2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

GenAx: A Genome Sequencing Accelerator

Daichi Fujiki*
Reetuparna Das

Arun Subramaniyan®
David Blaauw

Tianjun Zhang® Yu Zeng
Satish Narayanasamy

University of Michigan - Ann Arbor
{dfujiki, arunsub, tianjunz, yuzeng, reetudas, blaauw, nsatish} @umich.edu

Abstract—Genomics can transform health-care through pre-
cision medicine. Plummeting sequencing costs would soon make
genome testing affordable to the masses. Compute efficiency,
however, has to improve by orders of magnitude to sequence
and analyze the raw genome data. Sequencing software used
today can take several hundreds to thousands of CPU hours
to align reads to a reference sequence.

This paper presents GenAx, an accelerator for read align-
ment, a time-consuming step in genome sequencing. It consists
of a seeding and seed-extension accelerator. The latter is based
on an innovative automata design that was designed from the
ground-up to enable hardware acceleration. Unlike conven-
tional Levenshtein automata, it is string independent and scales
quadratically with edit distance, instead of string length. It
supports critical features commonly used in sequencing such
as affine gap scoring and traceback.

GenAx provides a throughput of 4,058K reads/s for Illumina
101 bp reads. GenAx achieves 31.7 x speedup over the standard
BWA-MEM sequence aligner running on a 56-thread dual-
socket 14-core Xeon ES server processor, while reducing power
consumption by 12x and area by 5.6x.

Keywords-Automaton, Sequence alignment, Accelerator

I. INTRODUCTION

Whole genome sequencing (WGS) determines the com-
plete DNA sequence of an organism’s genome. While it
cost nearly $3 billion to sequence the first human genome
in 2001 [1], just over the last one decade, the produc-
tion cost of sequencing has plummeted from ten million
dollars to thousand dollars, and is soon expected to go
below a hundred dollars per genome [2]. This remarkable
growth in genomics has far outpaced Moore’s Law and
has the potential to transform personalized medicine. By
understanding mutations in the cancer cell of a particular
patient, it is possible to devise individualized treatment
plans [3]. By analyzing large volumes of genome data of
diverse populations, we can better understand the causes of
various diseases ranging from cancer [4], Alzheimer’s [5],
to rare genetic disorders [6], assess risk factors and develop
better cure. Several governments around the world have now
launched projects aiming to bring genome testing to clinical
practice [7], and it is likely to become a standard practice
of care over the next decade, when genome analysis may
become as common as blood-tests.

To realize the full potential of genomics, however, com-
puting system efficiency needs to improve by orders of
magnitude. Data generated from sequencing just a million
genomes would produce over 300 Petabytes of data [8]

“Mr Fujiki, Mr Subramaniyan, and Mr Zhang contributed equally to the
paper; their names are placed alphabetically in the author list.

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00017

69

(larger than Facebook data [9]). One Illumina’s HiSeq
Ten high-throughput sequencing machine alone can now
sequence 45 genomes per day, producing nearly 2 TB of data
in a week [10]. Oxford Nanopore has even started producing
hand-held portable devices for sequencing organisms in the
wild [11].

As Moore’s Law tapers off, we envision hardware ac-
celeration for genomics applications would soon become
essential. Cloud service providers such as Amazon are now
starting to make FPGA (F1) instances available on their
cloud, which would accelerate the adoption of hardware
accelerators for applications such as genome sequencing.
Reduced form factor due to hardware customization can also
allow raw data to be sequenced within portable sequencers
to produce a smaller processed output (variants).

Sequencing each genome (referred to as secondary anal-
ysis) could take hundreds to thousands of CPU hours de-
pending on the read length [12]. A genome is essentially a
long string (3.08 Giga bp for a human genome) of DNA
base-pairs (bp) A, G, C, and T. A sequencing machine
splits a DNA into billions of small reads. In reference-guided
assembly, these reads are aligned by matching them to a
previously sequenced genome. This task is complicated by
the fact that the new individual’s genome may not exactly
match that of the reference genome. In fact, the end goal is
to determine the variants in the new genome. Furthermore,
the sequencing machine can introduce error into the reads as
well. Illumina’s short reads have about 2% error. To partly
address this problem, the sequencing machine produces
several reads (30x - 50x) to cover every position in the
genome.

While there are several computational steps in sequencing
raw genome data, we focus on accelerating read alignment,
a time-consuming step in secondary analysis. Most commer-
cial software today is based on the Broad Institute’s BWA-
MEM software [12] for read alignment, whose output is
treated in practice as a standard. One of our design goals is
to not introduce heuristics in the accelerator, so that software
built on top of it can meet these standards.

Read alignment determines the position of a read in the
genome. Due to variants and sequencing errors, a read (re-
ferred as query Q) may not perfectly match a substring in the
reference genome R. Sequence aligners solve this problem in
two steps: seeding and seed-extension. Seeding finds perfect
matches in the reference genome for small substrings (seeds)
in a read. The seed positions are then extended to determine
the best position by using an approximate string matching
algorithm based on computing Levenshtein (edit) distance.

IEEE
(@ computer

soclety

In this paper, we present GenAx, an ASIC custom hard-
ware accelerator for both steps in read alignment. Seeding
involves many irregular accesses to a reference index struc-
ture. We address this problem by segmenting the genome
to produce a smaller cache-able index for each segment,
and seeding for each segment separately. While this may
produce more seeds to extend than the baseline, the seeds
are extended at a high-throughput in GenAx using our accel-
erator for approximate-string matching, which we introduce
next.

Approximate string matching has been widely stud-
ied. The most widely used algorithm, particularly in ge-
nomics, is a dynamic programming algorithm called Smith-
Waterman [13]. It computes the edit distance between
two strings by filling a grid of size N2, where N is the
string length. While there have been several optimiza-
tions [14], [15], including hardware accelerators [16], [17],
this quadratic algorithm fundamentally does not scale for
long strings. While widely used Illumina machine’s reads
are short (100 bp), new generation machines from PacBio
and Oxford Nanopore are starting to support longer reads.

While Levenshtein Automata (LA) based solutions have
been known, they are rarely used in sequencing software
as they fail to outperform Smith-Waterman [18]. Recent
work [19] has investigated using Micron’s Automata Pro-
cessor (AP) or a Cache Automaton [20] for accelerating
LA based solutions. However, an LA too has (K % N)
states, proportional to string length. A more important issue
is that an LA is specific to a given string. Therefore, a
hardware accelerator needs to context-switch the automata
states after every read. Given that there are billions of reads,
these context-switches can become prohibitive. Furthermore,
none of these automata accelerators support critical features
necessary for sequencing: finding the best string match using
an affine gap function [21] instead of edit distance as the
scoring metric, and traceback.

We design a new automata, String Independent Local Lev-
enshtein Automata (Silla), from the ground-up to enable an
efficient and scalable hardware accelerator for approximate
string matching. Silla uses a state to represent the number
and types of edits, instead of tracking the number of matched
positions as done in LA, and operates them using a primitive
called retro comparison. As we have three types of edits
to support (insertion, deletion, and substitution), this would
require a 3D state machine, where each dimension’s size
is the same as the edit distance. We present a technique to
collapse this to a 2D state machine.

Unlike LA, Silla is string independent, meaning it can
compute the edit distance of any two strings. It has only (K +
1)2 states, where K is the edit distance. Since edit distances
are typically much smaller than the string length, Silla scales
well. Furthermore, all of its states communicate only with
their local neighbors in a 2D plane, which makes its overall
structure regular and composable.

By leveraging the above properties of Silla, we design
an efficient hardware accelerator called SillaX. Our 28nm

70

implementation of the SillaX edit machine requires only
13 gates per state and each processing element operates
at 6 GHz. We further extend the edit machine to support
a number of functionalities required for seed-extension in
genome sequencing. It includes support for computing the
best solution based on affine gap penalty [21] and clip-
ping [12], instead of using edit distance as the metric for
string comparison. Also, it enables traceback [13], which
allows us to gather the exact sequence of edits in the
reference genome. Prior hardware accelerators based on
Smith-Waterman either delegate traceback to software [17],
[22], which then becomes a bottleneck, or require significant
hardware space proportional to the read length [22], [23].

We synthesized SillaX in 28 nm technology and estimate
its frequency to be 2 GHz while consuming 1.5 W power and
1.41 mm? area. SillaX provides 62.9x speedup over opti-
mized banded Smith-Waterman running on a 56-thread dual-
socket 14-core Xeon E5 server processor. SillaX was verified
for GRCh38 human genome assembly with 787,265,109
Illumina 101 bp reads. GenAx achieves a 31.7x speedup
over standard BWA-MEM aligner, while reducing power
consumption by 12x and area by 5.6x. GenAx provides
a read alignment throughput of 4,058K reads/s.

This paper makes the following contributions:

o We present Silla, a novel automata for computing the
edit distance between two strings. Unlike Levenshtein
Automata (LA), its state space is proportional to edit
distance, and string independent. Its structure is regular
and composable, where all states communicate locally.

o We present SillaX, an accelerator for approximate string
matching based on Silla. We present a number of
solutions to efficiently support affine gap functions and
traceback features required in sequencing.

o We present GenAx, an accelerator for read alignment
in genome sequencing. It is composed of SillaX, and a
seeding accelerator. The seeding accelerator overcomes
irregular high-bandwidth memory accesses to the ref-
erence index by segmenting the genome to generate
cache-able indexes and seeding within each genome
segment.

II. SEED EXTENSION: BACKGROUND AND MOTIVATION

Problem statement: Seeding (§V) finds a set of positions
in the reference genome (hits) where a read could find a
match. In the seed-extension step for a read, the reference
strings at the hit positions are matched with the read.
Matches are scored using an affine gap function [21], which
is based on edit distance, but weighs different edit types
differently. The hit position for a read that yields the highest
score is chosen as that read’s mapping position. The final
output also contains a trace of edits to the reference string
needed to align the read at the chosen reference position.
This final step is referred to as traceback.

Dynamic Programming: The fundamental operation
in seed extension is approximate string matching [24],
[25]. The most widely used algorithm in sequencing soft-

Figure 1: LA for K = 1 and reference string AGC.

ware is a dynamic programming algorithm called Smith-
Waterman [13]. It computes optimal local alignments be-
tween two sequences by comparing segments of all possi-
ble lengths. It operates in two phases. Score-computation
builds the dynamic programming matrix (N?) based on
a general scoring scheme. Then traceback constructs the
optimal alignment by tracing back pointers starting from the
highest scoring cell. It fundamentally has ¢’(N?) time and
space complexity. While there have been several optimiza-
tions [14], [15], and approximation heuristics [26] developed
to reduce their time, it does not scale well as string length
increases.

Several FPGA-based hardware accelerators have been
proposed for the Smith-Waterman algorithm [16], [17].
These leverage wavefront parallelism in systolic arrays to ac-
celerate the score-computation phase of the Smith-Waterman
algorithm. However, they require up to ¢'(N) processing
elements and do not scale to long reads. There has also been
work on banded implementations of the Smith-Waterman
algorithm [27], where only cells within a 2K+ 1 band around
the principal diagonal of the Smith-Waterman matrix are
computed. Most of these accelerators also either offload
the traceback phase to software or have traceback support
only for short string lengths for an additional &'(N) space
overhead [17], [22].

Automata-based: The Levenshtein Automata (LA) for
approximate string matching accepts all strings that lie
within K edit distance of its stored pattern. Figure 1 shows an
example LA. Each state essentially represents the position
in the reference string up to which a match has been found,
and the number of edits seen so far. As a result, it has a
total of K N states. Its time complexity is &/(N?), as in
the worst case all of its states may be active. Sequencing
software systems rarely use LA based implementations as
they struggle to outperform Smith-Waterman.

In-memory [28], [20] and ASIC automata accelera-
tors [29], [30] can be used to implement LA. However, LA
is poorly suited for hardware acceleration due to several
reasons. One, since it is string dependent, the hardware
needs to be reprogrammed every time the string changes,
which can be prohibitive especially for seed extension in
sequencing. It requires processing billions of different reads,
where each read needs to be compared to several seeds in
the reference. Two, its space requirement is proportional to
string length. When read lengths increase to millions of base-
pairs, LA based hardware solutions would be impractical.
Third, none of the existing hardware automata accelerators

71

support unique features required in sequence aligners: scor-
ing, clipping, and traceback. It is challenging to include these
features. For example, adding logic to compute gap affine
scores for state transitions in Micron’s Automata Processor
(AP) is likely to be expensive.

A recent advancement in automata theory called Univer-
sal Levenshtein Automata (ULA) addressed some of the
limitations of LA [31]. While ULA is string independent,
it does not efficiently map to a hardware accelerator as
communication between states are not local. Also, each state
has a high-degree of fan-out (¢'(K)), as every state in ULA
is connected to a state in every higher level of edit distance to
support deletions. To date, there is no hardware realization
of the Universal Levenshtein Automata (ULA), nor has it
been used in sequencing software.

III. SILLA ALGORITHM

We present a non-deterministic finite-state automata for
approximate string matching called String Independent Lo-
cal Levenshtein Automata (Silla). Silla is designed from
the ground-up to enable efficient hardware acceleration.
Unlike Smith-Waterman implementations [13], Silla’s space
complexity is quadratic in edit distance, not quadratic in
string length, and its hardware implementation’s (§ IV) time
complexity is ¢(N). Thus, it is particularly attractive for
matching long strings with limited edit distance.

Unlike Levenshtein Automata, Silla is string independent,
as one automata can process any pair of strings. It is local,
because communication exists only between adjacent states
which are physically placed next to each other in silicon.
This eliminates the need for long wires and enables scal-
ing to very large automata without degrading performance.
Also, the structure is regular and composable, allowing two
smaller Sillas to be composed into a larger one. These prop-
erties are crucial to realize an efficient and general hardware
accelerator for approximate string matching described in the
next section (§IV).

Silla solves the following problem: Given two strings, a
reference R and a query Q, compute the minimum Leven-
shtein (edit) distance between them if it is less than a small
bound K.

A. Silla for Indel

We first describe the Silla design assuming only inser-
tions and deletions (indels), and then extend it to support
substitutions. A key observation is that we can use the
states to represent the number and type of edits made so
far, and not explicitly track the matches as it is done in
Levenshtein automata. Figure 2(c) illustrates indel Silla for
a maximum edit distance of two (K = 2), where a state
i,d means that when that state is reached, the automata
has seen i insertions and d deletions. All states have a
match transition back to the state itself as shown for the start
state (omitted for other states for clarity).

Computation begins at the start state (0, 0) which repre-

sents no edits (1=d=0). At all active states, one character

A; 4 = Rlc-i] XNOR Q[c-d]

c-ins c
R EEEEERN

<
Q EEEEHER —

C-N (o]

Aj g

(a) Retro comparison (b) State transitions (c) Indel Silla

Figure 2: Retro comparisons (a) are used to determine state transitions (b) in Indel Silla (c).

clock ic
AlxBCD%* . _g
0 ins YyABCD® 4=0
A|x/BCD L1
1 = 1
match vA[BCD d=0
B/ C D i=1
2
oel alB/c d=0
3 match Blcp i=1
B|C|D d=1
Alignment: TAXBCD

yA-BCD

(a) Indel Silla

<«
(o]

Alx B C D 4« Ref
sub y|/A B CD 4 Query

A|x|B C D i=0
sub = N

y|A[B C D d=20
. B|C D i=0
wait A|B/C D d=0
tch B|C|D i=1
matcl =

ECD d=1
. A B CD
Alignment: ®

yABCD

(b) Two substitutions in collapsed 3D Silla

Figure 3: Silla Illustration.

(a) 3D Silla

(b) State transitions in collapsed 3D Silla

Figure 4: Collapsing 3D Silla. Supports Indels and substitutions.

from each of the two strings is compared in every cycle
(step) starting from the first character. As long as there are
no edits, the positions of the compared characters in the
two strings R and Q are the cycle number c as shown in
Figure 2(a) by the two vertical arrows labeled c. We refer
to this position c as the cycle position.

72

On an insertion (or a deletion) the position in the reference
(or query) needs to be offset with respect to the cycle
position. This can be understood from the example in
Figure 3(a). As the comparison fails in the first cycle (A #
v), Silla explores as one possibility that a character (y) is

inserted into the query Q by transitioning into state 1, 0 . In

the next cycle, state 1, 0 should compare the previously
unmatched character A in the reference R to the current
character in the query Q. This is achieved by offsetting the
character position in the reference R by as many insertions
as the state represents (one in our example).

Similarly, the character position in the query Q is offset by
the number of deletions. For example, when the comparison
fails again in the third cycle (x # B), Silla explores
deleting x from R by transitioning to state 1, 1 . The new
state increments the character position offset for the query, so
that the unmatched character B from the previous cycle is
again compared, but this time to the following (now current)
character B in the reference.

Silla then generates two more matches for characters
C and D and thus discovers a solution for aligning the
given two strings within an edit distance of two. The final
alignment is shown at the bottom of the Figure 3(a).

Thus, the character positions whose comparison controls
a state is determined by the indels that the state represents.
We refer to these comparisons as retro comparisons, and
the offsets as indel offsets. Figure 2(a) shows the equation
and its illustration for computing the retro comparison
for a state 1i,d . The state transitions based on a retro
comparison is depicted in Figure 2(b). As you can notice,
Silla explores both options, insertion and deletion, when a
retro comparison fails for a state.

All the states in Silla are accepting states. After Silla
completes processing of a pair of strings, the remaining
active states represent possible string alignments with edit
distance i+d <= K. The active state with the smallest
indel indicates the minimum edit distance for the given
strings. If no states remain active at the end of processing,
there is no alignment with indel < K. The number of
states in the indel Silla is (K + 1)?/2, as it is half a square
with a side of length (K+1).

B. 3D Silla for Substitutions

We now extend Silla to support substitutions. An easy
solution for tracking substitutions is to add states in the third
dimension to Silla. Each layer in the third dimension looks
like a 2D indel Silla, and there are as many layers as the
maximum possible number of substitutions (which is limited
by K). When the retro comparison fails at a state i,d|s,
to explore substitution, Silla transitions to a corresponding
state in the next substitute layer along the third dimension
(i,d|s+1).

Figure 4(a) depicts 3D Silla. A state’s color represents
the 3D layer it belongs to. As there are K+1 layers, we
have (K +1)3/2 states.

C. Collapsed 3D Silla for Indels and Substitutions

3D Silla requires ¢'(K?) states. Furthermore, a hardware
for 3D Silla would also be inefficient due to challenges
in laying out a 3D design on a 2D plane. We avoid these
problems by reducing a 3D Silla to an equivalent 2D Silla
as follows.

73

Our key observation is that we need only one additional
layer of 2D Silla, not K, to support substitutions, and that
we can collapse the states needed in the higher substitution
layers into one of those two layers.

Intuitively, the reason for having two dimensions in the
2D indel Silla is that we need to track the indel offsets in the
two strings for different states of the automaton. However,
a substitute action does not change the indel offsets and the
function of the third dimension in the 3D Silla is simply to
“count” or record the number of substitutions. Since we are
only interested in the total edit distance, we notice that state

i,d|s in the 3D Silla has the same edit distance as state
i+1,d+1|s-2 . Furthermore, the relative indel offsets
of these two states is also the same i-d, although state
i+1,d+1|s-2 is shifted one character position earlier

in the string than 1i,d|s . Hence, we can merge state

i,d|s withstate i+1,d+1|s-2 by inserting one wait

cycle in the path from i,d|s-1 to i+1,d+1|s-2.
The example in Figure 3(b) illustrates this merger oper-
ation. It is for the same two strings discussed before, but
this time we discuss a solution that uses two substitutions
to align them instead of an insert followed by a delete.
When retro comparison fails in cycle 0 (A # vy), control

switches to the 0,01
When the comparison fails again (x # A), to explore

state to explore a substitution.

another substitution, 3D Silla would transition to 0, 0|2 .
But, as noted above, the number of edits represented by
the state 0,0]2 1is same as 1,1|0 and the relative
difference between their indel offsets is the same (zero).
Hence, in cycle 2,a 0, 0|2 state would be comparing the
two characters B, which are the same characters as state
1,110 is comparing in cycle 3. In a way, state 0,02

is one cycle ahead of 1,110 .
Therefore, we can merge 0, 0|2 with 1,1[0 simply

by delaying the path from 0,0|1 to 1,1|0 on substi-
tution by one cycle. Figure 3(b) illustrates this. When the
retro comparison fails in cycle 1, Silla transitions to a wait
state that takes no action in cycle 2. In the next cycle 3, the
execution correctly resumes in state 1,10 .

To generalize, our final Silla design supports indels and
substitutions using two layers of 2D Silla. Final state tran-
sitions are shown in Figure 4(b). Matching transitions are
again omitted for clarity. To explore a substitution from a
state 1,d|1 in the second layer, Silla transitions to a wait

state i,d|w, and then in the following cycle, transitions

back to merge with a state in the first layer i+1,d+10 .
Figure 4(a) can now be re-interpreted as a collapsed 3D
Silla, where the checkered states represents the wait state
and has a single outgoing transition to merge with states in
the first layer.

Collapsed 3D Silla has (K + 1)?/2 regular states in each
of the two layers, and also has an additional (K +1)%/2
wait states resulting in a total 3(K +1)?/2 number of states.
Also, by grouping states i,d|0, i,d|1 and i,d|w
together as one unit in the layout, a completely regular
design is obtained with only local communication between
neighboring units. Henceforth, we refer to this collapsed 3D
Silla simply as Silla.

D. Merging Confluence Paths is Sound

Silla explores multiple solutions concurrently in different
states. When a retro comparison fails, a state activates all
three of its outgoing edges to pursue all possible edits to
handle the mismatch. For example, Figure 3 shows two paths
for the same string. However, in fact, Silla would explore
many more paths than shown, and often there are more than
one solution. In the example, the path with a deletion and
an insertion and the path with two substitutions are both
optimal solutions.

Silla merges a set of paths that reach a state in the
same cycle into one active path. We refer to these paths
as confluence paths. A state in Silla can have as many as
four incoming edges (e.g., state 1, 1|0 in Figure 4(a)),
including the matching edge.

Fortunately, it turns out that merging confluence paths
is safe without additional precautions. The reason is as
follows. For a given Silla state, and given cycle, we can
partition the reference (R) and query (Q) strings as x| |y

and u||v, where x and u are prefixes of R and Q,
respectively. A nice property is that this partition is the
same for all the confluence paths. The prefixes that have
been processed in the previous cycles, will not be examined
going forward, and it is guaranteed that all the confluence
paths observed the same number of edits for them. All the
confluence paths also share the same suffix, and the edit
distance computation for the unprocessed suffixes (y and
v in R and Q respectively), is independent of the path taken
so far. Thus, it is not necessary to independently explore that
same suffix for each of the confluence paths, and therefore
they can be safely merged.

IV. SILLA ACCELERATOR FOR GENOME SEQUENCING

This section presents the Silla hardware accelerator (Sil-
laX) for genomics. It uses a form of a systolic array
architecture that efficiently computes and locally distributes
retro comparisons to all the states. Besides edit distance, it
also supports more sophisticated scoring schemes based on
the affine gap penalty [21] used in genomics. Finally, it adds
capability to traceback the sequence of edits made to reach
the final alignment solution. These capabilities are essential
to perform seed-extension in genome sequence alignment.

We synthesized and validated the implementation for a
whole human genome and confirmed that its output matches
that of Broad Institute’s BWA-MEM standard pipeline [12]
for all 787,265,109 single-ended reads.

74

7) On
a|7o? o ® Wait node
- — |/S/D
ul|T|Po2
e ||
rif_
S0t
Y1585
3 TS
Q F] Do b1, A0 Az
Rlc-1] | RIc2l | Rlc-3] Jeee

g Rl |

Figure 5: SillaX Accelerator.

Reference

A. SillaX Edit Machine

SillaX implements each regular state in Silla as a small
processing element (PE) shown in Figure 6. PEs for wait
states are not shown, but they simply activate the outgoing
edge when they are active. An important property that Silla
guarantees is that a state has to communicate only with its
neighbors. This allows us to connect all the PEs using a
locally communicating regular network (Figure 5). We refer
to a PE simply as a state in our discussions.

Every regular state is controlled by the result of its retro
comparison in each cycle. A significant challenge that we
address is the efficient calculation and distribution of the
retro comparisons to all the regular states. In a naive system,
we would need as many retro comparisons as the number
of regular states ((K 4 1)?/2), every cycle. However, across
two clock cycles, many of the the retro comparisons are
reused. This allows us to solve this problem with just 2K + 1
comparisons per cycle as described next.

A retro comparison for a state is computed based on
the current cycle (c) and that state’s indel (i,d) as we
discussed in Figure 2(a). We observe that the states along
a diagonal can reuse the retro comparisons. A state i,d
needs the same retro comparison that i-1,d-1 needed a
cycle earlier. Therefore, in each cycle, SillaX computes the
retro comparisons for all the peripheral states, Vi i, 0 and
Vd 0,d, and then shifts them diagonally into the interior
states every cycle. That is, a state i, d latches its incoming
retro comparison and forwards it to i+1, d+1 the next
cycle (Comp in Figure 6).

To implement the above functionality, SillaX has two sets
of shift registers, one for each dimension. Input characters
from two strings R and Q flow through those shift registers
as shown in Figure 5. A set of 2K + 1 comparators outside

E_in emalpe]

Ins_value
s_score —# M Generate
cur_value, a cur_value =+ 5_score_o
gotatus] X out score
status E
D_score: —b‘ Del_value }—>

M
Best_value—|
ot a Best_value
X

| cur_value—¥|

'
Lscore-2%] | Lcore > score o
- log(N]

S_score

'
'

'

'

ogny |1

D_score H
'

'

'

'

[»D_score_o

Change —¥

Figure 7: PE for SillaX Scoring Machine.

the grid compute the retro comparisons every cycle (K + 1
comparisons for each dimension with one common compar-
ison for 0,0). Note that computing and distributing the
retro comparisons again requires only local communication
between neighboring states allowing for a highly scalable
design. The only exception to this local communication
is the distribution of the current cycle’s characters in the
reference and query strings R[c] and Q[c] which are
distributed across the entire periphery. However, distribution
of these two values can be accomplished using a distribution
tree which delivers the values to all comparators at the same
time, much like a clock tree distributes a synchronized clock
to all the PEs.

Efficiency: SillaX requires only &'(K?) states (processing
elements) and computes in about N cycles, where K is the
edit distance and N is the string length. Typically, K << N.
Our implementation in 28nm can be clocked at 6 GHz, and
each PE has only 13 gates. This is significantly more effi-
cient than software implementations, whose time complexity
is ©(N?). Hardware accelerators for these require &'(N)
processing elements, which does not scale as well for large
N.

B. Scoring Machine

Edit distance is a simple form of scoring alignment
between two strings which can have many different uses.
However, read alignment in genome sequencing uses a more
sophisticated scoring scheme based on empirical evidence
gathered from analyzing many genomes [21].

If we use a constant score for each type of edit, then it
remains safe to merge confluence paths by selecting the one
with the highest score, as the properties discussed in § III-D
continue to hold.

The scoring scheme used in the standard BWA-MEM
pipeline, however, raises a new problem. It rewards every
match (+1) and penalizes every substitution (spenalty =
—4) with predefined scores. Each indel, which represents a
set of consecutive deletions or insertions, is penalized using

75

Cycle C Cycle C+1
match: 9+1 match: 0
m m 8 - gextend > 10 - gopen
ins: 8 8-1 >10-7
~ cur: 9 - . .) cur: 10
sub:0—» 5. o > H i = ins: 8 > 10-spenalty=10-4
qel o 7| deli 0 N /| del: 0
: 8 - gextend > 10 - gopen
R: A R: B 8-1 >10-7
Q: A Q: x

Figure 8: Delayed merging is needed to support affine
gap penalty.

affine gap penalty (G):

G = gopen+ gextend xid,
where id is the number of characters deleted or inserted,
gextend (-1) is the penalty for each consecutive edit, and
gopen (—6) is an additional one-time penalty for each indel.

Given this, paths that have opened an indel gap
(open-path) have an advantage over a path where
the latest retro-compare is a match or substitution
(closed-path). An open-path need not pay a gap opening
penalty for the next insertion or deletion, but a closed-path
should. As a result, we cannot merge the confluence paths
into one at a given state and cycle based on their current
scores alone since the future score depends on whether
the confluence path is open or closed. Fortunately, we can
address this by delaying the merge to the following cycle as
shown in Figure 8.

To enable delayed merge, we latch the scores of the
incoming active insertion and deletion paths in a state as
shown in Figure 7. If there is a mismatch in the next cycle,
we can select the best outgoing indel path by adding the
gap penalty to previously closed paths. If there is a match
in the next cycle, we can select the active path for the state
by choosing between the closed paths and the open-paths
from the previous cycle, which are now closed due to the
match, based on which path has the highest score. We refer
to this technique as delayed merging.

Closing an open-path due to a match in a state would
prevent that open-path from potentially exploring a better
solution in the higher edit states without having to re-
open the path. For this reason, in the scoring machine, an
active state conservatively activates the outgoing insertion
and deletion transitions even on a match.

Figure 8 illustrates delayed merging. In cycle C, we cannot
discard the incoming insertion open-path in favor of the
matching closed-path, although the latter has a higher score.
Instead, we latch its score. In the next cycle, when there is
a mismatch, the latched open-path produces the best score
for outgoing indel transitions.

After processing the strings, we need to compute the best
score. BWA-MEM applies a heuristic called clipping, where
it selects the best score seen during seed-extension, instead
of determining the best score only among the final states
at the end of string processing. The reason for this is the
expectation that the ends of a read are likely to suffer from

S. - s
rasa B .
—]
Mode e Py 35 Sel
|_valid —»
S-&Zliﬂ — > 1_valid_o

—»S_valid_o
— D_valid_o

I 1
| Matches+1 H
' '
' 0 Matches ptr Ptr |
, ,
| Matches i
' . '
' '
I '
' '
' '
' I
' '

Best_cycle+1: S_valid
Best_cycle | p_valid
o

Figure 9: PE for SillaX Traceback Machine.

sequencing machine errors and are less likely to be true
variants.

The SillaX scoring machine supports clipping as follows.
Each state stores the best score it has seen during the entire
computation. Once the strings are processed, the mode of the
machine is changed to instruct the states to back-propagate
their best scores, through local communication, but now in
the reverse direction. Each state receives the best scores
from three of its upstream nodes, computes the maximum of
those scores along with its own best score, and passes the
computed maximum to its downstream paths. In this way
the best score seen at any time during the string processing
in any state is read out at node 0,00 .

Efficiency: A scoring PE includes an edit PE, four
scoring registers (Log (N) bits each), and a programmable
scoring logic. Three additional output and input ports are
used for communicating scores. It also takes an additional
K cycles to back-propagate the scores to the starting node.
In spite of these additional overheads, the scoring machine
remains efficient in space (¢(K?)) and time (O/(N)).

C. Traceback Machine

Read alignment requires the sequence of edits made and
their positions in the string for the best solution found.
This step is referred to as traceback. Hardware accelerators
based on Smith-Waterman [13] typically delegate this step
to software, which then becomes the bottleneck, or require
hardware space that is proportional to the read length [22].

We support traceback by extending our scoring machine
as shown in Figure 9. Our main idea is to use a pointer trail,
much like how an ant creates a scent trail to get back home.
Also, we compress the trace representation in the machine
by keeping a count of matches discovered in each state. That
is, each state, in addition to tracking the best score it has
seen, tracks the number of matches it found at that node for
the path corresponding to the best score.

The traceback machine works as follows: In the string
matching phase, when a state accepts a score from a down-
stream state as its best score, it sets its traceback pointer
(2 bits) to that state. After processing the strings, in
phase two, just like in the scoring machine, the best score
is propagated back, along with the winning final state’s
identifier. In phase three, a signal is propagated forward to
inform the winner. In phase four, by chasing the pointer trail
from the winner, the states that are part of the winning path
are flagged. In phase five, the trace is collected at the starting
node (0, 0]0) by shifting the matches and pointer values

76

along the flagged winning path downstream, one state at a
time per cycle.

One problem is that a pointer trail may get broken in
phase one while processing the strings. When a greedy state
discovers a higher score, it will discard the previous best
score seen in an earlier cycle and its corresponding pointer.
However, the previously discovered path that is now being
explored in some upstream state may eventually emerge
as the winner in the end. But the pointer trail for that
winner is now overridden at the greedy state. To address
this problem, we ask the greedy state to inform its upstream
neighbors when it changes its pointer, which allows its
neighbors to invalidate their pointer to that greedy state,
thereby indicating that the pointer trail terminates in the
neighbors state.

At the end of phase five, our controller examines the
trace to check if it is complete. If it is broken, it re-runs
the machine till the cycle when the winning path left the
greedy state. We determine this cycle by keeping track of
the cycle at which the best path seen in a state left that
state. This is in addition to the best score that we had in
the scoring machine. After the re-run, the machine collects
the trace from the greedy state, which is now guaranteed to
have the correct pointer. If the machine were to discover a
new greedy state, it is resolved by re-running the machine
again. In practice, however, we find that it is rare for pointer
trails to be broken, and hence re-runs are rare.

Efficiency: Traceback machine has five phases, as op-
posed to two in the scoring machine. The first phase takes N
cycles and the remaining phases take about K cycles each.
It also adds a counter for tracking matches and a register
for best cycle (each of size log (N)). These additional
overheads are significantly lower than the ¢&(N) space
complexity in previous hardware accelerators that supported
traceback [22].

D. Composable SillaX

A key issue in hardware acceleration is maintaining flexi-
bility so that a wide range of applications can be addressed.
In our application this means that an accelerator should
address both different string and edit lengths. Our proposed
SillaX accelerator already allows arbitrary string length.
However, the maximum edit distance is constrained by the
the size of the PE grid and is fixed in hardware. To address
this issue, we propose the use of composable sub-grids
where multiple smaller SillaX engines can be combined
into fewer larger engines or one maximum size engine. This
creates flexibility where a few high edit distance machines
can be reconfigured with a simple mode-switch into multiple
smaller edit distance machines, thereby optimally addressing
the targeted application space.

The concept is illustrated in Figure 10. Six small SillaX
accelerator tiles are labeled by their position in the larger
grid ((1,1), (1,2) and (2,1)) and whether they are oriented
Sforward (0) or flipped (1). Each of these six accelerators can
operate independently providing six engines each with the

Ref(12)1

R(L,1)0

Figure 10: Illustration of composable SillaX

same edit distance K. Note that in the forward oriented tiles,
state activation propagates from bottom left to top right as in
the previous figures. In the flipped tile, state transitions prop-
agate in the opposite direction. To make a SillaX accelerator
with edit distance 2K, we can combine the following four
tiles: (1,1)—0, (1,1)—1, (1,2)—0, (2,1)—0 by changing the
configuration of MUXes. In this case, the reference string
will stream from Ref(1,1)—0 to Ref(1,2)—0, concatenating
the two shift registers. Similarly, the two query registers are
concatenated. Also, the connections inside Tile (1,1)—1 are
reversed so that state transitions propagate from bottom left
to top right. This is accomplished by adding MUXes/tri-
state gates at the input/outputs of each PE. They configure
which wires are treated as inputs and outputs in an array
Tile. Finally, the outputs of Tile (1,1)—1 are fed into the
inputs of Tile (1,2)—0 and (2,1)—0 forming a single larger
array of PEs instead of 4 smaller ones. Note that in this
example, Tile (1,2)—1 and Tile (2,1)—1 are still operating
as independent SillaX engines with edit distance K.

This reconfiguration approach incurs only a small over-
head of MUXes between tiles and for each PE. It allows
many different configurations with edit distances ranging
from K to pK where p = sqrt(T) for an implementation
with T Tiles. This broadens the application space of SillaX.

V. SEEDING ACCELERATOR

Problem statement: Seeding determines the positions
(hits) in the reference genome where there could be potential
matches for a read. It does this by finding perfect matches
for a given read’s substrings (seeds) of length k (k-mer) in
the reference. To further reduce the number of seeds, BWA-
MEM uses a heuristic by defining a seed to be a read’s
substring that has super-maximal exact matches (SMEMs)
with the reference genome. A maximal exact match (MEM)

77

is an exact match that cannot be extended in either direction.
An SMEM is a maximal length match (MEM) that is not
fully contained in any other MEM in the read.

Prior hardware accelerators for seeding directly imple-
ment BWA-MEM’s FMD-index (Ferragina-Manzini) [32],
[33] based seeding, which suffers from poor locality due to
irregular memory accesses. We use an implementation that
is guaranteed to find all hits as BWA-MEM, but has better
locality.

Algorithm: We use an index table that has one entry for
each k-mer, which points to a list in a position table [34]. The
list contains the hits where the k-mer occurs in the reference
genome. For each position (pivot) in the read, we find a right
maximal exact match (RMEM) that is of size at least k. To
compute RMEM, we determine the hits for the first k-mer
starting from the pivot (H1). Then we stride by k, and find
the hits for a k-mer starting at pivot+k position in the
read (H2). We normalize these hits to the pivot position by
subtracting k from their hit values. The set of hits (H1 and
H2) are intersected to produce the set of candidate hits where
we can find the larger string of size 2k. We can continue
this process until the intersection returns an empty set of
candidate hits. Then, we reduce the stride progressively from
k/2, k/4, k/8 ..., 1 to compute the RMEM with
non-zero candidate hits. We repeat the whole process for
each position in the read. The RMEM for the first position
in the read is an SMEM. If an RMEM for a later position
is a substring of a previously discovered SMEM, it is not
reported as a seed, as it is not an SMEM. Seeding returns
the hits of all SMEM seeds to the seed-extension step.

Accelerator: We observe that fetching data from the
index table and the position table can become a performance
bottleneck. To enable greater reuse of the index and position
tables across reads during SMEM computation, we segment
the genome, and construct index and position tables for each
segment. Segmenting also enables the index and position
tables to be stored in on-chip SRAM, providing low-latency
access, and alleviating the memory bandwidth bottleneck.
All reads are processed for one segment, and then repeated
for the next segment.

Intersecting hit sets is a performance-critical operation
in determining SMEM seeds and their hits. Our seeding
accelerator implements several optimizations to optimize
this operation. One, we use 512-entry on-chip CAM per
seeding lane to compute intersections. We defined its size
based on our empirical analysis of k-mer indices for human
genomes that showed that most k-mers have less than 512
hits when k 12. Two, if the set of hits of the current
k-mer is larger than 512, we do a binary search. A binary
search is possible, because position tables are constructed
offline for a reference genome, and therefore we can store
the hits for a k-mer as a sorted list. Three, we find that
a common performance issue is when intersecting the hits
of the first two k-mers starting from a pivot. We mitigate
this problem as follows. Instead of striding by k for the
second k-mer, we lookup several k-mers with lower strides.

We select the k-mer with the smallest hit set, intersect it
with the first k-mer, and continue the RMEM process after
that k-mer. Since the size of intersected candidate hits can
only decrease, starting RMEM with a small number of hits
can reduce the overall number of CAM lookups during the
rest of the RMEM computation. Four, we use a variant of
the above optimization for quickly seeding reads that have
exact matches in the reference genome. We observed that for
real world human genome datasets consisting of nearly 1.5
billion short reads, ~75% of the reads have exact matches
in the reference. SMEMs for these reads do not need to
be verified by seed-extension. To optimize for this common
case, for each read, we lookup the index for a set (of size
[readlength/k]) of k-mers that span the entire read starting
from its beginning, where each k-mer is offset by k. We
select the smallest hit set, and then start intersecting with
the next smallest, and complete the intersection with all the
sets. If the intersection of hit sets of all these k-mers result
in a non-empty set, then we have found an exact match for
the read in the reference, and therefore we can skip the rest
of the above steps for it.

(1;:;/2 dex Tabl oy
e | S Index Table e
< ’ ‘ GB/s[o
o
5 (PRVEN (18 MB) — &
Lo | o
19.2 Position Table 192
o |GB/s (48 MB) GB/s 3
E 3
[=)
= 19.2 ’ ox o
R GB./s 7 128 seeding lanes :593/2 =
8 Read ! |1 | | t Read [* - 8
a E S S) a
512kB 512kB
19-2 C} 19.2
% GB/s| |512kB: 512kB)| GB/s §
= - Reference 4 SillaX lanes Reference [< 8

Figure 11: GenAx architecture overview

VI. GENAX GENOMICS ACCELERATOR

GenAx brings together the seeding and SillaX seed-
extension accelerators to enable high-throughput sequence
alignment of human genomes. Figure 11 depicts the overall
GenAx architecture. It consists of 128 seeding lanes which
fetch k-mer positions from a 48 MB index table and k-mer
reference hits from a 18 MB position table. Each indexing
lane processes one read at a time. It has a CAM and a small
control FSM for orchestrating SMEM intersections and k-
mer lookups. The resulting hits after SMEM calculations
are buffered for seed-extension by the SillaX lanes. GenAx
features four SillaX lanes, which have sufficient throughput
to process hits from all 128 seeding lanes. A SillaX lane
fetches the reference string from the reference cache (4x512
KB) to extend a seed at a specific hit position. A 16 KB
buffer (not shown) is used to buffer the reads processed.

The reference genome with 3 billion base-pairs is seg-
mented into 512 segments. Therefore, each segment has 6

78

CPU Intel Xeon E5-2697 v3
2.6GHz; 2 sockets; 28 cores; 56 threads
L1 I&D cache 14 x 32KB Instruction; 14 x 32KB Data
L2 cache 14 x 256KB
L3 cache 1 x 35MB
Memory 120GB DRAM
Nvidia TITAN X
GPU 1.6GHz: 3840 CUDA cores
Shared L2 cache 3MB
Memory 64GB DRAM, GDDR5X

Table I: Baseline system configurations.

million base-pairs and a footprint of 1.5 MB which fits in
the reference cache. Segments are processed sequentially for
all reads. Before a segment starts, the position table, index
table and reference for that segment are streamed in from
memory via the 8 DDR4 channels shown. Since these are
all spatially co-located memory accesses, streaming them in
is efficient.

VII. EVALUATION METHODOLOGY

Reference genome and input reads: To build the index
and position tables for the reference human genome, we
used the latest major release of human genome assembly
(GRCh38) from the UCSC genome browser [35] and fil-
tered out unmapped contigs and mitochondrial DNA. Only
chromosomes 1-22, X and Y were used. For our evalua-
tion, we use real human genome reads with 50x coverage
from the Illumina platinum genomes [36] dataset. The
dataset consists of the NA12878 human reference (single-
end ERR194147_1.fastq) consisting of 787,265,109 reads
of 101 bp length.

System Configuration: We compare GenAx with the de-
facto standard: software aligner BWA-MEM [12] running
on Intel Xeon E5-2697 CPU operating at 2.6GHz with 56
active threads (best configuration in our environment) and
128GB DDR4 memory. The detailed system configuration
is shown in Table I. BWA-MEM uses SMEM-based seeding
and a banded Smith-Waterman to compute optimal local
alignments. The CPU power is measured using Intel’s RAPL
Interface. We also compare GenAx with a state-of-the-art
GPU aligner (CUSHAW?2) [37] on Nvidia’s TITAN Xp.
CUSHAW2-GPU also identifies maximal-length matches
and extends these to form larger gapped alignments. We used
the default scoring scheme in BWA-MEM for all the align-
ers. To study SillaX’s alignment throughput independent of
the seeding accelerator, we compare against major software
implementations of the Smith-Waterman algorithm. We use
the SeqAn library [38] as the CPU baseline, and SW# [39]
as the GPU baseline.

Synthesis: We synthesized the SillaX accelerator using
the Synopsys Design Compiler (DC) in a commercial 28nm
process. We synthesized all three Silla machines: edit, scor-
ing, and traceback, to obtain their area, power, and latency
with respect to different clock frequency targets.

GenAx performance modeling: We segmented the refer-
ence genome into 512 segments and constructed index and
position tables for each segment. The reads are processed

10000 + r 10

-e-Area-Edit
-&-Area-Traceback
—A-Power-Edit
-o-Power-Traceback [1
Chosen Design
-
Point

1000 4

Area (in um?)
g
o
Power (in mW)

=
S
L

r 0.01

0.001
0 1 2 3 4 5 6 7

Frequency (in GHz)

Figure 12: SillaX area and power for a single PE.

sequentially in each segment. For a k-mer size of 12, the
index and position table require 48 MB and 18 MB of on-
chip SRAM respectively. By choosing a small k-mer size
such as 12, our index table does not require additional tag
meta-data to handle collisions. Also accesses to the both
index and position table to compute SMEMs benefit from
the low latency and 100% hit rate provided by on-chip
SRAM. We used Ramulator [40] to compute the memory
cycles required to load these tables for each segment, load
the reference and reads for SillaX compute.

VIII. RESULTS
A. SillaX Evaluation

Area, Frequency and Power Figure 12 shows the power
and area for each processing element (PE) in the SillaX
edit machine and traceback machine. The optimal design
points are highlighted. Scoring machine is comparable to the
traceback machine, so we omit it. 2 GHz is the inflection
point. At 2 GHz, the SillaX edit machine has an area of
0.012 mm?, power of 0.047 W and latency of 0.17 ns. At
the same clock frequency, the traceback machine has an area
of 1.41 mm?, power of 1.54 W, and latency of 0.33 ns.

BWA-MEM reports alignments with score higher than 30.
Using this estimate, we can derive that the edit distance (K)
should be less than 32. Given this, we conservatively use
K 40 in our analysis. To support K 40, SillaX uses
1,681 processing elements (PEs).

GRCh38 Human Genome Assembly Validation: To
evaluate the accuracy of the SillaX traceback machine,
we ran all the the non-exact matching reads in the
ERR194147_1.fastq file and compared the alignments
produced with that from BWA-MEM. Exact matching reads
are trivially identified using a single state SillaX machine
that transitions to itself every cycle on a match.

For all the 351,023,283 non-exact matching reads, the
SillaX traceback machine machine alignment results concur
with the BWA-MEM’s alignments with negligible (0.0023%)
variance. On investigating the different alignments further,
we noticed that the alignment scores produced by the SillaX
traceback machine are exactly the same as that of BWA-
MEM, implying that both alignments have the same mapping
quality and should be treated the same. These differences are

79

Fraction of reads

300 —1
400 —]

[ym

29 2 339938 3 8
S8 338 3838 38 8
28R & & 3 2]

100

o
o =
200)

Cycles spent in traceback

Figure 13: Silla traceback cycle distribution.

100000
10000
1000

I-Sax @CPU BGPU
1 .

100
10
lllumina 100

Figure 14: SillaX throughput (in Khits/s).

Throughput (Khits/s)

due to the fact that BWA-MEM and SillaX use different
traceback techniques and policies for breaking ties when
merging multiple paths with the same score.

Broken pointer trail events: An important parameter to
be considered while estimating the performance of the SillaX
traceback machine is the number of times the machine must
be re-executed because of a broken pointer trail. Across
all the reads that we tested, we observe that only 7.59%
of the reads require re-execution . This is consistent with
our expectation. Figure 13 shows the distribution of cycles
spent in re-execution. We can see that over 60% of the re-
execution events are resolved within the first N (101) cycles.
Thus, re-execution events have only a small impact on the
performance of the SillaX traceback machine.

Throughput: Figure 14 shows the raw alignment through-
put of the SillaX accelerator (4 lanes) when compared to
banded Smith-Waterman based approximate string matching
using SeqAn (CPU - 28 cores) and SW# (GPU - 3840
CUDA cores) when aligning 100bp Illumina short reads.
It can be seen that SillaX achieves ~62.9x throughput
improvement over SeqAn and ~5287x speedup over SW#.
SillaX provides these speedups while consuming only 6.6
W of power and 5.64 mm? area. These benefits are both
due to linear time processing of input symbols as well as
efficient support for traceback. GPU-based solutions face
high synchronization overheads for short reads leading to
low performance.

B. GenAx Evaluation

Throughput, Power and Area: Figure 15 (a) compares
the overall throughput (reads/s) of GenAx with BWA-
MEM (CPU) and CUSHAW2-GPU. It can be seen that

__ 4,500 140
o 4,000 __ 120
£ 3500 2

, =100 |
3 3,000 —
o 2,500 g 8 f
¥ 2,000 S 60 |
‘g’_ 1,500 go a0 F
2 1,000 2 1l
® 500
) 0
=
—

e
o 2

CUSHAW?2
GPU
GenAx
CUSHAW?2
GPU
GenAx

=
o]
=
<
2
o

—_—
Q

~
—_—
o
—

Figure 15: (a) Throughput comparison (in KReads/s) and
(b) Power comparison.

GenAx achieves 31.7x speedup over BWA-MEM and 72.4 x
speedup over CUSHAW2-GPU. The large performance
gains can be attributed to the following factors. (1) Effi-
cient and composable SillaX accelerators accelerates seed-
extension with in-place traceback. (2) Segmenting of index
and position tables and storing them on-chip enables low-
latency access and high-reuse across reads. (3) Read loading
time takes a small fraction of the overall execution time
(~10%), increasing the benefits from segmenting. (4) Op-
timizing for the common case of perfect matches helps
increase throughput.

Figure 15 (b) compares the average power consumption of
GenAx vs. BWA-MEM and CUSHAW2-GPU. By sharing
several indexing lanes with SillaX accelerators, GenAx re-
duces power consumption by 12x when compared to BWA-
MEM execution on CPU.

Component Area (in mm?)
Seeding lanes (x128) 4.224
SillaX lanes (x4) 5.36
On-chip SRAM (68 MB) 163.2
Total 172.78

Table II: Area breakdown: GenAx.

Table II shows the area breakdown of GenAx. A large
fraction of the die area is devoted for accelerating the
seeding step using on-chip index and position tables. Each
seeding lane consists of a 512-entry CAM. The SillaX lanes
consist of a few counters and logic gates as described in
§ IV-C. Overall, the GenAx architecture takes up 172.78
mm? in a 28nm node.

Seeding performance breakdown: While we could have
used Burrows-Wheeler Transform (BWT), one of the main-
stream solutions for genetic string indexing, it suffers from
irregular memory accesses. Naive implementations of a
hashing solution, on the other hand, require handling a
large number of hit positions in return for better locality.
Figure 16 (a) shows the average number of hits generated
by the hash table (lower is better for processing). We
observe our proposed optimizations, i.e. SMEM and binary
extension, can filter out the insignificant hits, resulting in

80

1000000 12K
100000 | 10K
10000 £
o @ 8K
H ER-S
o 1000 _8 @ 6K
~ ~
o 100 f <§(T 4K
£ S8
T 10 ~ 2K
1

o
=

SMEM SMEM

w/o
SMEM stride=12 binary ext

(a)

Baseline Binary Probing
search

(b)

Figure 16: Seeding accelerator optimizations.

reduced workload for the SillaX machine downstream by
orders of magnitude.

Figure 16 (b) presents the reduction of CAM lookups from
position table lookup optimizations. Since binary lookup of
the position table results in logarithmic search time, the
number of CAM lookups also decreases in proportion to
the search time. Moreover, since certain k-mers are known
to have large number of hit positions (e.g. AA...A and
ATAT...A), probing effectively helps to find a better starting
point with a k-mer having fewer hit positions, reducing the
overall CAM lookups.

C. Comparison with Banded Smith-Waterman

Banded Smith-Waterman focuses on identifying near-
exact matches (less than K edits) between genomic
strings [27], similar to SillaX. Software-based banded
Smith-Waterman implementations, however, have ¢ (KN)
time and space complexity. Hardware-based systolic im-
plementations require ¢'(N) time with 2K 4+ 1 processing
elements and additional ¢(KN) space for traceback. In
contrast, SillaX differs from prior banded Smith-Waterman
implementations in the following ways.

Each PE in SillaX has 30x lower area than a banded
Smith-Waterman PE when edit distance is used as the
scoring scheme (300 um? vs 9.7 um?® for SillaX at 5
GHz). Assuming a conservatively high K (=32) for aligning
Illumina short reads, both SillaX edit machine and scoring
machine achieve better area efficiency compared to banded
Smith-Waterman because of fewer gates used in each PE.

Furthermore, SillaX enables efficient in-place traceback
within PEs. Hardware-based banded Smith-Waterman re-
quires additional &'(KN) space for traceback. Hirschberg’s
algorithm [41] reduces space to €'(K), but increases time to
O (NlogN). There exists no prior accelerator that supports
traceback in ¢(K?) space or lesser without sacrificing time
complexity.

Since Silla is based on automata theory, it can be easily
mapped to versatile automata processors supporting variable-
width input symbols such as UDP [30] providing greater
flexibility in implementation. From the algorithmic view-
point, besides the fact that Silla is as an important successor
to Levenshtein automata, it can also be easily extended to
solve other important problems such as Longest Common
Sequence problem and automatic spell correction, as well

as ones in the bioinformatics domain [42].

IX. RELATED WORK

Hardware accelerators for sequence alignment: This
paper advances automata based hardware accelerators for
seed extension. We related this contribution to prior work in
depth in Section § II. Several other hardware accelerators
have been proposed to accelerate popular software tools
like BWA and Bowtie, and have demonstrated upto 10x
performance improvement [43], [44], [45]. These works use
Burrows-Wheeler Transform (BWT) index to compute exact
matches in O'(N) time. To find approximate matches, they
require expensive recursive steps, whose time complexity is
exponential with edits. SillaX can find approximate string
matches in O(N) time for a given edit distance K. Industry
efforts to accelerate the BWA-GATK pipeline include those
of Edico Genome’s DRAGEN Bio-IT platform [17] and
Time Logic’s Tera-BLAST [46]. Based on their white paper
and patents, DRAGEN implements banded Smith-Waterman
for seed extension, and uses a variant of an algorithm used
in the LAST aligner [47] for seeding.
Seeding techniques and optimizations: Our seeding
accelerator mimics the seeding step in BWA-MEM which
computes super-maximal exact matches (SMEMs). Prior
hardware accelerators either use hash-tables or Burrows-
Wheeler transform (BWT) for seeding [48], [49]. For exam-
ple, DRAGEN makes hash table index queries to iteratively
grow the seed and ensure that fewer than 16 hits are fetched
on-chip (64B data). However, restricting seed hits to 16 can
lead to loss in accuracy [25]. On the other hand, SMEM
computation using BWT has poor cache locality due to
highly irregular memory accesses, and is hard to accelerate.
In this work, we improve the locality of SMEM computation
by segmenting the index and position tables of the whole
genome into several chunks, and storing them in on-chip
SRAM to improve reuse across k-mers in reads.
Complementary to our work, there is also a rich body
of work that optimizes cache locality by indexing the
reads [50], parallelizes read alignment across multiple nodes
by identifying I/O bottlenecks [51], [52] and addressing
them using unified file formats [53].

X. CONCLUSION

Genomics is at an inflection point. Over the next decade,
it is conceivable that every individual’s genome would be
sequenced and analyzed. Given that a single human genome
generates over 300 GB of data, we need orders of magnitude
improvement in computing efficiency to realize the full
potential of genomics. This paper takes an important step
towards this goal by presenting an accelerator that im-
proves the efficiency of sequence aligners. GenAx provides
throughput of 4,058K reads/s for Illumina 101 bp reads.
GenAx achieves 31.7x speedup over the standard BWA-
MEM sequence aligner running on a dual-socket 14-core
Xeon E5 server processor, while reducing power consump-
tion by 12x and area by 5.6x.

81

ACKNOWLEDGMENT

We thank our shepherd Mark Oskin and the anonymous
reviewers for their suggestions which helped improved this
paper. This work was supported in part by NSF CAREER-
1149773, CAREER-1652294 and SHF-1527301 awards.

REFERENCES

[11 E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum,
M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle,
W. FitzHugh et al., “Initial sequencing and analysis of the
human genome,” Nature, vol. 409, no. 6822, pp. 860-921,
2001.

“Illumina,” https://www.forbes.com/sites/matthewherper/
2017/01/09/illumina- promises-to-sequence-human- genome-
for-100-but-not-quite-yet.

M. A. Hamburg and F. S. Collins, “The path to personalized
medicine,” N Engl J Med, vol. 2010, no. 363, pp. 301-304,
2010.

E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J.
McBride, S. J. Humphray, C. D. Greenman, 1. Varela, M.-
L. Lin, G. R. Ordéiiez, G. R. Bignell et al., “A comprehen-
sive catalogue of somatic mutations from a human cancer
genome,” Nature, vol. 463, no. 7278, pp. 191-196, 2010.

A. Lacour, A. Espinosa, E. Louwersheimer, S. Heilmann,
I. Herndndez, S. Wolfsgruber, V. Ferndndez, H. Wagner,
M. Rosende-Roca, A. Mauleén et al., “Genome-wide signif-
icant risk factors for alzheimers disease: role in progression
to dementia due to alzheimer’s disease among subjects with
mild cognitive impairment,” Molecular psychiatry, vol. 22,
no. 1, pp. 153-160, 2017.

Y. Cho, C.-H. Lee, E.-G. Jeong, M.-H. Kim, J. H. Hong,
Y. Ko, B. Lee, G. Yun, B. J. Kim, J. Jung ef al., “Prevalence
of rare genetic variations and their implications in ngs-data
interpretation,” Scientific Reports, vol. 7, no. 1, p. 9810, 2017.

E. Hanna, C. Rémuzat, P. Auquier, and M. Toumi, “Gene ther-
apies development: slow progress and promising prospect,”
Journal of Market Access & Health Policy, vol. 5, no. 1, p.
1265293, 2017.

Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell,
C. Zhai, M. J. Efron, R. Iyer, M. C. Schatz, S. Sinha, and
G. E. Robinson, “Big data: astronomical or genomical?” PLoS
biology, vol. 13, no. 7, p. €1002195, 2015.

“Facebook data,” https://code.facebook.com/posts/
229861827208629/scaling- the-facebook-data-warehouse-
to-300-pb.

S. Kumar, K. K. Krishnani, B. Bhushan, and M. P. Brahmane,
“Metagenomics: retrospect and prospects in high throughput
age,” Biotechnology research international, vol. 2015, 2015.

“Oxford nanopore minion.” https://nanoporetech.com/
products/minion.

H. Li, “Aligning sequence reads, clone sequences and assem-
bly contigs with bwa-mem,” arXiv preprint arXiv:1303.3997,
2013.

T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of molecular biology, vol.
147, no. 1, pp. 195-197, 1981.

M. Farrar, “Striped smith-waterman speeds database searches
six times over other simd implementations,” Bioinformatics,
vol. 23, no. 2, pp. 156161, 2006.

G. Myers, “A fast bit-vector algorithm for approximate string
matching based on dynamic programming,” Journal of the
ACM (JACM), vol. 46, no. 3, pp. 395-415, 1999.

Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-
throughput acceleration engine for read alignment,” in Field-
Programmable Custom Computing Machines (FCCM), 2015
IEEE 23rd Annual International Symposium on. 1EEE, 2015,
pp. 199-202.

R. McMillen and M. Ruehle, “Bioinformatics systems,
apparatuses, and methods executed on an integrated cir-
cuit processing platform,” https://www.google.com/patents/

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]
[36]

US9014989, Apr. 21 2015, uS Patent 9,014,989.

I. Roy and S. Aluru, “Discovering motifs in biological se-
quences using the micron automata processor,” I[EEE/ACM
Transactions on Computational Biology and Bioinformatics
(TCBB), vol. 13, no. 1, pp. 99-111, 2016.

I. Tommy Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang,
K. Skadron, and G. Robins, “Nondeterministic finite automata
in hardware-the case of the levenshtein automaton.”

A. Subramaniyan, J. Wang, E. R. M. Balasubramanian,
D. Blaauw, D. Sylvester, and R. Das, “Cache automaton,”
in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 *17. New
York, NY, USA: ACM, 2017, pp. 259-272.

O. Gotoh, “Optimal sequence alignment allowing for long
gaps,” Bulletin of mathematical biology, vol. 52, no. 3, pp.
359-373, 1990.

P. Chen, C. Wang, X. Li, and X. Zhou, “Accelerating the
next generation long read mapping with the fpga-based sys-
tem,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 11, no. 5, pp. 840-852, 2014.

J. J. Tithi, N. C. Crago, and J. S. Emer, “Exploiting spatial
architectures for edit distance algorithms,” in 20/4 IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), March 2014, pp. 23-34.

M. Sosi¢ and M. Siki¢, “Edlib: a c/c++ library for fast, ex-
act sequence alignment using edit distance,” Bioinformatics,
vol. 33, no. 9, pp. 1394-1395, 2017.

M. Zaharia, W. J. Bolosky, K. Curtis, A. Fox, D. Patterson,
S. Shenker, I. Stoica, R. M. Karp, and T. Sittler, “Faster and
more accurate sequence alignment with snap,” arXiv preprint
arXiv:1111.5572, 2011.

Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy
algorithm for aligning dna sequences,” Journal of Computa-
tional biology, vol. 7, no. 1-2, pp. 203-214, 2000.

B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D.
Chamberlain, “A banded smith-waterman fpga accelerator for
mercury blastp,” in 2007 International Conference on Field
Pgogrammable Logic and Applications, Aug 2007, pp. 765—
769.

P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and
H. Noyes, “An efficient and scalable semiconductor architec-
ture for parallel automata processing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 12, pp. 3088—
3098, 2014.

V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F.
Wenisch, “Hare: Hardware accelerator for regular expres-
sions,” in Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. 1EEE, 2016, pp.
1-12.

Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien,
“Udp: A programmable accelerator for extract-transform-
load workloads and more,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: ACM, 2017,
pp. 55-68. [Online]. Available: http://doi.acm.org/10.1145/
3123939.3123983

P. Mitankin, “Universal levenshtein automata. building and
properties,” Sofia University St. Kliment Ohridski, 2005.

H. Li, “Exploring single-sample snp and indel calling with
whole-genome de novo assembly,” Bioinformatics, vol. 28,
no. 14, pp. 1838-1844, 2012.

P. Ferragina and G. Manzini, “Opportunistic data structures
with applications,” in Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on. 1EEE, 2000,
pp. 390-398.

R. S. Harris, Improved pairwise alignment of genomic DNA.
The Pennsylvania State University, 2007.

“Uscs genome browser.” https://genome.ucsc.edu/.

M. A. Eberle, E. Fritzilas, P. Krusche, M. Killberg, B. L.
Moore, M. A. Bekritsky, Z. Igbal, H.-Y. Chuang, S. J.
Humphray, A. L. Halpern et al., “A reference data set

82

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

of 5.4 million phased human variants validated by genetic
inheritance from sequencing a three-generation 17-member
pedigree,” Genome research, vol. 27, no. 1, pp. 157-164,
2017.

Y. Liu and B. Schmidt, “Cushaw2-gpu: empowering faster
gapped short-read alignment using gpu computing,” /EEE
Design & Test, vol. 31, no. 1, pp. 31-39, 2014.

A. Doring, D. Weese, T. Rausch, and K. Reinert, “Seqan an
efficient, generic c++ library for sequence analysis,” BMC
bioinformatics, vol. 9, no. 1, p. 11, 2008.

M. Korpar and M. Siki¢, “Sw#—gpu-enabled exact alignments
on genome scale,” Bioinformatics, vol. 29, no. 19, pp. 2494—
2495, 2013.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and
extensible dram simulator,” IEEE Computer Architecture Let-
ters, vol. 15, no. 1, pp. 4549, 2016.

D. S. Hirschberg, “A linear space algorithm for computing
maximal common subsequences,” Commun. ACM, vol. 18,
no. 6, pp. 341-343, Jun. 1975.

E. Kopylova, L. Noé, and H. Touzet, “Sortmerna: fast and
accurate filtering of ribosomal rnas in metatranscriptomic
data,” Bioinformatics, vol. 28, no. 24, pp. 3211-3217, 2012.

E. B. Fernandez, W. A. Najjar, S. Lonardi, and J. Villarreal,
“Multithreaded fpga acceleration of dna sequence mapping,”
in 2012 IEEE Conference on High Performance FExtreme
Computing, Sept 2012, pp. 1-6.

H. M. Waidyasooriya, M. Hariyama, and M. Kameyama, “Im-
plementation of a custom hardware-accelerator for short-read
mapping using burrows-wheeler alignment,” in 2013 35th
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), July 2013, pp. 651-
654.

H. M. Waidyasooriya and M. Hariyama, “Hardware-
acceleration of short-read alignment based on the burrows-
wheeler transform,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 5, pp. 1358-1372, May 2016.

R. Luethy and C. Hoover, “Hardware and software systems
for accelerating common bioinformatics sequence analysis
algorithms,” Drug Discovery Today: BIOSILICO, vol. 2,
no. 1, pp. 12-17, 2004.

S. M. Kietbasa, R. Wan, K. Sato, P. Horton, and M. C.
Frith, “Adaptive seeds tame genomic sequence comparison,’
Genome research, vol. 21, no. 3, pp. 487-493, 2011.

M.-C. E Chang, Y.-T. Chen, J. Cong, P-T. Huang, C.-L.
Kuo, and C. H. Yu, “The smem seeding acceleration for
dna sequence alignment,” in Field-Programmable Custom
Computing Machines (FCCM), 2016 IEEE 24th Annual In-
ternational Symposium on. 1EEE, 2016, pp. 32-39.

Y.-C. Wu, C.-H. Chang, J.-H. Hung, and C.-H. Yang, “A
135-mw fully integrated data processor for next-generation
sequencing,” IEEE Transactions on Biomedical Circuits and
Systems, 2017.

F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol,
E. E. Eichler, and S. C. Sahinalp, “mrsfast: a cache-oblivious
algorithm for short-read mapping,” Nature methods, vol. 7,
no. 8, p. 576, 2010.

J. M. Abuin, J. C. Pichel, T. F. Pena, and J. Amigo,
“Sparkbwa: speeding up the alignment of high-throughput dna
sequencing data,” PloS one, vol. 11, no. 5, p. e0155461, 2016.

A. Roy, Y. Diao, U. Evani, A. Abhyankar, C. Howarth,
R. Le Priol, and T. Bloom, “Massively parallel processing
of whole genome sequence data: An in-depth performance
study,” in Proceedings of the 2017 ACM International Con-
ference on Management of Data. ACM, 2017, pp. 187-202.

S. Byma, S. Whitlock, L. Flueratoru, E. Tseng,
C. Kozyrakis, E. Bugnion, and J. Larus, “Persona:
A high-performance bioinformatics framework,” in 2017
USENIX Annual Technical Conference (USENIX ATC 17).
Santa Clara, CA: USENIX Association, 2017, pp. 153-
165. [Online]. Available: https://www.usenix.org/conference/
atc17/technical-sessions/presentation/byma

