-transformed pixels of the current process-
ing pixel when processing proceeds. Therefore, an on-chip
128-entry circular first-in first-out (FIFO) is employed to
eliminate redundant census transforms and to store the pre-
computed census results. A total of 127 census-transformed
matching candidates (48 bit each) are read directly from the
on-chip FIFO, as shown in Fig. 11. At each cycle when a
new pixel is pushed into the pipeline, only one new cen-
sus transform is performed and pushed into the FIFO. This
census FIFO eliminates 98% of redundant census transforms.
In simulation, storing census transforms in an FIFO and
preloading them (5.1 pJ/pixel including memory accesses)
achieves 2.8× better energy efficiency compared with on-the-
fly re-computing census (14.2 pJ/pixel) for every pixel.

The census-transformed pixel in the left image and the
census-transformed pixels in the right image at 128 different
disparity locations are then compared in parallel. This pro-
duces 128 Hamming distances (6 bits each) for each pixel
that represent the ‘local’ pixel-wise matching cost vector for
the 128 disparities; C(p, d). These 128 local costs are all sent
to four parallel aggregation units for SGM aggregation. Each
aggregation unit is equipped with a high-bandwidth buffer and
aggregates 128 disparity locations in parallel, accumulating
costs over four different paths. Massive parallelism in aggre-
gation shown in Fig. 12 helps us achieve high throughput and
energy efficiency. The tree-structured selection unit identifies
the best three aggregated costs and disparities. These three-
best aggregated costs for each pixel are stored in the on-chip
memory. Once the forward scan completes, the backward scan
is performed in the similar fashion. Aggregation results that
are discarded (except for three-best results) during the forward
scan are combined with a constant penalty with the backward
scan results. The final best disparity candidates are selected
based on the eight-path aggregated costs. Finally, bilinear
interpolation is performed, and the 512-level (7-bit integer and
2-bit fractional) disparity results are stored in two interleaved
result buffers.
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Fig. 10. Hardware architecture of energy-efficient SGM.

Fig. 11. Rotating FIFO-based local cost generation.

C. Dependence-Resolving Scan, Pipelining, and Forwarding
In the proposed highly parallelized cost aggregation, each

aggregation unit has its own ultra-high bandwidth row
buffer (marked in dark gray in Fig. 10). During each
clock cycle, each aggregation unit reads the 128 aggregated
costs from each neighboring pixel (four neighbors as shown
in Fig. 13) from the buffer and writes the 128 aggregated costs
of the current pixel to the buffer. However, this straightforward
implementation would result in data dependence because the
aggregation of the current pixel depends on the results of the
neighbor that is processed in the previous cycle.

As discussed earlier, SGM is implemented with a forward
and a backward raster scan, with each scan performing aggre-
gation along four paths (Fig. 8). However, following this con-
ventional raster scan order results in data dependence because
the previous pixel must complete its computation before the

current pixel can be aggregated. As shown in Fig. 13(a),
the forward scan aggregates the results from its four neighbors
marked with arrows. Aggregation in the top left, top, top right
does not lead to dependence because those pixels belong to the
last row and are ready before processing the current pixel. Data
dependence is from the left neighboring pixel along the raster
scan path, and processing of the current pixel must wait until
its left neighbor finishes aggregation. This data dependence
dominates the critical path, limiting the clock frequency and
voltage scalability for low-power operation.

We therefore propose a dependence-resolving scan in which
pixel processing proceeds diagonally [Fig. 13(b)]. Now the
original single cycle data dependence extends to five cycles
because of the diagonal scan. This allows pipelining the
aggregation unit with five cycles and resolving inter-pixel
dependence in a deep pipeline. Fig. 14 shows the proposed
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Fig. 12. Implementation of four-path aggregation.

Fig. 13. Illustrations of conventional raster scan and proposed diagonal scan.

16-stage deep pipeline for SGM processing. With the diagonal
scan, there are five cycles between pixel A and F during
which we can process the other 4 pixels (B, C, D, and E).
When F is fetched into the pipeline, the aggregated costs
of previous pixels (light gray and dark gray) are already
computed and stored in high-bandwidth custom SRAMs. The
critical-path data from pixel A is forwarded to pixel F in

the pipeline. This mechanism enables aggressive pipelining
with a 4-ns clock frequency, yielding a 3× performance gain
compared with that of the conventional raster scan. Moreover,
because the data processed for pixel A are forwarded in
the pipeline, this successfully eliminates unnecessary row
buffer, leading to an extra 25% memory reduction. The
16-stage deeply pipelined design operates at a relatively low
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Fig. 14. Pipelining and forwarding in SGM processing.

Fig. 15. Block diagram and circuit of the proposed high-bandwidth 8T-SRAM.

frequency (200 MHz) to minimize the energy overhead of
tremendous parallel pipeline registers if the design has more
pipeline stages with higher frequency. As shown in Fig. 13,
our design leverages parallelism in cost aggregation by running
four paths in parallel on four aggregation units. Each aggre-
gation unit contains 128 processing elements and 512 selec-
tion units, resulting in a total throughput of 1.882 TOP/s.

Each OP is defined as 8-bit integer operation including add,
subtract, compare, and memory access.

D. Custom-Designed High-Bandwidth 8T-SRAM
In the proposed design, each aggregation unit has its

own ultra-high bandwidth row buffer. For each row buffer,
128 aggregated costs (12 bit each) are read and written
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Fig. 16. Die photograph and summary of performance.

simultaneously in a single cycle at 170 MHz. This translates
to a total memory bandwidth of 1.64 Tb/s for the three
row buffers accessed in parallel. This bandwidth would incur
significant chip area and power overhead if realized with
compiled SRAMs as a large number of banks and redundant
peripherals are unavoidable due to the limited word length
of compiled SRAMs. In simulation, instead, we propose a
custom-designed dual-port SRAM to cope with this challeng-
ing memory access characteristic of SGM.

Because of the design’s highly parallelized structure,
the row buffer has a very unconventional aspect ratio: there are
only 50 words in the buffer, but each word is 1612 bits wide.
This motivates the proposed high-bandwidth custom SRAM
that provides enhanced area/power efficiency of SGM that
was previously unattainable by general-purpose computing
platforms. Fig. 15 shows the block diagram of the customized
high-bandwidth SRAM. We partition the row buffer into
four banks, and each bank has 50 words with a word size
of 403 bits. All four banks are accessed in parallel with
concurrent read and write functions, realizing 1612-bit dual-
port access.

The very unbalance aspect ratio of this custom SRAM
results in a massive number of very short bit lines (∼50 µm
each) and very long word lines (∼380 µm each). There-
fore, unlike conventional 8T cells, we propose swapping the
position of the conventional 8T-SRAM read transistor stack
to avoid directly connecting the read access transistor to
the read bit line (RBL). This approach effectively reduces

coupling between the read word line (RWL) and the short,
low-capacitance RBL. In spite of the simulation with 0.9-V
nominal voltage, the coupling from RWL to RBL is reduced
from ∼18 to ∼2 mV when read access transistor stack is
flipped. Fig. 15 also shows the bit cell circuit in the bottom
right. To reduce leakage power in the 40-nm technology,
the custom 8T bit cell uses HVT transistors. The stacked
skewed inverter-based sense amplifier and the timing of the
SRAM read operation are shown in the bottom left of Fig. 15.
Output latches are transparent during the RBL evaluation
phase to ensure the correct memory read operation. Employing
conventional sense amplifiers for 1612-bit lines would lead to
significant area overhead. Therefore, skewed inverters perform
RBL voltage sensing to achieve better area efficiency. Com-
pared with conventional sense amplifiers, skewed inverters
reduce the area overhead by 2.8×. The low capacitance on
the short BL allows the proposed SRAM to reliably operate
at 200 MHz with a supply voltage as low as 0.6 V, further
improving the energy efficiency. Overall, each 80-Kb SRAM is
measured to consume only 6 mW with 548.1 Gb/s bandwidth
at 200 MHz. Three banks operate at 200 MHz with concurrent
1612-bit read and write operations, achieving 1.64-Tb/s access
bandwidth with 18-mW power consumption.

IV. CHIP MEASUREMENT RESULTS

Fig. 16 shows a die photograph with a summary of the
test chip performance. This work is fabricated in TSMC
40-nm GP process with 10.8-mm2 chip area. TSMC 40-nm GP
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Fig. 17. Measured result with KITTI tests.

Fig. 18. Measured result with Middlebury tests.

process has low nominal voltage (0.9 V), and high per-
formance (low Vth), which meets our design target. The
fabricated chip successfully produces 512 levels of depth in
full HD (1920 × 1080) resolution with real-time 30 frames/s
performance with 170 MHz core frequency and consumes
836 mW from a 0.75-V supply. The depth image out-
puts produced by the chip using KITTI [21] automotive
scenes are shown in Fig. 17. Notice that the depth infor-
mation of the cars in the shadow is successfully obtained.
Large (>100 pixels) disparity frequently occurs at close
distances, and the proposed processor is able to generate an

accurate depth map over the entire image due to its 512 levels
of resolution. The proposed chip achieves 7% outlier pixels
running 194 KITTI evaluation images. Fig. 18 shows the
typical chip measurement results from Middlebury indoor
scenes.

Fig. 19 shows the measured voltage and frequency scaling
of the chip and provides a comparison with prior works.
Compared with other state-of–the-art chips, this paper
implements SGM depth with 512 disparity levels, result-
ing in 8× improvement. It exhibits only 7% outliers in
the KITTI benchmark, whereas other chips have limited
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Fig. 19. Voltage and frequency scaling of the design and comparison with state-of-the-art chips.

disparity search ranges that are insufficient to run the industrial
standard KITTI benchmark. The chip is programmable and
supports various frame rates and image resolutions. It con-
sumes 836 mW at 30-frames/s full HD. Power scales to 55 mW
at 30-frames/s VGA at low voltage (0.52 V). Normalized
energy is an FoM used in [10] and [8]. This paper achieves
5.8× better FoM (energy per pixel per disparity) compared
with other state-of-the-art works at 30-frames/s full HD reso-
lution. Normalized energy scales to 0.0117 nJ at 30-frames/s
VGA resolution, yielding 2.2× higher efficiency. Fig. 19 top
right shows the frequency and voltage scaling. The maximum
chip performance is 38 frames/s for full HD resolution.

V. SYSTEM INTEGRATION AND EVALUATION

To demonstrate a complete system, the chip is integrated
with a camera general processing system and mounted on a
real-time quadcopter platform. A small, light custom board is
designed and fabricated to satisfy the “SWaP” requirements
for system integration on MAVs. Fig. 20 provides the board
specs. Our system consists of the stereo daughterboard with
the chip on top (covered with black epoxy) and a mother-
board with two Cypress USB bridges where USB signals
are converted to the 32-bit parallel interface. Fig. 21 shows

Fig. 20. Stereo system setup and summary.

the measurement setup and complete stereo system. The real-
time image streams captured by the ZED stereo camera [23]
are rectified, block partitioned into 50 × 50 blocks by a
Samsung Exynos-5422 processor on the ODRIOD-XU4 [24]
board, and then transmitted to the stereo processor through the
input USB3.0 interface. Instructions are also sent to the chip
with the same input USB3.0 interface that sustains the total
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TABLE III

MEASURED SYSTEM POWER BREAK DOWN

Fig. 21. Chip measurement setup with the stereo system.

Fig. 22. Real-time quadcopter demonstration platform.

1.8 Gb/s bandwidth. The processed real-time depth images
along with the “confidence” side information on each pixel
are streamed back via the other (output) USB3.0 interface
exhibiting 0.8 Gb/s bandwidth. Each 50×50 block is processed
concurrently when the next block is being transmitted and
stored on the on-chip interleaved image buffers. This technique
minimizes camera-chip-depth latency. The real-time demon-
stration platform mounted on a quadcopter is shown in Fig. 22.
At 0.9-V nominal voltage, the real-time VGA (full HD) frame
processing latency of the stereo processor is 4.1 ms (26 ms),
which is sufficient for real-time flight control. Table III shows
the measured system power breakdown. The stereo vision
board consumes ∼20% of the system power. Fig. 23 shows the
qualitative results measured from our own quadcopter scene.
As seen in the left image, strong illumination on a sunny day
leads to saturation of the sky and grass, however, the chip still
generates accurate depth maps for navigation control.

VI. CONCLUSION

This paper presents a single-chip, accurate, high-perfor-
mance, energy-efficient depth-estimation processor using the
SGM algorithm for autonomous MAV applications. The
fabricated processor generates 512 levels of depth in full
HD (1920 × 1080) resolution with real-time 30-frames/s
throughput consuming 836 mW from a 0.75-V supply in
40-nm CMOS. The chip reports 7% outliner on industry stan-
dard KITTI evaluation. The overlapping block-based process-
ing achieves 95.4% memory reduction, eliminating the need

Fig. 23. Measured HD result with quadcopter.

for external DRAM at the cost of only 0.5% accuracy degra-
dation. The proposed image-scanning stride with 16-stage
deeply pipelined implementation yields 3× performance gain,
25% additional memory reduction and enables processing
512-level depth output at 30 frames/s for full HD resolu-
tion. Customized ultra-wide SRAM enables 1.64-Tb/s on-chip
memory access bandwidth with 18-mW power consumption.
The chip is measured with industry standard benchmarks.
A complete stereo system is built and demonstrated on a
quadcopter for realistic real-time operations.
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