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Acoustic sensing is one of the most widely used sensing modalities to intelligently
assess the environment. In particular, ultra-low power (ULP) always-on voice activity
detection (VAD) is gaining attention as an enabling technology for IoT platforms. In
many practical applications, acoustic events-of-interest occur infrequently. Therefore,
the system power consumption is typically dominated by the always-on acoustic
wakeup detector, while the remainder of the system is power-gated the vast majority
of the time. A previous acoustic wakeup detector [1] consumed just 12nW but could
not process voice signals (up to 4kHz bandwidth) or handle non-stationary events,
which are essential qualities for a VAD. Prior VAD ICs [2,3] demonstrated reliable
performance but consumed significant power (>20μW) and lacked an analog frontend
(AFE), which further increases power. Recent analog-domain feature extraction-based
VADs [4,5] also reported μW-level power consumption, and their simple decision
tree [4] or fixed neural network-based approach [5] limited broader use for various
acoustic event targets. In summary, no sub-μW VAD has been reported to date,
preventing the use of VADs in unobtrusive mm-scale sensor nodes.

This work presents a 142nW programmable, neural network-based acoustic sensing
system for both VAD and non-voice event detection. We use a time-interleaved mixer-
based architecture that sequentially scans and down-converts the 4kHz bandwidth
signal to a ≤500 Hz passband, reducing amplifier, ADC, and DSP power by 4×. The
neural network (NN) processor employs computational sprinting, which minimizes
static energy dominance in low frequency/voltage regime, providing 12× power
reduction in the digital domain. The architecture (Fig. 17.2.1, top) has two signal
chains: an ULP chain with 142nW consumption that is always on and a 18μW high
performance (HP) chain that wakes upon event detection by the ULP chain. Unlike
the ULP chain, the HP chain has a full 4kHz bandwidth AFE while sharing the same
digital backend with the ULP chain. In addition to VAD, the system features an
inaudible acoustic signature detection mode to enable remote silent system wakeup.
With always-on VAD, the system has a 4.5-year lifetime with a 5mm mini coin-cell
battery (2mAh) and achieves 91.5% voice detection accuracy. 

Figure 17.2.1 shows the time-interleaved mixer-based architecture that reduces
power consumption of AFE and DSP by lowering their bandwidth and sampling rate
to 500Hz and 1kHz, respectively. The incoming signal from the microphone is
amplified by an LNA with the full 4kHz bandwidth. At this point the mixer, switched
by a binary discrete cosine transform (DCT) sequence, immediately down-converts
the frequency of a desired feature to a programmable intermediate frequency (IF) of
<500Hz. The digital binary sequence generator supports an arbitrary DCT frequency
for the mixer switch control; for example, the 4kHz band can be divided into 31.25Hz
frequency bins using a 128-pt DCT, and the energy content of 32 bands is
sequentially extracted by sweeping DCT frequencies (F1, … F32). The 32 bands are
chosen during NN training for each target event. The IF down-converted signal is
further amplified and low-pass filtered with 500Hz bandwidth (via a PGA) and
digitized at 1kS/s. Finally, the digital IF mixer down-converts the signal to DC, and
the feature power is measured. With a DCT length of 16ms per feature (128-pt DCT
with 8kHz binary mixing), 32-feature extraction requires a 512ms frame. The mixer-
based structure reduces bandwidth, sampling rate, and clock frequency of AFE and
DSP after the mixer; thus, the feature extraction power consumption is decreased
from 225nW (simulation) to 60nW. IF is set to ~250Hz to avoid PGA 1/f noise, while
the image aliasing issue of non-quadrature mixing is mitigated by a NN trained with
image-aliased signals. 

Figure 17.2.2 shows the circuit diagram of the AFE with ULP and HP chains. Each
chain consists of an LNA, PGA, ADC driver, and ADC. Both chains share a single
MEMS microphone and charge pump. For high sensitivity, a three-stage Dickson
pump is used to bias the microphone at 10V. The microphone switches between the
chains by controlling ULP_CH_EN and HP_CH_EN, which are level-shifted to 10V.
As coupling capacitors for the level-shifting may suffer from leakage between
infrequent mode switches, we refresh their charge periodically. Capacitive feedback
and pseudo-resistor dc-servo loops are used for the ULP LNA (18dB gain). The LNA
OTA adopts an inverter-based cascode amplifier for noise efficiency. Its common-
mode feedback is composed of two loops. Coupling capacitors provides fast loop
response, and the DDA output sets the DC voltage. The auxiliary amplifiers (Aux-
amp) in the dc-servo loop shift common-mode voltages for high dynamic range. In
addition, Aux-amp attenuates large LNA output due to diode-connected nature, which

reduces the maximum amplitude seen by the pseudo-resistors, reducing their
amplitude-dependent drift. The mixer is composed of transmission gates switched
by the DCT sequence generator. Unlike the LNA OTA, PGA OTA uses only a PMOS
input pair for the maximum output range. By tuning cap CI2, the gain is adjustable
between 4.5 and 31.2dB, and CL sets 500Hz BW for ULP mode. The ADC driver is
followed by an 8b SAR ADC. The HP blocks are similar to the ULP counterparts
except that they are scaled for low noise and full 4kHz bandwidth. We minimize the
ULP-HP transition time by temporarily turning on the fast settling switches during
the transition. This helps to set the common-mode voltage very quickly (100ms vs
6s, measured).

Figure 17.2.3 (top) depicts the digital backend architecture. Always-on modules are
implemented with thick oxide I/O devices to suppress leakage, while power-gated
modules (NN processor, FIFO, and audio compressor [6]) are designed with standard
devices. The NN processor uses a 16kB custom ultra-low retention leakage SRAM
for the 4-bit weights storage, and its ISA includes matrix-vector multiplication, non-
linear activation, FFT, conditional branch, element-wise vector operation, and
min/max/averaging. In the ULP mode, the processor sprints at a relatively high
frequency clock (700kHz, Fig. 17.2.3, bot right) when the sequential feature extraction
is complete (every 512ms) and then power-gates to minimize the leakage power,
resulting in 12× power reduction (sprint/sleep ratio of 0.008). In HP mode, the
processor computes a full (non-sequential) FFT and a larger NN without duty cycling
for the improved latency (32ms) or hit rate at the cost of higher power consumption
(14μW). The binary mixer sequence generator (Fig. 17.2.3, bot left) is programmable
for different DCT sizes, feature frequency resolutions, and number of features. Due
to the mixer-based architecture, digital processing runs at 1kHz (vs. 8kHz Nyquist
rate), yielding 41% reduction of feature extraction power.

The system also features inaudible acoustic signature detection to enable silent
remote system wakeup (Fig. 17.2.4). The binary mixing sequence is replaced with a
maximal length sequence (MLS) signature generated by a 1kHz programmable LFSR.
Correlation between the incoming wakeup signal and the local sequence is performed
through the ULP mixer and PGA. To synchronize the wakeup and local sequence, we
employ a time-drift synchronization scheme that uses intentional frequency mismatch
between the two so that they naturally time-synchronize periodically. This inaudible
(−10dB SNR) signature detection consumes only 66nW with 4s worst case latency. 

The chip is fabricated in 180nm CMOS and integrated with a MEMS microphone (Fig.
17.2.7). The ULP and HP chain amplifiers consume 31nW and 370nW with 16μVrms
and 9.1μVrms input-referred noise, respectively. Figure 17.2.5 (top left) shows the
measured mixer-based frequency scanning operation and input referred noise
spectrum. Figure 17.2.5 (bot left) shows the measured ULP chain power breakdown.
For VAD evaluation, speech from the LibriSpeech dataset is mixed with babble noise
from the NOISEX-92 dataset. NN training and evaluation use exclusive datasets.
Figure 17.2.6 compares the system with prior work. The system achieves 91.5%/90%
speech/non-speech hit rates at 10dB SNR with babble noise (electrical test, Fig.
17.2.5 top right) in ULP mode when programmed with a NN of size 32-32-16-2
neurons, exhibiting ~7.5% better hit rate at 7× less power consumption than prior
state-of-the-art. Unlike prior-art, we also report acoustic VAD test results measured
in a sound chamber, showing >83%/85% speech/non-speech hit rates with a signal
level down to 50dBA SPL (Fig. 17.2.5, bot right).
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Figure 17.2.1: Acoustic sensing system architecture (top), and operation

principle of time-interleaved mixer-based frequency scanning (bottom). Figure 17.2.2: Circuit diagram of the analog front-end with ULP and HP chains.

Figure 17.2.3: Digital backend architecture including neural network processor

(top), measured power reduction from computational sprinting (bottorm right),

and binary DCT mixer sequence generator (bottom left).

Figure 17.2.5: Chip measurement results. Power spectral density for LNA, PGA,

and DSP (top left). Two different applied tones are mixed down to 250Hz in IF

and extracted by DSP at two mixing frequencies each. ULP mode power

distribution (bot left), and ROC curves for VAD (right).

Figure 17.2.6: Comparison table for feature extractor (top left), VAD (bottom),

and performance summary of ULP AFE (top right).

Figure 17.2.4: Acoustic signature wakeup detection (left), and measurement

results with 6 stages, 63-length sequence at various SNRs (right), showing

detection down to -10dB SNR.
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Figure 17.2.7: Die micrograph and system intgration with MEMS microphone.


