
1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology



Abstract— Accurate, low-latency and energy-efficient optical

flow estimation is a fundamental kernel function to enable several

real-time vision applications on mobile platforms. This paper

presents Neighbor-Guided Semi-Global Matching (NG-fSGM), a

new low-complexity optical flow algorithm tailored for low power

mobile applications. NG-fSGM obtains high accuracy optical flow

by aggregating local matching costs over a semi-global region,

successfully resolving local ambiguity in texture-less and occluded

regions. Proposed NG-fSGM aggressively prunes the search space

based on neighboring pixels’ information to significantly lower

the algorithm complexity from the original fSGM. As a result,

NG-fSGM achieves 17.9× reduction in the number of

computations and 8.37× reduction in memory space compared to

the original fSGM without compromising its algorithm accuracy.

A multicore architecture for NG-fSGM is implemented in

hardware to quantify algorithm complexity and power

consumption. The proposed architecture realizes NG-fSGM with

overlapping blocks processed in parallel to enhance throughput

and to lower power consumption. The 8-core architecture

achieves 20M pixel/s (66 frames / sec for VGA) throughput with

9.6mm2 area at 679.2mW power consumption in 28nm node.

Index Terms — Optical flow, Semi-global matching, VLSI, Low

power, Multi-core accelerator.

I. INTRODUCTION

EAL TIME, accurate, dense and energy-efficient optical

flow estimation is essential for many computer vision

applications such as object detection and tracking [1],

simultaneous localization and mapping (SLAM) [2][3], and

advanced driving assistance system (ADAS) [4]. Optical flow

represents the pattern of apparent motion of objects, surfaces,

and edges in a visual scene caused by the relative motion

between an observer (an eye or a camera) and the scene [5].

Challenges involved in optical flow estimation include

ambiguity over occlusion, perspective distortion, transparent

objects, low/uniform textures, and repeated patterns. To

address these challenges, most existing optical flow algorithms

optimize a global energy function in the form of weighted sum

of a data term and a prior term [6][7][8][9], as stated in the

taxonomy of Baker et al. [10]. Semi-global matching (SGM)

[11], an algorithm often used in stereo matching, can resolve

1Copyright © 20xx IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org

local ambiguity by propagating information from neighboring

pixels along multiple paths over the entire image. However,

directly applying SGM to optical flow estimation is challenging

because, unlike stereo matching, the search space for optical

flow is two-dimensional. Increase in flow search range will

quadratically affect the memory and computation requirement.

Therefore, it is typical to employ a coarse-to-fine approach [12]

[13] for estimating large optical flow displacements. However,

accuracy degradation in hierarchical approaches is inevitable

due to resolution loss at higher hierarchical levels and error

propagation to lower levels [14]. As an alternative technique,

convolutional neural network (CNN) based optical flow

estimation schemes have been recently proposed [15][16].

These techniques, however, require a very large number of

parameters (tens of millions) and convolution operations

(>600k OPs per pixel) [15] making them impractical for mobile

applications.

When optical flow computation is implemented on emerging

power-critical mobile platforms such as autonomous

navigation of unmanned aerial vehicles (UAV), it imposes

further “SWaP” [17] constraints limiting the size, weight and

power consumption to deliver real-time performance.

Conventional general purpose CPU or GPU based solutions are

not applicable to meeting stringent SWaP constraints for

mobile applications as they suffer from either high power

consumption (~100W) [18] for real-time performance or low

performance (~1fps) given power constraint.

We originally proposed2 a new, low-complexity optical flow

method; Neighbor-Guided Semi-Global Matching (NG-fSGM)

in [19][20]. In this paper, we build upon that work and provide

comprehensive parametric analysis of NG-fSGM along with a

discussion on several optimization techniques for SWaP

constrained MAV applications. The proposed NG-fSGM

method is based on SGM [11], a popular concept in stereo

matching, and its optical flow version, fSGM [21]. Our

objective is to achieve orders of magnitude complexity

reduction of the original SGM while maintaining its high

accuracy. This goal has been achieved by performing

comprehensive algorithm-architecture co-optimization. The

algorithm optimization techniques include: (1) aggressively

pruning the search space size by exploiting flow similarity of

2 This work was in part published in ICIP’16 [19] and SiPS’16 [20].

Low Complexity, Hardware-Efficient

Neighbor-Guided SGM Optical Flow for Low

Power Mobile Vision Applications

Ziyun Li, Student Member, IEEE, Jiang Xiang, Student Member, IEEE, Luyao Gong, Student Member, IEEE ,

David Blaauw, Fellow, IEEE, Chaitali Chakrabarti, Fellow, IEEE, and Hun Seok Kim, Member, IEEE

R

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

neighboring pixels, (2) approximating cost array aggregation to

avoid exhaustive pixel-wise cost computation, (3) partitioning

the image into overlapping blocks and initializing boundary

flow vectors with temporal prediction to minimize accuracy

degradation and overlap overhead at the boundary, and (4)

executing the full NG-fSGM algorithm on selective pixels and

performing interpolation to construct dense flow field. Along

with the proposed algorithm optimization, we designed a

multi-core, highly parallel architecture for NG-fSGM in TSMC

28nm GP technology. The accuracy, performance and power of

the proposed NG-fSGM algorithm and hardware design are

characterized and evaluated. Results reveal that the proposed

NG-fSGM method provides dense optical flow with accuracy

comparable to the original fSGM while exhibiting significant

complexity reduction both in arithmetic/logical operations and

in memory size/bandwidth requirements. The proposed

energy-efficient hardware architecture with 8 cores achieves a

throughput of 20M flow/s (equivalent to VGA 66 fps) with

estimated power consumption of 679.2mW in TSMC 28nm GP

node.

II. BACKGROUND

The SGM algorithm was originally proposed by

Hirschmüller for stereo matching [11]. It achieves

state-of-the-art accuracy by applying dynamic programming

based cost function optimization over the entire image. SGM

first computes pixel-wise matching costs of corresponding

pixels in two frames for all disparities (stereo matching) in the

search space. This is followed by cost aggregation along a finite

number of paths that penalizes abrupt disparity changes. SGM

was applied to optical flow, fSGM in [21] by extending the

search space from 1D stereo to 2D optical flow. A brief review

of fSGM is included here for completeness.

Step 1: Computation of pixel-wise matching costs C(p, o)

between pixel p = (x, y) in the previous image frame and pixel q

= p + o in the current image frame, for all flow vectors o = (u,

v), where u is the horizontal component and v is the vertical

component. The cost function can be based on Rank, Census

[22] and mutual information [23].

Step 2: The smoothness constraint on matching costs is

applied to penalize abrupt changes of flow vectors among

adjacent pixels. The accumulated cost Lr(p, o) of the pixel p for

a flow vector o along a path in the direction r is defined as

 . (1)

The cost regularization summand has the form

 (2)

 }

where P1 and P2 are regularization penalties (P1 ≤ P2). Instead

of the piecewise linear model used in fSGM[21], we adopt a

constant penalty model because of its simplicity for VLSI

implementation without significant accuracy degradation [24].

The modification penalizes 1-pixel offset flow vectors by a

smaller penalty P1 (smoothness constraint) and all other vectors

with >2 pixel offsets by a larger penalty P2 [11]. The

aggregated cost S(p,o) is the sum of Lr(p,o) over all paths.

 (3)

Step 3: The final flow estimation uses winner-takes-all

strategy. The flow vector o with the minimum cost S(p,o) is

selected as the final flow estimation.

Straightforward fSGM implementation poses significant

hardware challenges. The complexity of the original SGM

method is O(WHD), where W is the image width, H is the

image height and D = is the size of the search space per

pixel given the one-dimensional search range d. Note that

complexity of fSGM increases quadratically with the

one-dimensional flow range d, making the algorithm very

inefficient for a moderate flow search range (e.g., D = 10000

for ±50 pixel search range per dimension). Prior work [25]

prunes SGM aggregation results for stereo vision processing to

minimize the storage requirement and to reduce the SGM

aggregation complexity in forward and backward propagations.

However, the technique in [25] still involves exhaustively

evaluating the entire search range (1D for stereo) for pixel

matching, and thus would dominate the overall complexity

when applied to optical flow. In this paper, we introduce a new

optical flow algorithm; Neighbor-Guided fSGM (NG-fSGM)

whose complexity (both matching and cost aggregation) is

independent of 2D search range. Despite its significantly lower

complexity and memory footprint, the proposed NG-fSGM still

achieves near fSGM accuracy. We also propose several

hardware-oriented optimizations, as will be described in the

following sections.

III. NEIGHBOR-GUIDED SEMI-GLOBAL MATCHING

NG-fSGM reduces the complexity by aggressively pruning

the search space based on information from neighbors. Using

neighborhood information to prune the search space has also

been used in [26] and [27] in the context of block matching for

motion estimation. We extend the idea to semi-global cost

aggregation and also modify flow computation functions to

reduce the overall complexity.

A. Flow Subset Selection

It is highly likely that neighboring pixels in the image have

an identical or slowly changing flow vector since they tend to

belong to the same object, and thus have similar motion. Small

flow variation usually occurs due to slanted surface of objects,

spinning objects, camera motion, etc. Large flow variations can

occur at the boundary of different objects and are typically

combined with occlusion and motion discontinuity. NG-fSGM

exploits this property by selecting a subset of search space, Op

for each pixel p, based on its neighboring pixels’ flow results.

Computation of pixel-wise matching costs is performed on the

subset Op whose size is much smaller than D = . This

selection strategy is inspired by PatchMatch [27], in which the

search space is initialized to a random set and neighboring

pixels exchange ‘good guesses’.

The subset Op selection for each pixel p is guided by its

neighboring pixels along every aggregation path r in SGM, as

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

shown in Fig. 1. For pixel p, Op is initially empty. The best N

flow vectors in Op-r of previous pixel along path r with the

minimum cost Lr(p-r, o) are added to Op to construct the search

subset. Pixels correspond to these best N flow vectors are

marked by B in Fig. 1. We may choose multiple (N > 1 per each

path r) best vectors for robustness to cost variation accumulated

along a path and also local abnormality of pixel-wise matching

cost. Since fSGM applies a low aggregation penalty (P1 in (2))

when the flow varies smoothly, it is reasonable to add adjacent

flow vectors, marked by A in Fig. 1, around each of these best

N vectors to Op. Note that selection of A points around each B

point is pseudo-random and unbiased. To enable the algorithm

to adapt to rapid flow variations (e.g., occlusion and object

discontinuity), M random flow vectors are added to the subset,

which are marked by R in Fig. 1. Although the number of these

random vectors selected for each pixel is small compared with

the flow search range, it plays a very important role because

randomly found ‘good’ candidates can propagate to

neighboring pixels through forward and backward

propagations. NG-SGM propagation starts from image

boundary pixels which do not have sufficient number of

neighboring pixels. The initial subset for these boundary pixels

is thus randomly selected from a uniform distribution.

Typically, SGM is implemented in two scans, forward and

backward, and so SGM aggregation paths are divided into two

groups one for each scan. In Fig. 1, the forward scan proceeds

from top-left to bottom-right of the image in the raster scan

order, while the backward scan processes pixels in the reverse

order. As a result, pixel p has different flow vector subset Op1

and Op2, and aggregated cost S1(p,o) and S2(p,o) for forward

scan with subscript 1 and backward scan with subscript 2,

respectively. The overall subset Op is the union of Op1 and Op2

and the overall aggregated cost S(p,o) is the sum of S1(p,o) and

S2(p,o). We propose in Section III-C an approximation strategy

to combine forward and backward aggregation. In the

backward scan, N best flow vectors with the forward scan

minimum cost S1(p,o) is added to construct Op2 to increase

algorithm accuracy.

The flow vector candidates chosen by different aggregation

paths may be redundant since neighboring pixels’ best vectors

can be identical, and the adjacent windows (i.e., A’s in Fig.1)

can overlap. When candidates are all exclusive (worst case), the

total number of vectors in the search subset Op is T =

NK(P/2+1)+M, where P is the total (forward and backward)

number of aggregation paths, and K is the window size to select

adjacent candidates (A points) surrounding each best candidate

(B point) guided by a neighbor. Fig. 1 shows an example for

K=2×2 window. The complexity of NG-fSGM is O(WHT),

which is independent of flow search range (D = d2). With T <<

D, significant (>10x) complexity reduction can be achieved

compared to the original fSGM.

B. Pixel-wise matching cost

For pixel-wise matching cost C(p,o), we adopt Hamming

distance of Census transform [22]. Census transform has been

proven to represent image structure well and to be robust to

illumination variations [29].

One possible implementation of SGM is to pre-calculate the

Census transform of the entire image and store the Census

image in an array of size WHC2. Here, C2 denotes the Census

transform window size. Storing the Census transformed images

poses significant memory overhead because each pixel is

represented with a bit string of C2 bits instead of 8-bit greyscale

value. Once Census transformed images are pre-calculated, raw

costs can be generated directly by accessing these Census

transformed pixels. Although computing the Census transform

for all pixels is computationally wasteful, it may lower memory

bandwidth per pixel because it can be implemented using a

highly efficient sliding window based approach with

deterministic memory access patterns.

In the proposed NG-fSGM, only a subset Op of full flow

candidate vectors needs to be evaluated. The calculation of

C(p,o) can be performed on-the-fly only when o is selected

during the cost aggregation step. For this approach, storing an

array of precomputed pixel-wise matching cost C(p,o) is

unnecessary. However, memory bandwidth required for

Census transform per pixel is significantly higher because an

efficient sliding window approach is no longer applicable. In

Section III. E, we quantify the tradeoff space between

pre-calculating Census transform vs. computing Census

transform on selective pixels on-the-fly. Pre-calculating

Census transform results in calculating the Census transform

for unused pixels whereas computing Census transform

on-the-fly loses (because of irregular pixel processing pattern)

the computing and memory efficiency of sliding window based

calculations.

C. Cost Aggregation and Flow Computation

In order to compute Z in (2) for cost aggregation (1), typical

SGM-based methods store in a line buffer array of

size WPD. NG-fSGM stores only the best N flow vectors for

each path and their costs. Thus, the line buffer array size is

reduced to WPN. Since we selectively store the aggregated cost

, the cost may not be available for Op-r

along a certain direction r. In that case, the aggregated cost is

approximated by assigning

Fig. 1. Illustration of subset selection for the center pixel p. The solid

arrows represents path directions in forward scan while dashed arrows

represents path directions in backward scan. The selected flow vectors, is

the combination of B and A, where B corresponds to the N = 2 best flow
vectors and 3 A’s are selected for each B within a 2x2 window. R

corresponds to M = 4 random flow vectors.

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

TABLE I. MEMORY SIZE, NUMBER OF OPERATIONS, MEMORY BANDWIDTH REQUIREMENT OF NG-FSGM FOR PROCESSING AN IMAGE OF SIZE (W×H)

 Memory size (Bytes per frame) Number of Operations Memory access bandwidth (R/W Bytes per frame)

Data Type Census on the fly
Pre-compute

Census
Census on the fly Pre-compute Census Census on the fly Pre-compute Census

Input Images 2WH 0

Subset

Selection
 2(P(KN+M)+(N(P+1)K+M)(2+P)+3d2)WHS (N(P+1)+M+1)2WH

Census Transform
(KN(P+1)+M+1)(

C2-1)/8 2WH(C2-1)/8
((N(P+1)K+M)(9+KC2))

WHS
2C2WH

(K+8(C-1/2)2(N(P+1)+(M

+1))+8(C-1/2)2)WH

WH((NK

(P+1)+M+1)2C2+8)/8

Pixel-wise

Matching cost 4(KN(P+1)+M) ((N(P+1)K+M)(2C2))WHS

Path-wise

Aggregated Cost
4P(KN(P+1)+M)

(6P(N(P+1)K+M)(N+3))WHS
4NPWH

 Summated

Aggregated Cost
4(KN(P+1)+M)

Path-wise Best

flow
4WPN

(KN(P+1)+M)P(4N+2)WHS
Scan-wise

Best flow
4WHN

Flow Map 2WH (4(KN(P+1)+M)N+3(KN(P+1)+M))WHS
4NWH

 = (4)

To access forward scan results during the backward scan, the

original SGM-based method stores the aggregated cost S(p, o)

for all searched flow vectors in an array of size WHD, and

updates the values by accumulating path-wise aggregated cost

Lr(p, o) obtained during the backward scan. NG-fSGM avoids

such a large memory usage by storing only the N best flow

vectors Bp per pixel along with their corresponding aggregated

cost S1(p, o) from the forward scan. Similar to the line

buffer handling, S1(p, o) is approximated to

when it is not available for backward scan aggregation. As a

result, the array size for storing S1(p, o) is reduced from WHD

to WHN.

For each pixel p visited during the backward scan, the set of

N best vectorst Bp, from forward scan and the neighbor-guided

vectors from backward scan, Op2, may be dissimilar. For

vectors whose cost has not been calculated in either the forward

or the backward scan, the following rules are applied to

approximate the final aggregation cost S(p, o): The missing

costs S1(p, o) in forward scan are assigned the maximum cost in

Bp plus P2, while the missing costs in backward scan S2(p, o)

are assigned the maximum cost in Op2. The overall cost S(p, o)

is the sum of cost from two scans. Finally, the output flow

vector o is the one corresponding to the minimum cost S(p, o).

D. Post Processing

After the raw flow results are computed, post-processing

steps are applied to refine the flow image. We apply a simple

3×3 median filter on both horizontal and vertical components

of the flow image to remove errors and smoothen flow fields. If

the accuracy requirement is high, a consistency check between

previous and current frame (similar to left-right check for

stereo [11]) can be applied to create the confidence map.

E. Complexity Analysis

 Next, we analyze the complexity of the proposed

NG-fSGM with respect to memory size, memory access

bandwidth and number of operations. The key parameters in the

tables are: image size (W×H), number of best flow vectors (N)

per aggregation path, number of random flow vectors (M),

number of aggregation paths per scan (P), window size (K) to

select adjacent candidates (A points in Fig. 1) surrounding each

best candidate (B point in Fig. 1) guided by a neighbor, the

maximum flow search range (d2), and Census transform

window size (C×C). The maximum search subset size per pixel

(i.e., the number of elements in Op) is (KN(P+1)+M). The

Census transform for each pixel requires (C2-1)/8 bytes while

each flow vector requires 4 bytes; 1 byte for the horizontal

component, 1 byte for the vertical component, and 2 bytes for

storing the (aggregated) cost.

 Table I summarizes the memory size, number of operations

and memory bandwidth requirement for two possible

implementation options: one is selectively computing Census

transform on-the-fly for vectors included in the search subset

Op, and the other option is to pre-compute and store Census

transform for all pixels to benefit from the deterministic sliding

window approach. If Census transform is computed on-the-fly,

two (previous and current) grayscale input images need to be

stored. In addition, a small temporary memory is necessary to

store Census transform of matching candidate pixels.

Meanwhile, when Census transform is pre-computed, Census

transform results for the entire current and previous images are

stored in the memory instead of raw greyscale images.

 The middle panel of Table I show the number of operations

to process an image frame of size W×H, and the right panel of

Table I summarizes the memory bandwidth requirement

represented by the total number of read/write Bytes for a W×H

sized frame. Memory bandwidth requirement also depends on

whether Census transform is computed on-the-fly or

precomputed. Although precomputing Census allows for an

efficient sliding window approach, most Census transform

results would not be needed for matching cost evaluation. As

can be observed from the table, memory bandwidth is

dominated by accesses required to perform pixel-wise

matching (Census and Subset Selection rows combined). It is

evident that Census transform on-the-fly vs. pre-computing

Census transform poses tradeoffs in the number of

computations, memory size, and memory bandwidth

requirements.

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

IV. OPTIMIZATIONS FOR HARDWARE-EFFICIENT NG-SGM

NG-fSGM allows optical flow complexity reduction with

aggressive search space pruning. However, its complexity

could still be excessive for power-constrained real-time mobile

applications. According to the analysis provided in Section III,

for full HD (1920×1080) resolution, NG-fSGM requires

~20MB of memory, ~0.168TOPs performance and 3.8Tb/s

memory bandwidth to achieve a throughput of 30fps. To enable

low power, high throughput mobile optical flow estimation

with high accuracy, we propose NG-fSGM-specific

optimizations. Proposed techniques include: 1) performing

overlapping-block based NG-fSGM in parallel 2) initializing

flow search space with temporal prediction. 3) performing

sparse flow estimation with NG-fSGM and interpolating results

to obtain dense flows.

A. Parallel Block-based NG-fSGM

We propose parallel block-based NG-fSGM to enable

reduction in the overall power consumption by processing each

block at a lower frequency and voltage given throughput target.

The memory space requirement for block-based approach is

proportional to the number of parallel-processed blocks and the

block size instead of the image size. Other notable advantages

include improved latency and throughput. Latency is

proportional to the block size (instead of the image size) and the

throughput linearly improves with the number of parallel block

processing cores.

In a naive block-based implementation, input frames are

partitioned into non-overlapping blocks and the NG-fSGM

algorithm is applied to each block in parallel. This

non-overlapping block approach reduces the algorithm

accuracy because of several factors. First, for the boundary

pixels, NG-fSGM uses random selections to initialize the

search subset so it takes some time (in term of pixel

propagation) until ‘good’ (correctly guided by neighbors) flow

vectors appear in neighbor-guided search subset. Second, since

the aggregating paths accumulate information from boundary

to inner pixels (because of the raster scan order), the cost

aggregation is relatively unreliable at the boundary. Third, the

flow smoothness constraint is interrupted at the boundary of

two blocks when blocks are non-overlapping.

In order to improve the accuracy of block-based NG-fSGM,

we impose flow smoothness constraints across the block

boundary. In the proposed scheme, the ‘previous’ (or reference)

frame is first divided into n × n non-overlapping blocks, and

then each block is extended by l pixels along four sides,

resulting in m × m overlapping blocks, where m = n + 2l. The

‘current’ (or target) frame is divided into overlapping blocks as

well, but with block size of m + 2d per dimension, where d is

the flow search range per dimension. The output flow map of

the entire image is built using the flow map of each n × n block.

Fig. 2 shows an example of a non-overlapping block and its

extensions.

Generally, a larger size of non-overlapping block and a

larger number of extended pixels result in better flow accuracy,

at the expense of higher latency, computational cost, and

memory requirement. For a certain image size, the parameter n

defines the number of blocks to be processed, and together with

l, it defines the architectural complexity that is a function of the

memory size, memory bandwidth and the number of operations.

The latency is linear in the size of overlapping block, m = n + 2l.

Table II summarize the effect of parameters n and l on the

memory size, number of operations and memory bandwidth (in

Bytes) requirements to process a W×H frame. Larger n and l

both increase the memory, computation and memory

bandwidth per block, though larger n reduces the number of

blocks to be processed. While overlapping of the blocks can

significantly improve the flow accuracy, it also increases the

complexity of computing a whole frame from O(n2) to O(m2),

where m = n + 2l. Detailed analysis on this tradeoff is

presented in Section V.

B. Inertial Flow Vector Prediction Using Sequential Frames

Large overlapping regions in block-based processing reduce

throughput while increasing memory size and bandwidth

requirements. We observed that the size of overlapping region

can be significantly reduced if the search space of the boundary

pixels is initialized with good flow estimates/predictions,

replacing random vectors. Our method is inspired by ‘inertial

estimates’ proposed in [30]. Assume that each object in the

frame moves at a constant velocity. Then the flow of pixels

between time frames [t, t + 1] can be estimated/predicted from

the flow for [t – 1, t]. Let (i, j) denote pixel position, and let (u,

v)(i, j) and (u’, v’)(i, j) denote flow of pixel (i, j) between time

frames [t, t + 1] and [t – 1, t], respectively. Then we assume that

the relationship (5) holds.

 (5)

We use (5) to provide the inertial guided flow estimates. For

each pixel in the extended region (grey area in Fig. 2) in the m ×

m block, inertial guided flow estimates are more reliable, in

general, than neighbor-guided flows especially when the

neighbors are closer to the block boundary where flow vectors

are randomly initialized. Thus, we replace the guided flow of

one neighbor (which is closest to the boundary) and its (K-1)

adjacent flow vectors with the inertial guided flow vector and

Fig. 2. An example of an n × n non-overlapping block in the previous frame.
The corresponding m × m overlapping block in the previous frame is

obtained by extending l pixels along four sides, and the corresponding

overlapping block in the current frame is obtained by further extending d
pixel along four sides.

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

its corresponding (K-1) adjacent flow vectors. The number of

operations remains the same though small extra memory space

is required for storing the inertial estimates. As we only store

inertial estimates for boundary pixels, memory overhead is low

(<2%). This approach helps significantly reduce the size of the

extended region for overlapped block processing without

algorithm accuracy degradation.

C. Sparse-to-Dense Optical Flow Estimation

 To further reduce the number of operations of NG-fSGM,

we propose to estimate dense optical flow from sparse optical

flow using interpolation. In the proposed method, sparse flow

vectors are computed by performing NG-fSGM on selective

pixels. It is also worth noting that the proposed method is

different from conventional subsampling approaches where

optical flow is performed on a subsampled image. Instead, our

proposed method operates on the full resolution image while

the optical flow is only computed on selective pixel positions

with patterns shown in Fig. 3

NG-fSGM aggregation and optical flow computation is

initially performed on these subsampled pixels only. Once

NG-fSGM is complete for selective (subsampled) pixels, dense

optical flow of remaining pixels marked white in Fig. 3 is

computed by interpolating the result of subsampled (black)

pixels in Fig. 3. This approach is similar in spirit to [31]. While

in [31], SGM (for stereo) is performed for every pixel, here

aggregated costs are updated only on selected (subsampled)

pixels; the other pixels have the same aggregated costs as the

selected pixels.

Different sampling patterns exemplified in Fig. 3 are

governed by parameters f1 and f2, the horizontal and vertical

sampling rates, respectively. The proposed sparse-to-dense

NG-fSGM method performs interpolation in two steps. As

neighboring pixels tend to have identical or similar motion, the

flow vector op at pixel p is estimated by the bilinear

interpolation of nearest subsampled (i.e., black pixels in Fig. 3)

neighbors’ optical flow vectors. This approach reduces the

required memory size and the number of operations by a factor

of f1f2. We summarize the impact of these hardware-oriented

optimization on the memory size, number of operations, and

memory bandwidth in Table II.

V. COMPLEXITY - ACCURACY TRADEOFF ANALYSIS

We conducted comprehensive experiments on the

Middlebury [10], KITTI [33] and MPI [32] optical flow

benchmark to evaluate optical flow estimation accuracy and

hardware implementation complexity. The accuracy is

quantified in terms of the endpoint error percentage (EEP) with

Middlebury (EEP radius 2) / KITTI (EEP radius 3) benchmark,

and average endpoint error (EPE) on MPI dataset. The EEP is

the percentage of pixels whose optical flow estimation error

radius (error vector magnitude) is larger than a certain

threshold (2 or 3 in our case) [10]. The EPE is the averaged

error radius of optical flow estimates of all pixels [32]. The

memory size, number of computations and memory bandwidth

requirements are used to quantify the hardware complexity.

A. Parametric Analysis on NG-fSGM

We evaluate the effect of multiple algorithm parameters,

namely, N, M, C, K, P, n, l, f1, and f2. Some of the parameters

have correlated impact on algorithm accuracy. First, we

analyze the impact of N, M, C and K when P is fixed. For now,

block-based approach and sparse-to-dense interpolation are

disabled to simplify the analysis. In Fig. 4, parameters N and M

are enumerated from 0 to 9, and C2 is evaluated from 5×5 to

19×19. Fig. 4 (a) and (c) visualize the algorithm accuracy for K

= 1×1 and 2×2 respectively on Middlebury test in EPE (the

darker, the more accurate) when M = 3 and P = 8. Fig. 4 (b) and

(d) show the impact of N and M when C = 11, and P = 8 for K =

1×1 and 2×2, respectively.

Fig. 3. Sampling pattern examples where grey pixels are sampled. Left: f1
= 1/2 , f2 = 1/2; Middle: f1 = 1/2 , f2 = 1; Right: f1 = 1 , f2 = 1/3.

TABLE II. MEMORY SIZE, NUMBER OF OPERATIONS, MEMORY BANDWIDTH OF NG-FSGM WITH OPTIMIZATIONS

 Memory size Number of Operation Memory access bandwidth

Data Type
Census transform

on the fly

Pre-compute

census map

Census transform

on the fly

Pre-compute

census map

Census transform

on the fly

Pre-compute

census map

Input Images n2 +(n+2l+2d)2 0

Subset

Selection

2f1f2(P(KN+M)+(N(P+1)K+M)(2+P)+3d2)WH(n+2l)2

S/n2

f1f2(N(P+1)+M+1)2WH(n+2l)2/n2

Census Transform
f1f2(KN(P+1)+M+

1)(C2-1)/8

(n2+(n+2l+2d)2)

(C2-1)/8

f1f2((N×(P+1)K+M)(9+KC2))

WH(n+2l)2S/n2

f1f2C2WH

(n2+(n+2l+2d)2)/n2

f1f2(K+8(C-1/2)2N(P+1)+(M+

1)+8(C-1/2)2) WH(n+2l)2/n2

f1f2WH(n+2l)2/n2(N(P

+1)+M+1)2C2/8

Pixel-wise

Matching cost 4f1f24(KN(P+1)+M) f1f2((N(P+1)K+M)2C2)WH(n+2l)2S/n2

Path-wise

Aggregated Cost
4f1f2P(KN(P+1)+M)

f1f2(6P(N(P+1)K+M)(N+3))WH(n+2l)2S/n2
f1f2N4PWH(n+2l)2/n2

 Summated

Aggregated Cost
4f1f2(KN(P+1)+M)

Path-wise Best

flow
4f1f2(n+2l)PN

f1f2(KN(P+1)+M)P(4N+2)WH(n+2l)2S/n2
Scan-wise

Best flow
4f1f2 (n+2l)2N

Flow Map 2f1f2(n+2l)2 f1f2(4(KN(P+1)+M)N+3(KN(P+1)+M))WH(n+2l)2S/n2
f1f2N4WH(n+2l)2/n2

Inertial Map 8f1f2(n+2l)

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

 Fig. 4 (a) and (b) show that, when the search window size K

is 2×2, the optimal accuracy is obtained with N = 2 or 3. Notice

that more best-candidates (larger N) from the neighbor

degrades the algorithm accuracy because the smoothness

constraints weakens when more (some are incorrect)

candidates are admitted. Regarding the Census size, the

algorithm accuracy stabilizes when C is larger than 9 but

degrades when the Census size is too large (e.g., C ≥ 17)

possibly because of dissimilar optical flows within the Census

window. Analysis confirms that the number of random vectors

(M) is relatively insensitive when other parameters are chosen

optimally and M ≥ 1.

 In Fig. 4 (c) and (d), K is changed from 2×2 to 1×1. It is

worth noting that the impact of parameter N, M and C on

algorithm accuracy shows similar non-monotonic trend as in

Fig. 4 (a) and (b). With a smaller K, more random candidates

with M ≥ 3 are desired to compensate for the reduced number of neighbor guided candidates, and thus to minimize the

X
Y

Z

W

(a)

X
Y

Z

W

(b)

Fig. 5. Performance and complexity tradeoff analysis: (a) Memory BW

vs. Memory size vs. Error rate, (b) # of OPs vs. Memory size vs. Error

rate.

W

X Y

E
P

E

Z

X Y

EP
E

Best
accuracy

for K = 2x2

 (a) Error vs. Census vs. N, K = 2×2 (b) Error vs. M vs. N, K = 2×2

W

X Y

EP
E

Z

X Y

EP
E

Best
accuracy

for K = 1x1

 (c) Error vs. Census vs. N, K=1×1 (d) Error vs. M vs. N, K = 1×1

 Fig. 4. Error performance analysis with parameter sweep (M, C, K, N).

TABLE III. SENSITIVITY ANALYSIS ON PERFORMANCE AND COMPLEXITY

Trend as variable increases

Insight Sensitivity analysis on

accuracy and complexity

Census on-the-fly Pre-compute Census

OPs Mem

Size

Mem

BW

OPs Mem

Size

Mem

BW
Census

window

(C×C)

Accuracy improves as C increases

from 3 to 7. Complexity is in

general proportional to C2. Further

increasing C > 7 will saturate the

accuracy and eventually degrade the

accuracy.

O(C2) O(C2) O(C2) O(C2) O(C2) O(C) Improvement from a large C diminishes when C>7 as

the larger window tends to contain pixels with distinct

optical flows. C quadratically increases memory size

and operation. Memory access bandwidth increases

linearly if census map is precomputed.

N Accuracy is not monotonic to N.

Modest N (N = 1 or 2) typically

works better than larger N values.

OPs proportional to O(N2) while

memory requirement is O(N).

O() O() O() O() O() O() Larger N helps in finding good candidates and thus,

improving the time of convergence (in terms of

pixels). However, large N may introduce unnecessary

ambiguity that lead to errors in flow map.

M For K=1×1: M > 0 is strongly

desired. A larger M > 1 won’t

provide significant gain. For K >=

2×2, accuracy is insensitive to M.

O() ~0 ~0 O() ~0 ~0 Larger M can compensate smaller K by introducing

additional matching candidates in flow subset. If K is

large, extra random positions is unnecessary (M = 0 is

acceptable). Impact of M on overall complexity is

insignificant compared to other parameters (C, N, K).

Search

window

(K×K)

K = 2×2 provides better accuracy

than K = 1×1 or 3×3. Complexity is

proportional to O(2).

O(2) ~0 O(2) O(2) ~0 O(2) Optimal K exists for the best accuracy. A small K may

result in insufficient number of candidates while a

large K may introduce unnecessary ambiguity from

too many candidates. A small K can be compensated

by a larger M and vice versa. A small K with a larger

M is preferred to a larger K with a smaller M because

the impact of M on complexity is lower.

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

algorithm accuracy degradation. Point‘Z’ (N = 2, M = 9, C =

9 with K = 1×1) in Fig. 4. (a) has the best accuracy of 3.69%

EPE comparable to the point ‘X’ in Fig. 4 (d) (3.67% EPE, with

N = 2, M = 3 , C = 9 and K = 2×2).

 The algorithm complexity in terms of memory size, memory

bandwidth and operation counts is visualized in Fig. 5 (a) and

(b) when K=2×2. Analysis for K=1×1 is omitted as it exhibits a

similar trend. The comparison between Census transform

on-the-fly and pre-computed Census is also analyzed in the

same figures. The algorithm accuracy – complexity tradeoff

can be identified by associating ‘X, Y, Z, W’ points in Fig. 4c, d

to the same labeled points in Fig. 5. Points in Fig. 5 are shaded

with different levels to represent algorithm accuracy; darker

shades represent better algorithm accuracy following the same

convention in Fig. 4. One can observe the impact of larger

Census size (from point ‘X’ to ‘W’) that allows memory size vs.

bandwidth vs. operations tradeoff depending on whether

Census transform is pre-computed (red) or calculated

on-the-fly (blue). Horizontal shift of ‘X’  ‘W’ indicates

memory size increase while vertical shift implies more memory

bandwidth and number of operations.

Notice that all parameters have monotonic relationship with

the algorithm complexity while their impact on algorithm

accuracy is non-monotonic. Therefore, finding an optimal

tradeoff point is a non-trivial task. The impact of parameter C

and N on both algorithm accuracy and complexity is in general

more significant than that of other parameters. For the

pre-computed Census approach, a large C could result in an

excessive memory size requirement, as it is a function of C2.

The number of operations and memory requirements for the

on-the-fly Census approach is proportional to NC2. A

reasonable complexity-accuracy tradeoff can be made with C =

9, N = 1 and M = 1 given K = 2×2 and P = 8. In this case,

computing Census on-the-fly reduces memory size requirement

to ~0.5MB at the cost of ~60% more memory bandwidth and

computation compared to the pre-computed Census option.

 The impact of various parameters on algorithm accuracy and

complexity is summarized in Table III. A smaller N implies

more aggressive candidate pruning and slower convergence of

the flow propagation among neighbors, but also avoids

over-constraining smoothness constraints that could lead to

flow error. A larger M can compensate for small search

window size K and can remain small if N or K is large. Based

on the exhaustive analysis on Middlebury dataset, we picked

the parameter set that provides balanced hardware complexity

and algorithm accuracy. For the rest of the section, we use the

following parameters: K = 2×2, C = 9, N = 1, P = 8, M = 1.

 Table IV compares the accuracy and complexity of

NG-fSGM with the aforementioned parameter set to the

original fSGM [21] and Lucas-Kanade (LK) [13], for the

Middlebury, KITTI and MPI benchmarks. NG-fSGM with K =

2×2, C=9, N=1, P=8, M=1 is used for all three benchmarks. As

Table IV indicates, the proposed NG-fSGM provides

significant complexity reduction compared to fSGM since

NG-fSGM only evaluates <10% flow vectors and aggressively

prunes the others to avoid strict regularization of fSGM. Recall

that the complexity of fSGM quadratically increases with the

search range d while the proposed NG-fSGM complexity is

independent of d. Middlebury dataset used for Table IV has a

limited d ≤ 32. The complexity gap between fSGM and

NG-fSGM is more significant for MPI [32] and KITTI [33]

benchmarks that require a larger d. The fSGM and LK

complexity for KITTI and MPI reported in Table IV is based on

a three-level hierarchical pyramid approach [21] that limits d to

40 (fSGM) or uses a 13x13 search window with 10 iterations

(LK) for each level. Non-hierarchical fSGM (d=40) and LK

(13x13, 10 iterations) is used for the Middlebury . We observed

that NG-fSGM significantly outperforms LK in accuracy at the

cost of slightly increased memory area requirement. The

number of operations for NG-fSGM is lower than that of LK

for all benchmarks.

 To visualize the algorithm quality difference, Fig. 6 shows

TABLE IV. COMPARISON OF NG-FSGM, FSGM & LUCAS KANADE

Metric EEP % EPE Memory Size (MB) Number of Giga Operations

Dataset Middlebury KITTI MPI Middlebury KITTI MPI Middlebury KITTI MPI

fSGM 4.54% 10.74%* - 20.68 342.08** 331.21** 37.53 65.1** 63.48**

Lucas-

Kanade
15.78% 28.91% 10.45 1.47 3.83 3.745 3.15 8.24 8.01

NG-
fSGM

3.70% 11.37% 7.91 2.47 3.68 3.59 2.10 3.14 3.12

*: Reported in [21] for hierarchical fSGM using a 5×5 median filter.

**: Estimated from hierarchical fSGM [21] with d = 40.

Fig. 6 Colored flow maps using different algorithms. 1st column:
RubberWhale; 2nd column: Urban2; 3rd column: Venus. 1st row: input

previous frame; 2nd row: NG-fSGM; 3rd row: fSGM; 4th row:

Lucas-Kanade. Color legend is at bottom-left corner.

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

the flow maps obtained from a Middlebury test image using

each algorithm. The color of each pixel indicates the direction

of the flow whereas the color intensity is proportional to the

magnitude of the flow. NG-fSGM (2nd row) and fSGM (3rd row)

both outperform LK (4th row). The raw (before

post-processing) flow map output of NG-fSGM shows blurry

results along object edges but has fewer error patches compared

to fSGM. The neighbor guidance in NG-fSGM is less reliable

at the object edges when aggressive search space pruning is

applied. However, after a simple post processing of 33 median

filtering, this difference becomes insignificant. Table IV

confirms that the overall accuracy of NG-fSGM for

Middlebury evaluation is comparable to that of fSGM.

 For the KITTI and MPI dataset, the search range is

substantially larger; d = 128 for a non-hierarchical approach.

Unlike NG-fSGM, a multi-level hierarchical approach is

preferred for LK and/or fSGM to limit d (e.g., 40) for each

pyramid level. Fig. 7 and 8 show output flow images from

KITTI and MPI for qualitative comparison. Proposed

non-hierarchical NG-fSGM achieves 11.37% EEP on KITTI

benchmark, which significantly outperforms pyramidal LK

whose EEP is 28.91%. NG-fSGM exhibits 0.63% degradation

compared with a hierarchical fSGM [21] while achieving >10×

memory and computation complexity reduction. NG-fSGM

achieves 7.91 average EPE (end point error) on MPI test cases

significantly outperforming LK whose EPE is 10.45.

Evaluation of hierarchical fSGM on MPI benchmark is not

reported in [21] and so could not be included.

B. Overlapping Block-based NG-fSGM

So far, for more direct comparison to other algorithms,

NG-fSGM complexity and accuracy has been analyzed without

additional hardware optimization techniques. In the following

subsections, we discuss the impact of overlapped block-based

processing, inertial guidance for flow initialization, and

sparse-to-dense flow interpolation to further reduce hardware

implementation complexity specifically for NG-fSGM.

 We evaluate the basic overlapped block-based processing

(denoted by NG-fSGM+B) by sweeping parameter n from 30 to

100 and l from 0 to 15. The accuracy is evaluated in EPE

(radius = 2 pixels) for the Middlebury dataset. In Fig. 9, it is

evident that a larger n or l monotonically improves algorithm

accuracy but the gain diminishes (approaches the original

algorithm accuracy without block-based processing) when n

and l are around 75 and 16, respectively. Fig. 9 also quantifies

the memory size increase for supporting larger n or l. We

observe that n = 64 provides reasonable tradeoff between

algorithm accuracy and complexity. In later subsections we

assume n = 64 unless stated otherwise.

C. Block-based NG-fSGM with inertial guidance

We evaluate the effect of the proposed inertial guidance

technique on Middlebury dataset. Fig. 10 shows an example of

inertial guidance for the flow estimate of the current frame. The

average accuracy of inertial estimates from [t – 1, t] is 10.13%

in EEP for Middlebury dataset, which is ~6% lower than that of

NG-fSGM. This implies that the inertial estimates can provide

useful guidance for flow vector initialization in NG-fSGM.

Table V shows the impact of inertial guidance where

NG-fSGM+BI denotes the method combining overlapped

block-based processing and inertial guidance. The inertial

guidance consistently improves the accuracy especially for

images with a relatively large flow range (Grove3, Urban2 and

Urban3). With inertial guidance, the overlap size l can be

reduced from 16 to 2 with negligible loss in accuracy (see

second and fourth columns of Table V). This also helps to

achieve lower architectural complexity; memory size is

reduced by 85% from 0.65MB to 0.38MB and the number of

operations is reduced by 93% from 0.058 to 0.028 GOPs per

block. This significant complexity reduction is feasible because

inertial guidance reduces number of overlapping pixels.

Note that block-based NG-fSGM cannot always resolve the

ambiguity from multiple flow candidates for images with

repeated patterns that span the entire block (e.g., Urban3).

NG-fSGM without block partitioning propagates flow vectors

globally beyond the block boundary, thus it can resolve local

(within a block) ambiguity by aggregating the cost from the

region where repeated patterns no longer exist. Inertial

guidance combined with block-based NG-fSGM show

improved results for resolving local ambiguity (e.g., Urban3)

by utilizing additional temporal guidance. However, if images

Fig. 8. Colored flow maps using MPI dataset.

Fig. 7. Colored flow maps using KITTI dataset.

Fig. 9. Left: accuracy of NG-fSGM+B using the Middlebury training
dataset. Right: complexity vs. overlap size (l) vs. block size (n).

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

do not have strong local ambiguity, block-based NG-fSGM

performs relatively well within each block.

While the original NG-fSGM (processing the whole image

as a single block) has a mean error of 4.43%, NG-fSGM+BI has

a mean error of 4.72% with n = 64 and l = 2, exhibiting 0.29%

average accuracy degradation. For individual data images, the

accuracy difference ranges from -0.09% to 3.14%.

D. Sparse-to-Dense Optical Flow Estimation

 The last optimization technique we evaluate is the

sparse-to-dense NG-fSGM with different sampling rates f1 and

f2. The sparse-to-density NG-fSGM is evaluated on

Middlebury images with n = 64, and l = 16. Table VI confirms

that significant reduction in the memory size and number of

operations requirement is feasible with only a modest accuracy

degradation. The subsampling rate of f1 = 1/2 and f2 = 1/2

provides a reasonable tradeoff between accuracy and

complexity. The memory size is reduced by 40% and number

of operations is reduced by 75% with 1.23% increase in error

percentage.

E. Post-Processing

 Different post processing techniques are evaluated for

tradeoff study in low complexity optical flow computation. We

analyze and compare the complexity and accuracy between 5×5

median filter and 25×25 weighted median filter (WMF) [34].

Results are shown in Table VII. With pyramidal LK, the

weighted median filter outperforms the median filter by 1.5%

on KITTI benchmarks. When the raw flow rate is more

accurate, the improvement from weighted median filter starts to

become marginal compared to a simple median filter.

Pyramidal LK is still not able to meet NG-fSGM accuracy even

when a 25×25 weighted median filter is applied. Applying this

weighted median filter introduces ~25% extra computation for

pyramidal LK.

VI. HARDWARE ARCHITECTURE AND PERFORMANCE

We propose a hardware architecture that accelerates the

block-based NG-fSGM to achieve high throughput and energy

efficiency for power critical real-time mobile systems. We

employ Census transform on-the-fly approach instead of

pre-computing Census as the memory size overhead for the

latter is significant while the computation overhead is

manageable for the low power application that we are targeting.

Fig. 11 shows the overview of proposed parallel processing

TABLE V. ENDPOINT ERROR PERCENTAGE (EEP) AND COMPLEXITY ON

MIDDLEBURY MULTI-FRAME TRAINING DATASET

Image for EEP

evaluation

NG-fS

GM

NG-fSG

M+ B

(l=2)

NG-fSG

M+ B

(l=16)

NG-fSGM

+ BI (l=2)

Grove2 2.03 1.82 1.77 1.74

Grove3 8.35 7.85 7.77 7.66

Hydrangea 0.99 0.80 0.79 0.73

RubberWhale 0.71 0.88 0.67 0.56

Urban2 4.81 5.09 4.45 4.82

Urban3 9.70 18.52 16.14 12.84

EEP Mean 4.43 5.83 4.93 4.72

of blocks 1 75 75 75

Memory size per

block (MB)

2.47 0.38 0.65 0.39

Operations per

block (109)

2.10 0.028 0.058 0.029

Memory access

per block(MB)

88.8 1.28 2.543 1.31

Fig. 10. An example of inertial guidance in Grove 3. Top left: Frame at time
t. Top right: Inertial estimates from [t - 1, t]. Bottom left: Output flow using

NG-fSGM+BI when l = 4. Bottom right: Groundtruth flow.

TABLE VI. ENDPOINT ERROR PERCENTAGE (EEP) AND COMPLEXITY ON

MIDDLEBURY MULTI-FRAME TRAINING DATASET

 Original

NG-fSGM

NG-fSGM

f1=1/2,

f2 = 1

NG-fSGM

f1=1,

f2 = 1/2

NG-fSGM

f1=1/2,

f2 = 1/2

EEP Mean 3.69 4.08 4.20 4.91

Memory size per

block (MB)

0.38 0.27 0.27 0.23

Operations per

block (109)

0.28 0.14 0.14 0.07

Memory access per

block(MB)

1.31 0.66 0.66 0.33

TABLE VII. OUTLIER PERCENTAGE (EEP) WITH DIFFERENT POST PROCESSING SCHEME

 LK LK with WMF NG-fSGM NG-fSGM with WMF

 EEP %
Number of Giga

Operations
EEP %

Number of Giga

Operations
EEP %

Number of Giga

Operations
EEP %

Number of Giga

Operations

Midderbury 8.31 3.15 7.41 4.11 3.70 2.10 3.72 3.06

KITTI 28.9 8.24 27.4 9.67 11.3 3.14 11.2 4.57

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

hardware architecture that employs 8 parallel cores along with

a global image buffer of size 0.5MB. The design is scalable to

higher resolution images by instantiating a larger memory and

more cores in the system.

In this 8-core system, each core has its own local image

buffer, local processing unit, local control unit and result

memory. Raw image is stored in global memory and is

transferred sequentially to each core. Each core processes the

image block and transfers the results back to the global

memory. Memory bandwidth from the global memory to each

core is 11MB/s. Local memory inside each core has much high

memory bandwidth and will be discussed later.

Fig. 12 shows the overall processing procedure of a single

core and Fig. 13 details block diagram of each core. The

memory consists of a buffer to store the 88kb flow output and a

local image buffer of size 382 kb used to store the image block

of size 75×75 with search range (±64 pixels) and overlapping

regions (l=2 pixels). Note that by utilizing inertial guidance

technique at the block boundary, the overlap region reduced

from 16 to 2 pixels resulting in a reduction in the local image

buffer size. The fetch-and-schedule finite state machine (FSM)

can either fetch potential matching candidates that are guided

by inertial estimate of neighboring pixels from the flow

memory or fetch random candidates, and store them into the

five 4056b shift register arrays. When all potential candidates

are fetched, Census transform and pixel-wise matching costs

are computed. Fetch & schedule FSM is also programmed to

control the traversal pattern in a block so that certain pixels can

be omitted to perform the sparse-to-dense NG-fSGM.

The processing unit (PE) array aggregates incoming

pixel-wise matching cost with the aggregated costs of previous

pixels stored in the row buffer (5850b). When aggregation on a

single path finishes, optimal values are written back to the

5850b row buffer, and also forwarded to the

fetch-and-scheduler for prefetching. The PE array runs at

20MHz to match the local memory bandwidth, and delivers

2.5M flow vectors per second. With 8 cores in total, the

proposed design is able to achieve optical flow processing of

over 60fps for VGA streams.

Detailed implementation of a PE array is provided in Figure

14. It consists of 138 PEs (to support up to 138 matching

candidates given by KN(P + 1) + M where K = 3×3, M = 3, and

P = 4) to enable parallel evaluation and aggregation over all

matching candidates. In each PE (gray box), each candidate

flow vector is compared with N-best (N=3) flow vectors of

previous pixel, and P1, P2 (penalties) are added to the raw

matching cost as in (2) depending on the distance between flow

candidate and previous flow vectors. Aggregation on each path

is performed separately. After costs on each matching

candidate are aggregated, the aggregated costs are fed to a tree

of comparators (path optimal selection unit in Figure 14) to

generate 3 path-wise optimal flows vectors. These flow vectors

are stored in the row buffer and sent to the fetch-and-schedule

FSM for prefetching. Meanwhile, aggregation on another path

is performed in parallel with prefetching on a different path.

Using this path-interleaved processing with prefetching,

performance is improved by 4× compared to a sequential

processing without pipelined path interleaving. After

aggregation on all paths is completed, path-wise costs are

summed together for computing the output optimal flow vector.

Curr
(Right)

Neighbor-Guided candidates
Random candidates

Processing
 block

Prev
(Left)

Repeat 8 times
to get aggregated costs

on 8 paths

Image fetch & scheduling

Flow/depth selection

Summation of
aggregated costs

on 8 paths

Min selection

Search
block

Top K min
becomes center of

flow candidates

Flow of one pixel Prev
(Left)

aggregation
over

sparse
candidates

Prev
(Left)

64 sparse
candidates

Local matching costs,
99% sparsity

Neighbor-Guided
Flow Search

Census transform & Local matching

SGM aggregation

Curr
(Right)

Prev
(Left)

9

9

P×N×

Prev
(Left)

Curr
(Right)

Census
transform Census transform

81 bits: 101...10
Hamming distance

on 64 flow candidates per pixel

P×N×

M ×

M ×

Candidates
from neighbors

Random
candidates

Fig. 12. Processing procedure of a single core

Global Image buffer
0.5MB

Local
Image
buffer

Fetch &
Schedule

PE
array

Local
Image
buffer

Fetch &
Schedule

PE
array

Local
Image
buffer

Fetch &
Schedule

PE
array

Local
Image
buffer

Fetch &
Schedule

PE
array

Local
Image
buffer

Fetch &
Schedule

PE
array

Local
Image
buffer

Fetch &
Schedule

PE
array

Local
Image
buffer

Fetch &
Schedule

PE
array

Local
Image
buffer

Fetch &
Schedule

PE
array

Fig. 11 Architecture of the multicore optical flow processor.

PE Array

Five 4056b shift register
array

5850b row buffer

5850b row buffer

5850b row buffer

5850b row buffer

Local Image buffer
382kb

Fetch & Schedule

C
LK

_m
em

or
y

1 GHz

Census
Transform

& hamming
distance

generation

... CLK_Path

20MHz

Flow Map Write flow

Fig. 13 Architecture of a single core

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

Table VIII provides the estimated area breakdown of

different components of the proposed hardware architecture

synthesized in TSMC 28nm HPC technology. VDD of

processing elements running at 20MHz can scale down to 0.7V

to match the memory access bandwidth while memory banks

are still operated at full VDD (0.9V).

 A single core is also place and routed; Fig 15 shows the

place and route (P & R) results. The core is split into two parts:

the fetch & schedule FSM with the image memory and the PEs

with the flow memory. P & R results for both blocks are shown

respectively. Table IX provides simulated power results after P

& R. We simulate the design with an image block and

categorize the power associated with each processing step.

Simulation vectors for each block are recorded, and are fed to

the P & R tool for accurate power estimation that includes

coupling and signal integrity analysis. Overall, the area and

power for a single core is 0.56mm2 and 84.9mW respectively.

For the 8-core system, a throughput of 20M pixel/s (2.5M

pixels/s per core) or 65 fps in VGA is achieved with power

consumption (estimated) of 679.2 mW. Table X provides the

comparison with a prior optical flow hardware implementation

of LK [35]. Proposed design achieves 4× more optical flow

range, significantly better accuracy, 2× more throughput, and

2× energy efficiency compared with [35]. The proposed

NG-fSGM with hardware optimizations allows real-time

optical flow processing with negligible power overhead

compared to ~100W for an MAV [36].

VII. CONCLUSION

This paper presents NG-fSGM, a low complexity method for

optical flow. Dramatic complexity reduction is achieved by

aggressively pruning the flow vector search space using

information from neighbor pixels. The cost aggregation and

flow computation steps have been optimized for further

complexity reduction. NG-fSGM has been evaluated on the

Middlebury and MPI optical flow datasets. The evaluation

results show that NG-fSGM has comparable performance with

an order of magnitude reduction in complexity compared to a

prior work fSGM, and greatly outperforms other similar-costly

methods like Lucas-Kanade.

 Several hardware optimization techniques were

introduced for the NG-fSGM optical flow algorithm. By

dividing image into overlapping blocks, the full benefit of

parallel processing is exploited with only a small degradation in

accuracy compared to the original NG-fSGM. To further

reduce the complexity of the overlapping block-based

approach, temporal inertial guidance and sparse-to-dense

interpolation, methods were proposed. Evaluation on

Middlebury datasets shows that proposed block based

algorithm has only 0.29% accuracy degradation compared to

the original algorithm. The proposed algorithm is mapped onto

a multicore architecture its throughput and power consumption

evaluated in 28nm node to demonstrate the feasibility for

real-time processing on power-critical MAV platforms.

5MHz

CLK_Path

P
a

th
 O

p
tim

a
l se

le
ctio

n

Memory Read Address

…
..

.

O
p

tim
al se

le
ctio

n

CLK_Global

N
_

co
st

PE array

P
E

…
..

.

P
E

P
E

P
E

20MHz

C[i]

+

C
o

m
p

Flow est

Path opt[j]

Path cost[j]

Path cost[j] + P1

Path cost[j] + P2
MUX

Flow
difference

PE
N

B
es

t

M
in

 se
le

ctio
n

R
e

g+

Fig 14. Detailed implementation of a PE array

TABLE VIII. AEAR AND POWER ESTIMATE OF A SINGLE PE

 Area(um2) Power

Image buffer 172380 12.6mW

Flow buffer 87196 56.29uW

PE array + Path optimal

selection

234332 18.8mW

5850b row buffer 67106 4.8mW

Census & Hamming distance 205068 5.8mW

Optimal selection 187465 14.2mW

Fetch & scheduler 4280 0.66mW

4056b Register array 45830 3.5mW

Core Total 1204975 74.76mW

Fig 15. Automated place & route result of a core. (left: image memory
with fetch & scheduler, right: aggregation units and flow memory)

TABLE IX. POWER RESULT OF A SINGLE PE POST ROUTE

 Power
Memory read 31.2mW
Local cost computation 10.2mW
Cost aggregation 35.2mW
Optimal flow search 8.3mW
Core Total 84.9mW

TABLE X. COMPARISON WITH PRIOR OPTICAL FLOW ASIC

 [35] Proposed

Algorithm Pyramid LK NG-fSGM

Technology 65nm 28nm

Throughput VGA 30 fps VGA 60 fps

Optical flow range -32 ~ 32 -64 ~ 64

Power 600 mW 679 mW

H

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

VIII. REFERENCES

[1] S.Yamamoto, M. Yasushi, S. Yoshiaki i, and J. Miura. "Realtime
multiple object tracking based on optical flows." In IEEE International
Conference on Robotics and Automation, vol. 3, pp. 2328-2333, 1995.

[2] V. Grabe, H. H. Bülthoff, and P. R. Giordano. "On-board velocity
estimation and closed-loop control of a quadrotor UAV based on optical
flow." In IEEE International Conference on,Robotics and Automation
(ICRA), pp. 491-497, 2012.

[3] G. Bleser, and G. Hendeby. "Using optical flow as lightweight SLAM
alternative." In 8th IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 175-176, 2009.

[4] N. Onkarappa, and A.D. Sappa. "Speed and texture: an empirical study on
optical-flow accuracy in ADAS scenarios." IEEE Transactions on
Intelligent Transportation Systems, 15, no. 1, pp. 136-147, 2014.

[5] B.K.P. Horn,and B. G. Schunck. "Determining optical flow." Artificial
Intelligence 17, no. 1-3, pp. 185-203, 1981.

[6] H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosen-
hahn and H.-P. Seidel, “Complementary optic flow,” Energy
Minimization Methods in Computer Vision and Pattern Recognition, pp.
207-220, 2009.  

[7] V. Lempitsky, S. Roth and C. Rother, “Fusion flow: discrete- continuous
optimization for optical flow estimation,” Computer Vision and Pattern
Recognition, pp. 1-8, 2008.  

[8] T. Cooke, “Two applications of graph-cuts to image processing,” Digital
Image Computing: Techniques and Applications, pp. 498–504, 2008.  

[9] M Menze and A. Geiger, “Object Scene Flow for Autonomous Vehicles”;
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3061-3070, 2015

[10] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black and R. Szeliski,
“A Database and Evaluation Methodology for Optical Flow,”
International Journal of Computer Vision, vol. 92, pp. 1-31, 2011.  

[11] H. Hirschmueller, “Stereo processing by semiglobal matching and mutual
information,” Pattern Analysis and Machine Intelligence, Vol. 30, pp.
328–41, 2008.  

[12] C. Lei, Y .-H. Y ang, “Optical flow estimation on coarse-to-fine region-
trees using discrete optimization,” International Conference on Computer
Vision, pp. 1562–1569, 2009.  

[13] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying
Framework”, International Journal of Computer Vision, vol. 56(3), pp.
221-225, 2004.  

[14] A. Bruhn, J. Weickert and C. Schnörr, “Lucas/Kanade meets
Horn/Schunck: combining local and global optic flow methods,”
International Journal of Computer Vision, Vol. 61(3), pp. 211–231, 2005.

[15] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P.
van der Smagt, D.Cremers, and T. Brox. "Flownet: Learning optical flow
with convolutional networks." In IEEE International Conference on
Computer Vision, pp. 2758-2766. 2015.

[16] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A.Dosovitskiy, and T. Brox.
"Flownet 2.0: Evolution of optical flow estimation with deep networks."
arXiv preprint arXiv:1612.01925 (2016).

[17] Z. Li, Q. Dong, M. Saligane, B. Kempke, S. Yang, Z. Zhang, R.
Dreslinski, D. Sylvester, D.Blaauw, and H.-S. Kim. "3.7 A 1920× 1080
30fps 2.3 TOPS/W stereo-depth processor for robust autonomous
navigation." In IEEE International Solid-State Circuits Conference
(ISSCC), pp. 62-63, 2017.

[18] K. Pauwels, M. Tomasi, J. D. Alonso, E. Ros, and M. M. Van Hulle. "A
comparison of FPGA and GPU for real-time phase-based optical flow,
stereo, and local image features." IEEE Transactions on Computers, 61,
no. 7 , pp.999-1012, 2012.

[19] J. Xiang, Z. Li, D. Blaauw, H.-S. Kim, and C. Chakrabarti. "Low
complexity optical flow using neighbor-guided semi-global matching." In
IEEE International Conference on Image Processing (ICIP), pp.
4483-4487, 2016.

[20] J. Xiang, Z. Li, H.-S. Kim, and C. Chakrabarti. "Hardware-Efficient
Neighbor-Guided SGM Optical Flow for Low Power Vision
Applications." In IEEE International Workshop on Signal Processing
Systems (SiPS), pp. 1-6., 2016.

[21] S. Hermann and R. Klette, “Hierarchical scan line dynamic programming
for optical flow using semi-global matching,” Computer Vision-ACCV
Workshops, pp. 556-567, 2012.  

[22] R. Zabih and J. Woodfill, “Non-parametric local transforms for
computing visual correspondance,” European Conference on Computer
Vision, pp. 151–158, 1994.  

[23] P. Viola and W. M. Wells, “Alignment by maximization of mutual
information,” International Journal of Computer Vision, Vol. 24(2), pp.
137–154, 1997.  

[24] B. Christian, P. Pirsch, and H. Blume. "Evaluation of penalty functions
for semi-global matching cost aggregation." International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences
[XXII ISPRS Congress, Technical Commission I] 39, Nr. B3. Vol. 39.
No. B3. Göttingen: Copernicus GmbH, 2012.

[25] H. Heiko, M. Buder, and I. Ernst. "Memory efficient semi-global
matching." ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 3, pp. 371-376, 2012.

[26] C. Stiller, “Motion—Estimation for Coding of Moving Video at 8 kbit/s
with Gibbs Modeled Vectorfield Smoothing” Proc. SPIE 1360, Visual
Communications and Image Processing '90: Fifth in a Series, 468
(September 1, 1990).

[27] G. de Haan, P. W. A. C. Biezen, H. Huijgen and O. A. Ojo, "True-motion
estimation with 3-D recursive search block matching," in IEEE
Transactions on Circuits and Systems for Video Technology, vol. 3, no. 5,
pp. 368-379, Oct 1993.

[28] C. Barnes, E. Shechtman, A. Finkelstein and D. Goldman, “PatchMatch:
a randomized correspondence algorithm for structural image editing”
ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 2009.  

[29] H. Hirschmu ̈ller and D. Scharstein, “Evaluation of stereo matching costs
on images with radiometric differences,” IEEE Trans. Pattern Analysis
Machine Intelligence, Vol. 31, pp. 1582–1599, 2009.

[30] B.D. Lucas and T. Kanade, “An iterative image registration techinique
with an application to stereo vision,” IJCAI, Vol. 81, pp. 674-679, 1981.

[31] H. Simon, S. Morales, and R. Klette. "Half-resolution semi-global stereo
matching." Intelligent Vehicles Symposium (IV), pp. 201-206, 2011.

[32] B. Daniel J., et al. "A naturalistic open source movie for optical flow
evaluation." European Conference on Computer Vision, Berlin,
Heidelberg, pp. 611-625, 2012.

[33] G. Andreas, P. Lenz, and R. Urtasun. "Are we ready for autonomous
driving? the kitti vision benchmark suite." IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3354-3361,
2012.

[34] M. Ziyang, et al. "Constant time weighted median filtering for stereo
matching and beyond." IEEE International Conference on Computer
Vision (ICCV), pp. 49-56, 2013.

[35] I. Hajime, et al. "A VGA 30-fps optical-flow processor core based on
Pyramidal Lucas and Kanade algorithm.", IEEE Asian Solid-State
Circuits Conference, ASSCC'., pp. 188-191, 2007.

[36] https://www.dji.com/matrice100/info

Ziyun Li (S’14) received the B.S. degree in
electrical and computer engineering from the
University of Michigan, Ann Arbor, MI, USA,
in 2014, where he is currently pursuing the
Ph.D. degree with the Michigan Integrated
Circuit Laboratory. His current research
interests include highperformance,
energy-efficient computer vision/ machine
learning processing units to enable next
generation intelligent, autonomous navigation
system. Mr. Li was a recipient of the Best Paper

Award at the 2016 IEEE Workshop on Signal Processing Systems.

1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2854284, IEEE
Transactions on Circuits and Systems for Video Technology

Jiang Xiang received his B.E. in Information
Engineering from Xidian University in 2014
and his M.S. in Computer Engineering from
Arizona State University in 2017. Currently
he works for SAIC Innovation Center, where
he is a software engineer in Autonomous
Driving team. His research focuses on
computer vision, machine learning, and
algorithms optimization. He is a recipient of
the 2016 SIPS Best Student Paper Award.

Luyao Gong is currently pursuing the Ph.D.
degree in electrical and computer engineering
with the University of Michigan, Ann Arbor,
MI, USA. Her research interests include
computer vision, low power image
compression and machine learning.

David Blaauw received his B.S. in physics and
computer science from Duke University in
1986 and his Ph.D. in computer science from
the University of Illinois at
Urbana-Champaign in 1991. Until August
2001, he worked for Motorola, Inc. in Austin,
TX, where he was the manager of the High
Performance Design Technology group and
won the Motorola Innovation award. Since
August 2001, he has been on the faculty of the
University of Michigan, where he is a

Professor. He has published over 550 papers, has received numerous best
paper awards and nominations, and holds 60 patents. He has investigated
adaptive computing to reduce margins and improve energy efficiency
using a new approach he pioneered, called Razor, for which he received
the Richard Newton GSRC Industrial Impact Award and IEEE Micro
annual Top-Picks award. He has extensive research in ultra-low-power
computing using subthreshold computing and analog circuits for
millimeter sensor systems which was selected by the MIT Technology
Review as one of the year’s most significant innovations. For high-end
servers, his research group introduced so-called near-threshold
computing, which has become a common concept in semiconductor
design. Most recently, he has pursued research in cognitive computing
using analog, in-memory neural-networks. He was general chair of the
IEEE International Symposium on Low Power, the technical program
chair for the ACM/IEEE Design Automation Conference, and serves on
the IEEE International Solid-State Circuits Conference’s technical
program committee. He is an IEEE Fellow and received the 2016
SIA-SRC faculty award for lifetime research contributions to the U.S.
semiconductor industry.

Chaitali Chakrabarti is a Professor with the
School of Electrical Computer and Energy
Engineering, Arizona State University (ASU),
Tempe, and a Fellow of the IEEE. She
received the B.Tech. degree in electronics and
electrical communication engineering from the
Indian Institute of Technology, Kharagpur,
India, in 1984, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland, College Park, in 1986 and 1990,
respectively. Her research interests include
VLSI algorithm-architecture codesign of
signal processing and communication systems,
portable medical imaging, design of low

power embedded systems, and emerging memory technology based
system design. She has won several best paper awards in signal
processing and computer architecture conferences. She is a
Distinguished Alumnus of ECE, University of Maryland, College Park,
USA, and Indian Institute of Technology, Kharagpur, India.

Hun Seok Kim (S’10 -- M'11) received his
B.S. degree from the Seoul National
University (South Korea), and M.S. & Ph.D.
degrees from the University of California,
Los Angeles (UCLA), all in Electrical
Engineering. He is currently an assistant
professor at the University of Michigan, Ann
Arbor. His research focuses on system
analysis, novel algorithms, and efficient VLSI
architectures for low-power /
high-performance wireless communication,
signal processing, computer vision, and

machine learning systems. Before joining the University of Michigan,
Kim worked as a technical staff member at Texas Instruments (2010 –
2014). He is serving as an associate editor of IEEE Transactions on Green
Communications & Networking, and IEEE Solid State Circuits Letters.
Kim is a recipient of the 2018 Defense Advanced Research Projects
Agency (DARPA) Young Faculty Award (YFA).

