
224 • 2019 IEEE International Solid-State Circuits Conference

ISSCC 2019 / SESSION 14 / MACHINE LEARNING & DIGITAL LDO CIRCUITS / 14.2

14.2 A Compute SRAM with Bit-Serial Integer/Floating-Point
 Operations for Programmable In-Memory Vector
 Acceleration

Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan,
Reetuparna Das, David Blaauw, Dennis Sylvester

University of Michigan, Ann Arbor, MI

Data movement and memory bandwidth are dominant factors in the energy and
performance of both general purpose CPUs and GPUs. This has led to extensive
research focused on in-memory computing, which moves computation to where
the data is located. With this approach, computation is often performed on the
memory bit-lines in the analog domain using current summing [1-3], which requires
expensive analog-to-digital and digital-to-analog conversions at the array boundary.
In addition, such analog computation is very sensitive to PVT variations, limiting
precision. More recently, full-rail (digital) binary in-memory computing was
proposed to avoid this conversion overhead and improve robustness [4, 5].
However, both prior in-memory approaches suffer from the same major limitations:
they accelerate only one type of algorithm and are inherently restricted to a very
specific application domain due to their limited and fixed bit-width precision and
non-programmable architecture. Software algorithms, on the other hand, continue
to evolve rapidly, especially in novel application domains, such as neural networks,
vision and graph processing, making rigid accelerators of limited use. Furthermore,
most available SRAM in today’s chips is located in the caches of CPUs or GPUs.
These large CPU and GPU SRAM stores present an opportunity for extensive in-
memory computing and have, to date, remained largely untapped.

In this paper, we present a general purpose hybrid in-/near-memory compute SRAM
(CRAM) that combines the efficiency of in-memory computation with the flexibility
and programmability necessary for evolving software algorithms. CRAM augments
conventional SRAM in a CPU with vector-based, bit-serial [6, 7] in-memory
arithmetic. It can accommodate a wide range of bit-widths, from single to 32b or
64b, and operation types, including integer and floating point addition, multiplication
and division. To maintain compatibility with CPU/GPU operation, CRAM writes/reads
operands conventionally with horizontal word-lines and vertical bit-lines. Then, using
a transposable bitcell [8], CRAM operates directly on the stored operands in memory
with additional horizontal compute bit-lines. This enables the same bit position from
two vectors elements to be simultaneously accessed on a single bit-line. Logic
operations are performed on the bit-line (in-memory), while small additional in-
column logic (near-memory with 4.5% SRAM bank area overhead) enables
carry-propagation between successive bit-serial calculations, enabling multi-bit
arithmetic operations in SIMD fashion across all vectors of elements. To maintain
versatility, the memories can function either as traditional or compute memories.
The approach was implemented in a small IoT processor in 28nm CMOS, consisting
of a Cortex-M0 CPU and 8 CRAM banks of 16KB each (128KB total). The system
achieves 475MHz operation and, with all CRAMs active, produces 30GOPS or
1.4GFLOPS on 32b operands for graph, neural, and DSP applications.

Figure 14.2.1 shows the overall organization of the IoT processor. The ARM core
can access all 8 memory banks and load/store data using the horizontal word-lines
and vertical bit-lines. Then, in-memory instructions can be streamed from one bank
to one or more compute-configured banks, while the M0 simultaneously performs
other processing with the remaining memory banks. Banks performing in-memory
computing use the horizontal compute bit-lines (CBLs) and vertical compute word-
lines (CWLs).

Figure 14.2.2 shows the architecture of the 128×256 CRAM sub-array, which is one
quarter of a 16KB CRAM macro. An 8T transposable bitcell is used to provide
bidirectional access. Fig. 14.2.2 shows an example operation of the data flow for a
1b addition performed in 1 cycle of the bit-serial computation. Here, we add the
second bit positions of vector A (A1=0) and vector B (B1=1) with carry-in C (=1)
from the previous cycle, and store the result back to vector D. First, the CRAM
instruction decoder receives the ADD instruction and the 3 column addresses of
bits A1, B1 and D1. It activates the CWLs of A1 and B1 simultaneously to compute ‘A
AND B’ on CBL and ‘A AND B’ on CBLB. Since A=0 and B=1, both CBL and CBLB
discharge. Then, after the dual sense amps, the results propagate to the near-
memory logic located at the end of each CBL. The NOR gate generates ‘A XOR B’,
which combined with Cin from the carry latch produces Sum=0 and Cout =1. Sum is
then written back to D, and Cout is stored in the carry latch, which provides Cin for
the next cycle, thus completing one full bit-serial addition in one clock cycle.

Figure 14.2.3, left, shows how two vectors of 2b numbers (A and B) are added bit-
by-bit starting from the least significant bit (LSB). Note that while only one bit of a
multi-bit operand is processed in each cycle, all compute bit-lines operate

simultaneously, resulting in massive parallelism (2048 CBLs in our design).
Subtraction is performed by first inverting B and then adding to A with Cin pre-set
to 1. As shown in Fig. 14.2.3, multiplication is more complicated as it requires
predication. For this, the tag latch (Fig. 14.2.2) is used to enable the write-back
driver, resulting in a conditional copy/addition. First, 4 empty columns in the array
are reserved for the product and initialized to zero. In the first cycle, the LSB of the
multiplier is loaded to the tag latch. In cycles 2 and 3, the multiplicands are copied
to product columns only if their tag is 1. In cycle 4, the second bit of the multiplier
is loaded to the tag latch. In the next 2 cycles, for rows with tag = 1, the
multiplicands are added to the second and third bits of the product, shifting the
multiplicands by 1 to account for the multiplier bit position. Finally, we store Cout in
the most significant bit (MSB) of the product to complete the multiplication. Note
that partial products are implicitly shifted as they are added using appropriate bit
addressing in the bit-serial operation and no explicit shift is performed. Division is
conducted similarly by implicit shifting and subtraction from a partial result. Floating
point arithmetic is implemented using repeated integer add/sub/mult/div with
predication. Fig. 14.2.3 provides a list of supported computations and their
performance, demonstrating both the versatility of CRAM and its high performance
due to bit-line parallelism.

Figure 14.2.4 shows measurement results from the prototype chip fabricated in
28nm CMOS that contains 8 CRAM banks (128KB memory with 2048 computing
rows) and a Cortex-M0 processor. The figure shows measured frequency and
energy efficiency of 8b addition and multiplication across supply voltage. At 1.1V
the maximum frequency of 475MHz results in 122GOPS for 8b addition and
9.4GOPS for 8b multiplication. The best energy efficiency is achieved at 0.6V and
114MHz, resulting in 0.56TOPS/W for 8b multiplication and 5.27TOPS/W for 8b
addition. Fig. 14.2.4 shows measured frequency and leakage power distributions
for 21 measured dies.

Figure 14.2.5 shows the performance of the test chip for diverse computationally
intensive tasks ranging from neural networks to graph and signal processing. The
total latency in cycles is compared with a baseline operation, where CRAMs are only
used as data memories and the computation is entirely performed on the ARM CPU.
The first benchmark is the 1st convolutional layer from Cuda-convnet and the
second is the last fully connected layer from AlexNet. Due to their size, these layers
must be executed in multiple smaller sub-sections. The third application consists
of 512 simultaneous 32-tap FIR filters and the fourth application performs traversal
of a directed graph represented by a 192×192 adjacency matrix. The workload
breakdown shows the percentage of time spent on input loading and output loading
vs. in-memory computation. Speedup, compared to executing the same workload
with the ARM Cortex-M0, varies from 7.2-to-114×, with the greatest gains obtained
when the operation is compute-heavy and low on input/output movement.

Figure 14.2.6 compares the proposed approach with other state-of-the-art in-
memory accelerators. The proposed work is the only solution to provide a wide
range of instructions and flexible bitwidth. It repurposes the memory storage already
available in processors, thereby accelerating computation while maintaining
programmability.

Acknowledgements:
We gratefully acknowledge TSMC University Shuttle Program for chip fabrication.
This work was supported in part by ADA, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA.

References:
[1] J. Zhang, et al., "In-Memory Computation of a Machine Learning Classifier in a
Standard 6T SRAM Array," IEEE JSSC, vol. 52, no. 4, pp. 915-924, 2017.
[2] A. Biswas, et al., “Conv-RAM: An Energy-Efficient SRAM with Embedded
Convolution Computation for Low-Power CNN-based Machine Learning
Applications,” ISSCC, pp. 488-489, 2018.
[3] S. Gonugondla, et al., “A 42pJ/Decision 3.12TOPS/W Robust In-Memory
Machine Learning Classifier with On-Chip Training,” ISSCC, pp. 490-491, 2018
[4] W. Khwa, et al., “A 65nm 4Kb Algorithm-Dependent Computing-in-Memory
SRAM Unit-Macro with 2.3ns and 55.8TOPS/W Fully Parallel Product-Sum
Operation for Binary DNN Edge Processors,” ISSCC, pp 496-497, 2018.
[5] Y. Zhang, et al., “Recryptor: A Reconfigurable In-Memory Cryptographic Cortex-
M0 Processor for IoT,” IEEE Symp. VLSI Circuits, 2017.
[6] K. Batcher, “Bit-Serial Parallel Processing Systems,” IEEE Trans. on Computers,
vol. 31, no. 5, pp. 377-384, 1982.
[7] C. Eckert, et al., “Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural
Networks,” ACM/IEEE ISCA, pp. 383-396, 2018.
[8] J. Seo, et al., “A 45nm CMOS Neuromorphic Chip with a Scalable Architecture
for Learning in Networks of Spiking Neurons,” IEEE CICC, 2011.

978-1-5386-8531-0/19/$31.00 ©2019 IEEE

225DIGEST OF TECHNICAL PAPERS •

ISSCC 2019 / February 19, 2019 / 2:00 PM

Figure 14.2.1: Chip architecture and storage and computation of data in

transposable memory array.

Figure 14.2.2: CRAM array architecture (top-left), 8T transposable bitcell (top-

right), In-memory computing part (bottom-left) and near-memory computing

part (bottom-right) of 1-bit addition. Addition of near-memory logic increased

array size by 4.5%.

Figure 14.2.3: 2-bit addition cycle-by-cycle demonstration (top-left), 2-bit

multiplication cycle-by-cycle demonstration (top-mid & right), and list of CRAM

instructions and its performance (bottom).

Figure 14.2.5: Performance comparison between CRAM and baseline scenario

(top), workload breakdown (bottom). Figure 14.2.6: Comparison table.

Figure 14.2.4: Frequency and energy efficiency of 8-bit multiplication and

addition at different VDD (top), maximum frequency and leakage power

distribution of 21 dies at 1.1V (bottom).

14

• 2019 IEEE International Solid-State Circuits Conference 978-1-5386-8531-0/19/$31.00 ©2019 IEEE

ISSCC 2019 PAPER CONTINUATIONS

Figure 14.2.7: Die photo.

