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Abstract 
    This paper demonstrates a complete wireless sensor node for accu-

rate cellular temperature measurement that includes a fully program-

mable Cortex-M0+ processor, custom SRAM, optical energy harvest-

ing, 2-way communication, and a subthreshold temperature sensor. 

The temperature resolution is 0.034°C RMS, and the transmit distance 

extends to 15.6cm. The 0.04mm3 (~500× smaller than a grain of rice) 

fully assembled cellular temperature sensing system (CTS) is 24× 

smaller than prior programmable sensing systems [3], enabling im-

plantation in a cluster of cells or large egg cells for biological studies. 

Introduction    
    Monitoring cellular temperature, as an indicator of cellular metab-

olism, is highly beneficial for disease study and drug discovery, as 

many diseases (e.g., cancer) are characterized by abnormal metabo-

lism. Recently scientists have achieved passive temperature mapping 

inside living cells using fluorescent materials [1] with limited accu-

racy of 1.3°C and 0.58°C resolution. This method nevertheless lead to 

the discovery that mitochondria are 10°C higher than in other parts of 

a cell [2]. Silicon implementation of accurate, autonomous sensor sys-

tems for cell cluster temperature measurement is lacking and can fa-

cilitate further biological discoveries. Direct measurement of such cel-

lular temperatures is extremely challenging since it requires highly lo-

calized measurements. Cellular sensor size cannot exceed 0.1 mm3
 to 

achieve good spatial resolution, making prior miniature implantable 

sensor systems (typically several mm3) [3-5] impractically large.  

    This aggressive size constraint for cellular sensor systems 

(<0.1mm3) creates two major design challenges: 1) Efficient wireless 

communication to program the processor and retrieve data is very dif-

ficult given the sub-mm area constraint. RF antenna efficiency de-

grades quickly with antenna size, forcing very high carrier frequencies 

(and correspondingly high power circuits and mm TX distance [6]). 

The proposed CTS uses optical communication since transmitter and 

receiver elements (LED and PV diodes) readily scale to tens of µm 

without efficiency loss. 2) Temperature-independent frequency and 

voltage references are critical for communication synchronization and 

high accuracy temperature sensing. However, crystals are far too large 

and bandgaps too power hungry for a sub-mm sensor. Hence, CTS 

uses a base-station generated clock reference encoded with the optical 

link, enabling reliable communication over 15.6cm and temperature 

measurement using a subthreshold oscillator to achieve a high accu-

racy of +0.11/-0.08°C and 0.034°C RMS resolution. 

Cellular Temperature Sensing System 
 Fig. 1 shows the CTS, which integrates a commercial Cree LED for 

optical transmission, custom 50 x 50 µm AlGaAs diode for optical 

reception, and 180 x 230 µm custom AlGaAs diode for power har-

vesting on the top layer. The bottom layer of CTS is a custom chip 

(360×400×150µm) in 55nm CMOS (MIFS C55DDC) including a 

M0+ processor with full programmability, subthreshold oscillation 

based temperature sensor [7], TX and RX circuits, LED drivers, and 

custom SRAM. A Photomultiplier Tube (PMT) in the base station 

senses transmitted data from the sensor node (Fig. 1) and includes an 

optical filter to remove self-interference. Since cellular-level temper-

ature measurement is typically performed in a controlled laboratory 

environment, lighting conditions can be restricted to wavelengths that 

limit interference. The always-on base station supplies modulated 

light (615nm) to power the battery-less sensor node and supply an ac-

curate clock. CTS operates at 3klux with 16nW system power con-

sumption (including TX and temperature sensor). We verified full au-

tonomous, wireless system operation with the complete stack shown 

in Fig. 1. Its measured system operation (Fig. 3) shows boot-up, de-

fault program operation, wireless programming by the base station, 

temperature measurement with on-chip recovered accurate clock, 

transmission of temperature codes through sensor node LED, and suc-

cessful demodulation of the correct packet at the base station (Fig. 3). 

    Figs. 2-3 show the CTS architecture and captured operation se-

quence. When the base station sends only DC light, CTS enters a 

power-on mode in which it executes a default program stored in a reg-

ister file. To program the CTS, the base station sends Manchester-

coded modulated light, which is received by the integrated photodiode, 

canceled for ambient light, and demodulated [8]. Once CTS recog-

nizes the password, it shifts its system clock source to the recovered 

accurate base station clock. The system then stores the received pro-

gram in a 4Kb SRAM optimized for static power reduction and acti-

vates the M0+ processor for program execution. Our sensors were 

programmed to take temperature measurements, store them and then 

transmits data with pulse position modulated light signals via the in-

tegrated LED at 180pJ/bit (simulated) using energy accumulated on 

100pF on-chip capacitor C1. 

Circuit Block Implementation 
    Fig. 4 shows the transmitter circuit implementation. A charge pump 

accumulates charge harvested from the photovoltaic (PV) cell on the 

on-chip capacitor C1, which then supplies energy to the LED with 

regulated current and accurate timing dictated by a PPM modulator. 

Each LED flash sends out a 2-bit symbol. Regulated LED current is 

optimized for minimum energy per bit. A voltage regulation loop con-

trols VLED_Anode on C1 to prevent voltage overshoot. As shown at 

the bottom of Fig. 4, the regulation loop divides the voltage on 

VLED_Anode with a charge-sharing voltage divider and compares 

the divided voltage Vcs with the on-chip generated reference voltage 

Vref. The charge pump is clock gated when Vcs>Vref.  

    A key design consideration for the IC layer is light exposure as 

coating with a light blocking epoxy is not feasible in the required form 

factor. This led to different design decisions than in other ultra-low 

power systems, e.g., the voltage divider in Fig. 4 uses capacitive 

charge sharing instead of a conventional diode stack divider to avoid 

inaccuracies introduced by photo-generated current from parasitic P-

N junctions in diode stacks under light exposure. Similarly, the volt-

age reference providing Vref is sized to have a bias current larger than 

the photogenerated currents to ensure robust operation under light.  

    CTS senses temperature (Fig. 5) by converting subthreshold current, 

which is exponentially dependent on temperature, to frequency, which 

is measured relative to the accurate reference clock. We employ a 

sensing oscillator structure similar to [7] due to its low line sensitivity 

created by a stacked native NMOS header that serves as a supply volt-

age regulator. This supply voltage invariant temperature sensor 

greatly relaxes supply regulation requirements in the system, enabling 

batteryless operation without voltage regulation even under modu-

lated light intensities, improving power and area efficiency. 

Measurements 

    The proposed CTS circuit exhibits +0.38/−0.33°C average error (2-

point calibration) for five chips across 10−60°C (Fig. 6), which is a 

wider range than required for biological measurements. Line sensitiv-

ity is 0.6%/V, corresponding to 0.17°C/V. Heating effect of the base 

station on the sensor was measured to be negligible (<0.1°C in 3hrs). 

In addition, heating effect from sensor LED can be mitigated by de-

layed read-out after experiment, thanks to the integrated processor and 

memory. A fully assembled CTS stack is measured using the setup in 

Fig. 7, demonstrating successful wireless programming and accurate 

sensing using clock recovery (Fig. 3). Fig. 8 shows temperature read-

ings received wirelessly from a fully assembled CTS stack across 

10−50°C, showing 0.034°C RMS resolution and +0.11/−0.08°C error. 

Table 1 compares this work to other small sensing platforms [3-6].  
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Figure 8. Sensing error and RMS resolution measured wirelessly with 

fully assembled CTS stack 

Figure 6. Measured temperature sensing performance 

Figure 2. System architecture of CTS

Figure 4. Circuit implementation of optical transmitter subsystem
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Figure 5. Implementation of temperature 

sensor 
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Figure 3. Measured waveform with fully assembled CTS system

Synchronized 

communication

Signal 

detected by 

base station 

RX (PMT)

Base 

station 

light 

intensity

Successfully decode complete packet

CTS Sensor 

node state

0 100 200 300 400

Transmit temperature 

codes (PPM)

Time(s)

Mea

sure

Accurate: w/ 

recovered clock

Receive  

program
Mea

sure

Run default 

program

TX temp. 

codes

Coarse measurement 

w/ on-chip clock

Base station assisted mode  

~2.26s/symbol

w/ 46Hz on-chip clock Accurate 5.4s/symbol set by base station 

DC light Sending program Sending clock

0

3k

Successfully 

recover clock

 
Default 

mode

 Header 32'h00261AF0 Data
 Header

lux

Table 1. System performance comparison

*System thickness is estimated from paper **Not including volume enclosed by powering coil
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Figure 7. Testing setup showing CTS 

stack in use with base station 
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Figure 1. CTS encased with bio-compatible material and implanted in a cluster of 

homogeneously dispersed HS5 human bone marrow stromal cells
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