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Simultaneous localization and mapping (SLAM) estimates an agent’s trajectory for
all six degrees of freedom (6 DoF) and constructs a 3D map of an unknown
surrounding. It is a fundamental kernel that enables head-mounted
augmented/virtual reality devices and autonomous navigation of micro aerial
vehicles. A noticeable recent trend in visual SLAM is to apply computation- and
memory-intensive convolutional neural networks (CNNs) that outperform traditional
hand-designed feature-based methods [1]. For each video frame, CNN-extracted
features are matched with stored keypoints to estimate the agent’s 6-DoF pose by
solving a perspective-n-points (PnP) non-linear optimization problem (Fig. 7.3.1,
left). The agent’s long-term trajectory over multiple frames is refined by a bundle
adjustment process (BA, Fig. 7.3.1 right), which involves a large-scale (~120
variables) non-linear optimization. Visual SLAM requires massive computation
(>250GOP/s) in the CNN-based feature extraction and matching, as well as data-
dependent dynamic memory access and control flow with high-precision operations,
creating significant low-power design challenges. Software implementations are
impractical, resulting in 0.2s runtime with a ~3GHz CPU+ GPU system with >100MB
memory footprint and >100W power consumption. Prior ASICs have implemented
either an incomplete SLAM system [2,3] that lacks estimation of ego-motion or
employed a simplified (non-CNN) feature extraction and tracking [2,4,5] that limits
SLAM quality and range. A recent ASIC [5] augments visual SLAM with an off-chip
high-precision inertial measurement unit (IMU), simplifying the computational
complexity, but incurring additional power and cost overhead.

This paper presents an accurate, low-power, real-time CNN-SLAM processor that
implements full-visual SLAM on a single chip. The proposed major design features
are 1) feature extraction with a highly parallelized and programmable CNN engine
with 32% better accuracy in feature matching than SIFT; 2) aggressively pruned
feature matching with temporal pose prediction and address hashing to eliminate
97% of unnecessary matchings; 3) numerically stable fixed-point implementation
with function re-organization and pivoting in the linear solver; and 4) hierarchical
memory organization, eliminating external DRAM accesses for BA optimization. We
report the ASIC’s SLAM performance on the industrial standard KITTI benchmark
that renders large-scale automobile trajectory over 1km. The design supports
localization and mapping of >1000 keypoints/frame on VGA (640×480) resolution
in real-time at 80fps, consuming 243.6mW from a 0.9V supply in 28nm CMOS. 

Figure 7.3.1 shows the overall procedure of the SLAM system, consisting of frame-
by-frame PnP and multi-frame BA. PnP processing computes the 6-DoF pose
(combination of 3D translation T and 3D rotation R ) for each frame by analyzing
the projected coordinate differences of matched keypoints in two subsequent
frames. CNN-extracted keypoints are matched with others in the previous frame to
establish correspondence of the same points in the environment. The 6-DoF pose
is obtained by solving a non-linear optimization to minimize the 2D reprojection
error of these matched points. After acquiring the pose of the current frame, all
newly added keypoints are projected onto 3D real-world coordinates for PnP
processing of the next frame. A frame that contains ≥50% new keypoints is
registered as a keyframe. To refine the long-term trajectory of the camera, BA is
performed over the last 20 keyframes, whenever a new keyframe is registered.

Figure 7.3.2 shows the overall architecture of the processor, including a
programmable CNN engine, PnP engine, and BA engine. The CNN engine has a
mesh of 512 MAC units in 8 clusters (8×8 MACs each), a 192KB memory for CNN
weights/activations, and two interleaved 32KB image buffers for streaming (Fig.
7.3.3, left). The CNN uses 8b weights and does not require any off-chip weight
loading. If the current frame is identified as a keyframe, the list of 3D world and 2D
projected coordinates of keypoints is sent to the graph memory in the BA engine,
where iterative Levenberg–Marquardt (LM) optimization is performed over the last
20 keyframes.

Figure 7.3.3 details the operation of the programmable CNN engine. First, 1D
convolutions are performed with shifting input activations (IAs) using a row of 8
MAC units with k (kernel size) cycles. This operation is repeated on a second and
third row of IAs to complete the 2D convolution. Pooling and extrema detection are
performed in the same fashion as 2D convolution in the MAC array. Partial 2D
convolution outputs are accumulated locally in each MAC unit. Using 8 clusters of
8×8 MAC arrays, 8 consecutive input channels are convolved in parallel to
accumulate partial output activations with 8 accumulators, and 8 consecutive output
channels are processed in parallel to maximize reuse of the same IAs. A 4-layer
CNN network used for SLAM evaluation is shown in Fig. 7.3.3 (bottom left). The

proposed architecture computes convolution, pooling, and ReLU together rather
than treating them as separate layers with buffering of inputs-outputs in between.
For keypoint detection, the engine is programmed to compute the difference of
Gaussian filters.

As each frame contains ~1000 keypoints, enumerating all possible matchings
(~1000×1000) is extremely costly. Addressing this challenge, we propose a
prediction-based pruned keypoint matching scheme depicted in Fig. 7.3.4. We use
a locally linearized camera movement model to predict the new pose of the current
frame from the poses of the previous two frames. Based on this pose prediction,
the search range for each keypoint is reduced to ~±24 pixels/dimension on the 2D
projected image. This eliminates 97% of unnecessary matchings with negligible
accuracy degradation (<0.1%). Prediction-based matching efficiency is further
improved by employing a hierarchical memory system (492KB) using keypoint
position-based hashing to store/load feature descriptors and 3D coordinates. The
hash input is the keypoint location, and its output points to the keypoint entry in
the memory that stores a list of feature descriptor and 3D coordinates at that
location. Each feature has 64 elements, and the feature matching cost is calculated
with 8 parallel processing units, taking up to 8 cycles. Early termination reduces
this to ~4.8 cycles when feature elements mismatch in early stages (Fig. 7.3.4).

BA processing involves 20 keyframes and 4096 keypoints stored in the hierarchical
graph memory (Fig. 7.3.5). Because each keypoint appears on multiple keyframes,
each entry is structured to contain a single 3D coordinate and multiple (≤8) 2D
projected coordinates associated with different keyframe IDs. A separate FIFO serves
to eliminate and insert keypoints into the memory, while matched keypoints are
merged into a single entry. In each BA iteration, the keypoints’ 3D coordinates are
updated according to the frame pose, and very small increments are applied to
numerically compute the Jacobian matrix. Computing Jacobians requires an
extremely large dynamic range and high precision; thus, prior works [4,5] used
double-precision floating-point operations. We reformulate the reprojection so that
common offset is subtracted before normalizing the projected 2D points into
homogeneous coordinates. This allows a 32b fixed point implementation with ~40%
energy reduction, while maintaining numerical stability in computing the Jacobian.
After linearization, we construct a sparse Hessian matrix that only has non-zero 6×6
submatrices diagonally that relate to the 6-DoF pose of each keyframe. Thanks to
the sparse and deterministic matrix structure, we block partition the Hessian and
solve each 6×6 submatrix sequentially instead of solving the full 120×120 linear
system. We apply pivoting to Gaussian elimination (GE) to maintain numerical
stability in the linear system solver. With pivoting, non-zero elements in other rows
are eliminated with the maximum element of the selected row. Row shuffling is
performed before back substitution (BS), and GE/BS share 6 parallel computing
units.

The SLAM processor is fabricated in 28nm HPC CMOS. Real-time image input and
6-DoF SLAM output are streamed using USB3.0. Fig. 7.3.6 (top left) shows the
trajectory produced by the chip for KITTI automobile scenes with >1000 images
and >500m range, tracking >1000 keypoints per frame. Fig. 7.3.6 (top right) shows
frequency/energy scaling of the chip across voltage. At 0.9V nominal voltage, the
VGA processing latency is 12.5ms. It achieves 97.9% accuracy in translation and
99.34% in rotation on KITTI rendering automotive scenes over 1km. The chip
consumes 243.6mW to process 80fps VGA at 3.6TOPS/W, marking a 15×
improvement in performance and 1.44× in energy efficiency over listed prior works.
Prior works use hand-crafted features or off-chip IMU and do not support large-
scale KITTI evaluation. Power reduces to 61.8mW for VGA at 30fps @ 0.63V,
yielding 48% additional energy efficiency. Fig. 7.3.7 shows the die photo and a
performance summary.
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Figure 7.3.1: Proposed visual SLAM system for autonomous vehicles and

associated processing procedures. Figure 7.3.2: Overall CNN-SLAM chip architecture.

Figure 7.3.3: Proposed CNN processor architecture with reconfigurable keypoint

detection and feature description.

Figure 7.3.5: Hierarchical graph memory organization and proposed

numerically stable fixed-point implementation with function re-formulation and

pivoting in linear solver. Figure 7.3.6: Chip measurements and comparison with recent prior works.

Figure 7.3.4: Proposed frame-based tracking with pruned feature matching with

linear pose estimation.
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Figure 7.3.7: Die photo and summary of performance.


