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Abstract 
A key challenge in the design of on-chip wake-up timers for 

compact wireless sensor nodes is to achieve high timing accuracy over 
temperature and supply voltage variation within an ultra-low power 
budget. We propose a gate-leakage-based frequency-locked timer 
with first- and second-order cancellation achieving 260 ppm/°C from 
−5 to 95°C. The timer consumes 224 pW at 90 Hz output frequency 
with 0.93%/V supply voltage dependence in the 1.1-3.3 V range.  

Introduction 
Wake-up timers are a critical component of wireless sensor nodes 

(WSNs) for the Internet of Things. Since they are on even when the 
sensor node is in sleep mode, they must consume extremely low 
power. In addition, they should ensure high timing accuracy for 
synchronization between devices and general timekeeping while 
remaining compact, leading to a highly constrained design space. An 
RC oscillator [1] or frequency-locked oscillator [2] based on 
temperature-compensated resistors achieves frequency stability 
across temperature of <50ppm/°C. However, these approaches 
consume ~100 nW or more, which far exceeds the power budget of 
state-of-the-art ultra-low power sensors. Extending these approaches 
to sub-nW requires extremely large resistors, unacceptably increasing 
the area and cost. Recently, a switch-resistor based timer achieved a 
high effective resistance without increasing resistor size and obtained 
a temperature coefficient (TC) of 13.8 ppm/°C [3]. However, the 
approach requires large capacitors, and power consumption remains 
relatively high at 4.7 nW. An alternative to resistor-based timers is 
gate-leakage-based timers; several such timers have been proposed 
[4-5], providing sub-nW power consumption in compact silicon area. 
However, gate leakage exhibits significant first- and second-order 
temperature dependence, complicating temperature compensation, 
and it is also sensitive to the gate voltage. As a result, previous gate 
leakage timers have TCs in excess of several hundred ppm/°C and line 
sensitivities (LS) >150%/V. The gate leakage timer in [5] achieves 31 
ppm/°C but requires 10-point calibration, and its 660 pW power 
consumption does not include the power of a required auxiliary 
temperature sensor. Further, its LS is unacceptably high at 420%/V. 

This paper proposes a 224-pW gate-leakage-based frequency 
locked timer with first- and second-order temperature dependency 
cancellation, yielding a TC of 260 ppm/°C across −5 to 95°C. Supply 
insensitive reference voltage generators and an on-chip low dropout 
(LDO) regulator decrease LS to 0.93%/V for 1.1−3.3 V, which marks 
a 150× improvement compared to previous gate-leakage-based timers.  

Proposed Circuit 
The proposed design uses a frequency locked oscillator scheme [2,3] 

in which current I1, set by the gate leakage of a standard-Vth NMOS 
N1, is matched with current I2, using modulation of the frequency of a 
switched capacitor C2 (Fig. 1). The measured temperature dependence 
of N1 gate leakage shows both first- and second-order components 
(Fig. 2). It is essential to cancel both components to achieve a good 
TC. In the proposed design, we use two tuning mechanisms. We 
cancel the first-order dependence by varying V2 in a proportional to 
temperature (PTAT) fashion using a voltage reference with tunable 
temperature dependence (Fig. 1, right). This PTAT reference consists 
of two PMOS diode stacks, each with different threshold voltages and 
sizes to create a first-order dependence on temperature (Fig. 3b). 
Switches control the high-Vt PMOS size, which tunes the slope of 
VPTAT from 0.5 to 0.68%/°C (simulation).   

To cancel the second-order dependence, we use a 2T voltage 

reference, which has intrinsic convex temperature dependence [6] 
(Fig. 3a). However, the convexity of this reference is fixed and is not 
easily tuned to cancel the second-order dependence of gate leakage. 
Hence, we leverage the exponential dependence of gate leakage on 
voltage to provide this tuning mechanism, as follows: First, we 
remove first-order dependence by tuning the native NMOS and High-
Vt PMOS sizes, resulting in V2T = V2T,0+α(T-T0)2. We then amplify 
V2T, and a mux structure selects the output voltage VREF = V1 = 
kmux(V2T,0+ α(T-T0)2) where kmux varies with the mux selection. Note 
that this does not change the relative magnitude of the convexity of 
V1. However, gate leakage I1 is exponentially dependent on V1, 
resulting in I1 ∝ exp(βkmuxV2T,0)×exp(βkmuxα(T- T0)2). Hence, by 
changing kmux (i.e., the mux setting) we can modulate the relative 
magnitude of the convexity of I1, which allows us to cancel the 
second-order temperature dependence of the gate leakage. Fig. 3c 
shows simulation results of this approach. After both first- and 
second-order temperature dependencies are canceled, only third- and 
higher-order terms remain. Finally, the center frequency (0th order) is 
adjusted by tuning C2 in Fig. 1. 

Two PMOS devices (P1 and P2, Fig. 1) implement the current 
mirror. The devices are high threshold thick-oxide PMOS transistors 
operating in subthreshold with VDS >5 kT/q, which significantly 
reduces mismatch between I1 and I2. The low power voltage 
controlled oscillator (VCO) in Fig. 1 provides the timer’s output 
frequency and is composed of stacked high threshold inverters to 
minimize short circuit current (Fig. 4). The voltage range of VCTRL 
across temperature, 0.67-0.9 V, is too narrow and situated at too high 
a voltage to compensate the VCO frequency across temperature. We 
double the voltage range and shift it lower using switch capacitor C4, 

obtaining VCTRL' with range 0.2-0.65 V. Capacitors C3-C5 also 
generate the dominant pole of the frequency lock scheme. 

Gate leakage has high voltage sensitivity, leading to strong 
frequency dependence on supply voltage in previous gate-leakage-
based timers. The proposed design addresses this by placing native 
NMOS transistors in the convex voltage generator and PTAT voltage 
generator, enabling low line sensitivity (1.3%/V and 2.2%/V, 
respectively, simulation). An on-chip LDO further reduces supply 
voltage dependence while consuming only 18 pW (simulation).  

Measurements 
The proposed gate-leakage-based timer was implemented in 55nm 

CMOS (MIFS C55DDC) in 0.057 mm2. Fig. 5 show the measured 
frequency variation from −5 to 95°C for five typical corner dies. Fig. 
5a gives results with no tuning, while Fig. 5b has 2-pt calibration to 
cancel first-order dependence. Fig. 5c uses the proposed second-order 
cancelation with 3-pt calibration, yielding measured TCs of 175−343 
ppm/°C, which is 5× better than first-order cancelation only. The 
timer consumes 224 pW at 25°C with 90 Hz output frequency; power 
increases to 1.2 nW at 95°C (Fig. 8). Line sensitivity is 0.33−1.29%/V 
across 1.1−3.3 V supply voltage for the five dies (Fig. 6). Fig. 11 
compares TC, LS, and energy per cycle to those of previous sub-nW 
timers and resistor-based timers. The proposed timer is Pareto optimal 
in terms of TC and LS vs. power among the listed works, enabling a 
new ultra-low power timer design space. Energy per cycle of 2.49 
pJ/cycle is comparable to the best reported among the listed works. 
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Fig. 10. Die photo.

Table1. Comparison table

Fig. 7. Simulated power 
breakdown of timer

Fig. 9. Measured Allan 
deviation

Fig. 8. Measured power 
consumption 
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Fig. 6. Measured line sensitivity 
of output clock frequency.
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Fig. 11. Comparison scatter plots with previous work (best reported dies): 
(a) temperature coefficient (b) line sensitivity and (c) energy per cycle
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temperature in 55nm CMOS.
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Fig. 3. (a) Proposed convex voltage generator (b) PTAT voltage generator and 
(c) simulation result of first- and second-order cancellation.
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Fig. 1. Proposed gate leakage based frequency locked timer.
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