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 

Abstract— Accurate, low-latency and energy-efficient optical 

flow estimation is a fundamental kernel function to enable several 

real-time vision applications on mobile platforms. This paper 

presents Neighbor-Guided Semi-Global Matching (NG-fSGM), a 

new low-complexity optical flow algorithm tailored for low power 

mobile applications. NG-fSGM obtains high accuracy optical flow 

by aggregating local matching costs over a semi-global region, 

successfully resolving local ambiguity in texture-less and occluded 

regions. Proposed NG-fSGM aggressively prunes the search space 

based on neighboring pixels’ information to significantly lower 

the algorithm complexity from the original fSGM. As a result, 

NG-fSGM achieves 17.9× reduction in the number of 

computations and 8.37× reduction in memory space compared to 

the original fSGM without compromising its algorithm accuracy. 

A multicore architecture for NG-fSGM is implemented in 

hardware to quantify algorithm complexity and power 

consumption. The proposed architecture realizes NG-fSGM with 

overlapping blocks processed in parallel to enhance throughput 

and to lower power consumption. The 8-core architecture 

achieves 20M pixel/s (66 frames / sec for VGA) throughput with 

9.6mm2 area at 679.2mW power consumption in 28nm node. 

Index Terms — Optical flow, Semi-global matching, VLSI, Low 

power, Multi-core accelerator. 

I. INTRODUCTION 

EAL TIME, accurate, dense and energy-efficient optical 

flow estimation is essential for many computer vision 

applications such as object detection and tracking [1], 

simultaneous localization and mapping (SLAM) [2][3], and 

advanced driving assistance system (ADAS) [4]. Optical flow 

represents the pattern of apparent motion of objects, surfaces, 

and edges in a visual scene caused by the relative motion 

between an observer (an eye or a camera) and the scene [5].  

Challenges involved in optical flow estimation include 

ambiguity over occlusion, perspective distortion, transparent 

objects, low/uniform textures, and repeated patterns. To 

address these challenges, most existing optical flow algorithms 

optimize a global energy function in the form of weighted sum 

of a data term and a prior term [6][7][8][9], as stated in the 

taxonomy of Baker et al. [10]. Semi-global matching (SGM) 

[11], an algorithm often used in stereo matching, can resolve 
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local ambiguity by propagating information from neighboring 

pixels along multiple paths over the entire image.  However, 

directly applying SGM to optical flow estimation is challenging 

because, unlike stereo matching, the search space for optical 

flow is two-dimensional. Increase in flow search range will 

quadratically affect the memory and computation requirement. 

Therefore, it is typical to employ a coarse-to-fine approach [12] 

[13] for estimating large optical flow displacements. However, 

accuracy degradation in hierarchical approaches is inevitable 

due to resolution loss at higher hierarchical levels and error 

propagation to lower levels [14]. As an alternative technique, 

convolutional neural network (CNN) based optical flow 

estimation schemes have been recently proposed [15][16]. 

These techniques, however, require a very large number of 

parameters (tens of millions) and convolution operations 

(>600k OPs per pixel) [15] making them impractical for mobile 

applications.  

When optical flow computation is implemented on emerging 

power-critical mobile platforms such as autonomous 

navigation of unmanned aerial vehicles (UAV), it imposes 

further “SWaP” [17] constraints limiting the size, weight and 

power consumption to deliver real-time performance. 

Conventional general purpose CPU or GPU based solutions are 

not applicable to meeting stringent SWaP constraints for 

mobile applications as they suffer from either high power 

consumption (~100W) [18] for real-time performance or low 

performance (~1fps) given power constraint.    

We originally proposed2 a new, low-complexity optical flow 

method; Neighbor-Guided Semi-Global Matching (NG-fSGM) 

in [19][20]. In this paper, we build upon that work and provide 

comprehensive parametric analysis of NG-fSGM along with a 

discussion on several optimization techniques for SWaP 

constrained MAV applications. The proposed NG-fSGM 

method is based on SGM [11], a popular concept in stereo 

matching, and its optical flow version, fSGM [21]. Our 

objective is to achieve orders of magnitude complexity 

reduction of the original SGM while maintaining its high 

accuracy. This goal has been achieved by performing 

comprehensive algorithm-architecture co-optimization. The 

algorithm optimization techniques include: (1) aggressively 

pruning the search space size by exploiting flow similarity of 
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neighboring pixels, (2) approximating cost array aggregation to 

avoid exhaustive pixel-wise cost computation, (3) partitioning 

the image into overlapping blocks and initializing boundary 

flow vectors with temporal prediction to minimize accuracy 

degradation and overlap overhead at the boundary, and (4) 

executing the full NG-fSGM algorithm on selective pixels and 

performing interpolation to construct dense flow field. Along 

with the proposed algorithm optimization, we designed a 

multi-core, highly parallel architecture for NG-fSGM in TSMC 

28nm GP technology. The accuracy, performance and power of 

the proposed NG-fSGM algorithm and hardware design are 

characterized and evaluated. Results reveal that the proposed 

NG-fSGM method provides dense optical flow with accuracy 

comparable to the original fSGM while exhibiting significant 

complexity reduction both in arithmetic/logical operations and 

in memory size/bandwidth requirements. The proposed 

energy-efficient hardware architecture with 8 cores achieves a 

throughput of 20M flow/s (equivalent to VGA 66 fps) with 

estimated power consumption of 679.2mW in TSMC 28nm GP 

node. 

II. BACKGROUND 

The SGM algorithm was originally proposed by 

Hirschmüller for stereo matching [11]. It achieves 

state-of-the-art accuracy by applying dynamic programming 

based cost function optimization over the entire image.  SGM 

first computes pixel-wise matching costs of corresponding 

pixels in two frames for all disparities (stereo matching) in the 

search space. This is followed by cost aggregation along a finite 

number of paths that penalizes abrupt disparity changes. SGM 

was applied to optical flow, fSGM in [21] by extending the 

search space from 1D stereo to 2D optical flow. A brief review 

of fSGM is included here for completeness. 

Step 1: Computation of pixel-wise matching costs C(p, o) 

between pixel p = (x, y) in the previous image frame and pixel q 

= p + o in the current image frame, for all flow vectors o = (u, 

v), where u is the horizontal component and v is the vertical 

component. The cost function can be based on Rank, Census 

[22] and mutual information [23]. 

Step 2: The smoothness constraint on matching costs is 

applied to penalize abrupt changes of flow vectors among 

adjacent pixels. The accumulated cost Lr(p, o) of the pixel p for 

a flow vector o along a path in the direction r is defined as 

              .                (1) 

The cost regularization summand has the form  

      (2) 

             }  

where P1 and P2 are regularization penalties (P1 ≤ P2). Instead 

of the piecewise linear model used in fSGM[21], we adopt a 

constant penalty model because of its simplicity for VLSI 

implementation without significant accuracy degradation [24]. 

The modification penalizes 1-pixel offset flow vectors by a 

smaller penalty P1 (smoothness constraint) and all other vectors 

with >2 pixel offsets by a larger penalty P2  [11]. The 

aggregated cost S(p,o) is the sum of Lr(p,o) over all paths. 

                                                           (3) 

Step 3: The final flow estimation uses winner-takes-all 

strategy. The flow vector o with the minimum cost S(p,o) is 

selected as the final flow estimation. 

Straightforward fSGM implementation poses significant 

hardware challenges. The complexity of the original SGM 

method is O(WHD), where W is the image width, H is the 

image height and D =  is the size of the search space per 

pixel given the one-dimensional search range d. Note that 

complexity of fSGM increases quadratically with the  

one-dimensional flow range d, making the algorithm very 

inefficient for a moderate flow search range (e.g., D = 10000 

for ±50 pixel search range per dimension). Prior work [25] 

prunes SGM aggregation results for stereo vision processing to 

minimize the storage requirement and to reduce the SGM 

aggregation complexity in forward and backward propagations. 

However, the technique in [25] still involves exhaustively 

evaluating the entire search range (1D for stereo) for pixel 

matching, and thus would dominate the overall complexity 

when applied to optical flow. In this paper, we introduce a new 

optical flow algorithm; Neighbor-Guided fSGM (NG-fSGM) 

whose complexity (both matching and cost aggregation) is 

independent of 2D search range. Despite its significantly lower 

complexity and memory footprint, the proposed NG-fSGM still 

achieves near fSGM accuracy. We also propose several 

hardware-oriented optimizations, as will be described in the 

following sections.  

III. NEIGHBOR-GUIDED SEMI-GLOBAL MATCHING 

NG-fSGM reduces the complexity by aggressively pruning 

the search space based on information from neighbors. Using 

neighborhood information to prune the search space has also 

been used in [26] and [27] in the context of block matching for 

motion estimation. We extend the idea to semi-global cost 

aggregation and also modify flow computation functions to 

reduce the overall complexity.  

A. Flow Subset Selection 

It is highly likely that neighboring pixels in the image have 

an identical or slowly changing flow vector since they tend to 

belong to the same object, and thus have similar motion. Small 

flow variation usually occurs due to slanted surface of objects, 

spinning objects, camera motion, etc. Large flow variations can 

occur at the boundary of different objects and are typically 

combined with occlusion and motion discontinuity. NG-fSGM 

exploits this property by selecting a subset of search space, Op 

for each pixel p, based on its neighboring pixels’ flow results. 

Computation of pixel-wise matching costs is performed on the 

subset Op whose size is much smaller than D = . This 

selection strategy is inspired by PatchMatch [27], in which the 

search space is initialized to a random set and neighboring 

pixels exchange ‘good guesses’. 

The subset Op selection for each pixel p is guided by its 

neighboring pixels along every aggregation path r in SGM, as 
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shown in Fig. 1. For pixel p, Op is initially empty. The best N 

flow vectors in Op-r of previous pixel along path r with the 

minimum cost Lr(p-r, o) are added to Op to construct the search 

subset. Pixels correspond to these best N flow vectors are 

marked by B in Fig. 1. We may choose multiple (N > 1 per each 

path r) best vectors for robustness to cost variation accumulated 

along a path and also local abnormality of pixel-wise matching 

cost. Since fSGM applies a low aggregation penalty (P1 in (2)) 

when the flow varies smoothly, it is reasonable to add adjacent 

flow vectors, marked by A in Fig. 1, around each of these best 

N vectors to Op. Note that selection of A points around each B 

point is pseudo-random and unbiased. To enable the algorithm 

to adapt to rapid flow variations (e.g., occlusion and object 

discontinuity), M random flow vectors are added to the subset, 

which are marked by R in Fig. 1. Although the number of these 

random vectors selected for each pixel is small compared with 

the flow search range, it plays a very important role because 

randomly found ‘good’ candidates can propagate to 

neighboring pixels through forward and backward 

propagations. NG-SGM propagation starts from image 

boundary pixels which do not have sufficient number of 

neighboring pixels. The initial subset for these boundary pixels 

is thus randomly selected from a uniform distribution. 

 
Typically, SGM is implemented in two scans, forward and 

backward, and so SGM aggregation paths are divided into two 

groups one for each scan. In Fig. 1, the forward scan proceeds 

from top-left to bottom-right of the image in the raster scan 

order, while the backward scan processes pixels in the reverse 

order. As a result, pixel p has different flow vector subset Op1 

and Op2, and aggregated cost S1(p,o) and S2(p,o) for forward 

scan with subscript 1 and backward scan with subscript 2, 

respectively. The overall subset Op is the union of Op1 and Op2 

and the overall aggregated cost S(p,o) is the sum of S1(p,o) and 

S2(p,o). We propose in Section III-C an approximation strategy 

to combine forward and backward aggregation. In the 

backward scan, N best flow vectors with the forward scan 

minimum cost S1(p,o) is added to construct Op2 to increase 

algorithm accuracy.  

The flow vector candidates chosen by different aggregation 

paths may be redundant since neighboring pixels’ best vectors 

can be identical, and the adjacent windows (i.e., A’s in Fig.1) 

can overlap. When candidates are all exclusive (worst case), the 

total number of vectors in the search subset Op is T = 

NK(P/2+1)+M, where P is the total (forward and backward) 

number of aggregation paths, and K is the window size to select 

adjacent candidates (A points) surrounding each best candidate 

(B point) guided by a neighbor. Fig. 1 shows an example for 

K=2×2 window. The complexity of NG-fSGM is O(WHT), 

which is independent of flow search range (D = d2). With T << 

D, significant (>10x) complexity reduction can be achieved 

compared to the original fSGM.  

B. Pixel-wise matching cost 

For pixel-wise matching cost C(p,o), we adopt Hamming 

distance of Census transform [22]. Census transform has been 

proven to represent image structure well and to be robust to 

illumination variations [29].  

One possible implementation of SGM is to pre-calculate the 

Census transform of the entire image and store the Census 

image in an array of size WHC2. Here, C2 denotes the Census 

transform window size. Storing the Census transformed images 

poses significant memory overhead because each pixel is 

represented with a bit string of C2 bits instead of 8-bit greyscale 

value. Once Census transformed images are pre-calculated, raw 

costs can be generated directly by accessing these Census 

transformed pixels. Although computing the Census transform 

for all pixels is computationally wasteful, it may lower memory 

bandwidth per pixel because it can be implemented using a 

highly efficient sliding window based approach with 

deterministic memory access patterns.  

In the proposed NG-fSGM, only a subset Op of full flow 

candidate vectors needs to be evaluated. The calculation of 

C(p,o) can be performed on-the-fly only when o is selected 

during the cost aggregation step. For this approach, storing an 

array of precomputed pixel-wise matching cost C(p,o) is 

unnecessary. However, memory bandwidth required for 

Census transform per pixel is significantly higher because an 

efficient sliding window approach is no longer applicable. In 

Section III. E, we quantify the tradeoff space between 

pre-calculating Census transform vs. computing Census 

transform on selective pixels on-the-fly. Pre-calculating 

Census transform results in calculating the Census transform 

for unused pixels whereas computing Census transform 

on-the-fly loses (because of irregular pixel processing pattern) 

the computing and memory efficiency of sliding window based 

calculations. 

C. Cost Aggregation and Flow Computation 

In order to compute Z in (2) for cost aggregation (1), typical 

SGM-based methods store  in a line buffer array of 

size WPD. NG-fSGM stores only the best N flow vectors for 

each path and their costs. Thus, the line buffer array size is 

reduced to WPN. Since we selectively store the aggregated cost 

, the cost  may not be available for Op-r 

along a certain direction r. In that case, the aggregated cost is 

approximated by assigning  

 
Fig. 1. Illustration of subset selection for the center pixel p. The solid 

arrows represents path directions in forward scan while dashed arrows 

represents path directions in backward scan. The selected flow vectors, is 

the combination of B and A, where B corresponds to the N = 2 best flow 
vectors and 3 A’s are selected for each B within a 2x2 window. R 

corresponds to M = 4 random flow vectors. 
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TABLE I. MEMORY SIZE, NUMBER OF OPERATIONS, MEMORY BANDWIDTH REQUIREMENT OF NG-FSGM FOR PROCESSING AN IMAGE OF SIZE (W×H) 

 Memory size (Bytes per frame) Number of Operations Memory access bandwidth (R/W Bytes per frame) 

Data Type Census on the fly 
Pre-compute 

Census 
Census on the fly Pre-compute Census  Census on the fly Pre-compute Census 

Input Images 2WH 0   

Subset 

Selection 
  2(P(KN+M)+(N(P+1)K+M)(2+P)+3d2)WHS (N(P+1)+M+1)2WH 

Census Transform 
(KN(P+1)+M+1)(

C2-1)/8 2WH(C2-1)/8 
((N(P+1)K+M)(9+KC2))

WHS 
2C2WH 

(K+8(C-1/2)2(N(P+1)+(M

+1))+8(C-1/2)2)WH 

WH((NK 

(P+1)+M+1)2C2+8)/8 

Pixel-wise 

Matching cost 4(KN(P+1)+M) ((N(P+1)K+M)(2C2))WHS   

Path-wise 

Aggregated Cost 
4P(KN(P+1)+M) 

(6P(N(P+1)K+M)(N+3))WHS 
4NPWH 

 Summated 

Aggregated Cost 
4(KN(P+1)+M) 

Path-wise Best 

flow 
4WPN 

(KN(P+1)+M)P(4N+2)WHS  
Scan-wise 

Best flow 
4WHN 

Flow Map 2WH (4(KN(P+1)+M)N+3(KN(P+1)+M))WHS 
4NWH 

 

 

 =          (4) 

To access forward scan results during the backward scan, the 

original SGM-based method stores the aggregated cost S(p, o) 

for all searched flow vectors in an array of size WHD, and 

updates the values by accumulating path-wise aggregated cost 

Lr(p, o) obtained during the backward scan. NG-fSGM avoids 

such a large memory usage by storing only the N best flow 

vectors Bp per pixel along with their corresponding aggregated 

cost S1(p, o) from the forward scan. Similar to the  line 

buffer handling, S1(p, o) is approximated to  

when it is not available for backward scan aggregation. As a 

result, the array size for storing S1(p, o) is reduced from WHD 

to WHN. 

For each pixel p visited during the backward scan, the set of 

N best vectorst Bp, from forward scan and the neighbor-guided 

vectors from backward scan, Op2, may be dissimilar. For 

vectors whose cost has not been calculated in either the forward 

or the backward scan, the following rules are applied to 

approximate the final aggregation cost S(p, o): The missing 

costs S1(p, o) in forward scan are assigned the maximum cost in 

Bp plus P2, while the missing costs in backward scan S2(p, o) 

are assigned the maximum cost in Op2. The overall cost S(p, o) 

is the sum of cost from two scans. Finally, the output flow 

vector o is the one corresponding to the minimum cost S(p, o).  

D. Post Processing 

After the raw flow results are computed, post-processing 

steps are applied to refine the flow image. We apply a simple 

3×3 median filter on both horizontal and vertical components 

of the flow image to remove errors and smoothen flow fields. If 

the accuracy requirement is high, a consistency check between 

previous and current frame (similar to left-right check for 

stereo [11]) can be applied to create the confidence map.  

E. Complexity Analysis 

    Next, we analyze the complexity of the proposed 

NG-fSGM with respect to memory size, memory access 

bandwidth and number of operations. The key parameters in the 

tables are: image size (W×H), number of best flow vectors (N) 

per aggregation path, number of random flow vectors (M), 

number of aggregation paths per scan (P), window size (K) to 

select adjacent candidates (A points in Fig. 1) surrounding each 

best candidate (B point in Fig. 1) guided by a neighbor, the 

maximum flow search range (d2), and Census transform 

window size (C×C). The maximum search subset size per pixel 

(i.e., the number of elements in Op) is (KN(P+1)+M). The 

Census transform for each pixel requires (C2-1)/8 bytes while 

each flow vector requires 4 bytes; 1 byte for the horizontal 

component, 1 byte for the vertical component, and 2 bytes for 

storing the (aggregated) cost.  

    Table I summarizes the memory size, number of operations 

and memory bandwidth requirement for two possible 

implementation options: one is selectively computing Census 

transform on-the-fly for vectors included in the search subset 

Op, and the other option is to pre-compute and store Census 

transform for all pixels to benefit from the deterministic sliding 

window approach. If Census transform is computed on-the-fly, 

two (previous and current) grayscale input images need to be 

stored. In addition, a small temporary memory is necessary to 

store Census transform of matching candidate pixels. 

Meanwhile, when Census transform is pre-computed, Census 

transform results for the entire current and previous images are 

stored in the memory instead of raw greyscale images. 

    The middle panel of Table I show the number of operations 

to process an image frame of size W×H, and the right panel of 

Table I summarizes the memory bandwidth requirement 

represented by the total number of read/write Bytes for a W×H 

sized frame. Memory bandwidth requirement also depends on 

whether Census transform is computed on-the-fly or 

precomputed. Although precomputing Census allows for an 

efficient sliding window approach, most Census transform 

results would not be needed for matching cost evaluation. As 

can be observed from the table, memory bandwidth is 

dominated by accesses required to perform pixel-wise 

matching (Census and Subset Selection rows combined). It is 

evident that Census transform on-the-fly vs. pre-computing 

Census transform poses tradeoffs in the number of 

computations, memory size, and memory bandwidth 

requirements.  
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IV. OPTIMIZATIONS FOR HARDWARE-EFFICIENT NG-SGM 

NG-fSGM allows optical flow complexity reduction with 

aggressive search space pruning. However, its complexity 

could still be excessive for power-constrained real-time mobile 

applications. According to the analysis provided in Section III, 

for full HD (1920×1080) resolution, NG-fSGM requires 

~20MB of memory, ~0.168TOPs performance and 3.8Tb/s 

memory bandwidth to achieve a throughput of 30fps. To enable 

low power, high throughput mobile optical flow estimation 

with high accuracy, we propose NG-fSGM-specific 

optimizations. Proposed techniques include: 1) performing 

overlapping-block based NG-fSGM in parallel 2) initializing 

flow search space with temporal prediction. 3) performing 

sparse flow estimation with NG-fSGM and interpolating results 

to obtain dense flows. 

A.  Parallel Block-based NG-fSGM 

We propose parallel block-based NG-fSGM to enable 

reduction in the overall power consumption by processing each 

block at a lower frequency and voltage given throughput target. 

The memory space requirement for block-based approach is 

proportional to the number of parallel-processed blocks and the 

block size instead of the image size. Other notable advantages 

include improved latency and throughput. Latency is 

proportional to the block size (instead of the image size) and the 

throughput linearly improves with the number of parallel block 

processing cores. 

 
In a naive block-based implementation, input frames are 

partitioned into non-overlapping blocks and the NG-fSGM 

algorithm is applied to each block in parallel. This 

non-overlapping block approach reduces the algorithm 

accuracy because of several factors. First, for the boundary 

pixels, NG-fSGM uses random selections to initialize the 

search subset so it takes some time (in term of pixel 

propagation) until ‘good’ (correctly guided by neighbors) flow 

vectors appear in neighbor-guided search subset. Second, since 

the aggregating paths accumulate information from boundary 

to inner pixels (because of the raster scan order), the cost 

aggregation is relatively unreliable at the boundary. Third, the 

flow smoothness constraint is interrupted at the boundary of 

two blocks when blocks are non-overlapping.  

In order to improve the accuracy of block-based NG-fSGM, 

we impose flow smoothness constraints across the block 

boundary. In the proposed scheme, the ‘previous’ (or reference) 

frame is first divided into n × n non-overlapping blocks, and 

then each block is extended by l pixels along four sides, 

resulting in m × m overlapping blocks, where m = n + 2l.  The 

‘current’ (or target) frame is divided into overlapping blocks as 

well, but with block size of m + 2d per dimension, where d is 

the flow search range per dimension. The output flow map of 

the entire image is built using the flow map of each n × n block. 

Fig. 2 shows an example of a non-overlapping block and its 

extensions. 

Generally, a larger size of non-overlapping block and a 

larger number of extended pixels result in better flow accuracy, 

at the expense of higher latency, computational cost, and 

memory requirement. For a certain image size, the parameter n 

defines the number of blocks to be processed, and together with 

l, it defines the architectural complexity that is a function of the 

memory size, memory bandwidth and the number of operations. 

The latency is linear in the size of overlapping block, m = n + 2l. 

Table II summarize the effect of parameters n and l on the 

memory size, number of operations and memory bandwidth (in 

Bytes) requirements to process a W×H frame. Larger n and l 

both increase the memory, computation and memory 

bandwidth per block, though larger n reduces the number of 

blocks to be processed. While overlapping of the blocks can 

significantly improve the flow accuracy, it also increases the 

complexity of computing a whole frame from O(n2) to O(m2), 

where m = n + 2l. Detailed analysis on this tradeoff is 

presented in Section V. 

B. Inertial Flow Vector Prediction Using Sequential Frames 

Large overlapping regions in block-based processing reduce 

throughput while increasing memory size and bandwidth 

requirements. We observed that the size of overlapping region 

can be significantly reduced if the search space of the boundary 

pixels is initialized with good flow estimates/predictions, 

replacing random vectors. Our method is inspired by ‘inertial 

estimates’ proposed in [30]. Assume that each object in the 

frame moves at a constant velocity. Then the flow of pixels 

between time frames [t, t + 1] can be estimated/predicted from 

the flow for [t – 1, t]. Let (i, j) denote pixel position, and let (u, 

v)(i, j) and (u’, v’)(i, j) denote flow of pixel (i, j) between time 

frames [t, t + 1] and [t – 1, t], respectively. Then we assume that 

the relationship (5) holds. 

                    (5) 

We use (5) to provide the inertial guided flow estimates. For 

each pixel in the extended region (grey area in Fig. 2) in the m × 

m block, inertial guided flow estimates are more reliable, in 

general, than neighbor-guided flows especially when the 

neighbors are closer to the block boundary where flow vectors 

are randomly initialized. Thus, we replace the guided flow of 

one neighbor (which is closest to the boundary) and its (K-1) 

adjacent flow vectors with the inertial guided flow vector and 

 

Fig. 2. An example of an n × n non-overlapping block in the previous frame. 
The corresponding m × m overlapping block in the previous frame is 

obtained by extending l pixels along four sides, and the corresponding 

overlapping block in the current frame is obtained by further extending d 
pixel along four sides. 
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its corresponding (K-1) adjacent flow vectors. The number of 

operations remains the same though small extra memory space 

is required for storing the inertial estimates. As we only store 

inertial estimates for boundary pixels, memory overhead is low 

(<2%). This approach helps significantly reduce the size of the 

extended region for overlapped block processing without 

algorithm accuracy degradation.  

C. Sparse-to-Dense Optical Flow Estimation 

 To further reduce the number of operations of NG-fSGM, 

we propose to estimate dense optical flow from sparse optical 

flow using interpolation. In the proposed method, sparse flow 

vectors are computed by performing NG-fSGM on selective 

pixels. It is also worth noting that the proposed method is 

different from conventional subsampling approaches where 

optical flow is performed on a subsampled image. Instead, our 

proposed method operates on the full resolution image while 

the optical flow is only computed on selective pixel positions 

with patterns shown in Fig. 3  

NG-fSGM aggregation and optical flow computation is 

initially performed on these subsampled pixels only. Once 

NG-fSGM is complete for selective (subsampled) pixels, dense 

optical flow of remaining pixels marked white in Fig. 3 is 

computed by interpolating the result of subsampled (black) 

pixels in Fig. 3. This approach is similar in spirit to [31]. While 

in [31], SGM (for stereo) is performed for every pixel, here 

aggregated costs are updated only on selected (subsampled) 

pixels; the other pixels have the same aggregated costs as the 

selected pixels. 

 
Different sampling patterns exemplified in Fig. 3 are 

governed by parameters f1 and f2, the horizontal and vertical 

sampling rates, respectively. The proposed sparse-to-dense 

NG-fSGM method performs interpolation in two steps. As 

neighboring pixels tend to have identical or similar motion, the 

flow vector op at pixel p is estimated by the bilinear 

interpolation of nearest subsampled (i.e., black pixels in Fig. 3) 

neighbors’ optical flow vectors. This approach reduces the 

required memory size and the number of operations by a factor 

of f1f2. We summarize the impact of these hardware-oriented 

optimization on the memory size, number of operations, and 

memory bandwidth in Table II. 

V. COMPLEXITY - ACCURACY TRADEOFF ANALYSIS 

We conducted comprehensive experiments on the 

Middlebury [10], KITTI [33] and MPI [32] optical flow 

benchmark to evaluate optical flow estimation accuracy and 

hardware implementation complexity. The accuracy is 

quantified in terms of the endpoint error percentage (EEP) with 

Middlebury (EEP radius 2) / KITTI (EEP radius 3) benchmark, 

and average endpoint error (EPE) on MPI dataset. The EEP is 

the percentage of pixels whose optical flow estimation error 

radius (error vector magnitude) is larger than a certain 

threshold (2 or 3 in our case) [10]. The EPE is the averaged 

error radius of optical flow estimates of all pixels [32]. The 

memory size, number of computations and memory bandwidth 

requirements are used to quantify the hardware complexity.  

A. Parametric Analysis on NG-fSGM 

We evaluate the effect of multiple algorithm parameters, 

namely, N, M, C, K, P, n, l, f1, and f2. Some of the parameters 

have correlated impact on algorithm accuracy.  First, we 

analyze the impact of N, M, C and K when P is fixed. For now, 

block-based approach and sparse-to-dense interpolation are 

disabled to simplify the analysis. In Fig. 4, parameters N and M 

are enumerated from 0 to 9, and C2 is evaluated from 5×5 to 

19×19. Fig. 4 (a) and (c) visualize the algorithm accuracy for K 

= 1×1 and 2×2 respectively on Middlebury test in EPE (the 

darker, the more accurate) when M = 3 and P = 8. Fig. 4 (b) and 

(d) show the impact of N and M when C = 11, and P = 8 for K = 

1×1 and 2×2, respectively. 

 

Fig. 3.  Sampling pattern examples where grey pixels are sampled. Left: f1 
= 1/2 , f2 = 1/2; Middle: f1 = 1/2 , f2 = 1; Right: f1 = 1 , f2 = 1/3. 

TABLE II. MEMORY SIZE, NUMBER OF OPERATIONS, MEMORY BANDWIDTH OF NG-FSGM WITH OPTIMIZATIONS  

 Memory size Number of Operation Memory access bandwidth 

Data Type 
Census transform 

on the fly 

Pre-compute 

census map 

Census transform 

on the fly 

Pre-compute 

census map 

Census transform 

on the fly 

Pre-compute 

census map 

Input Images n2 +(n+2l+2d)2 0   

Subset 

Selection 
  

2f1f2(P(KN+M)+(N(P+1)K+M)(2+P)+3d2)WH(n+2l)2 

S/n2 

f1f2(N(P+1)+M+1)2WH(n+2l)2/n2 

 

Census Transform 
f1f2(KN(P+1)+M+

1)(C2-1)/8 

(n2+(n+2l+2d)2) 

(C2-1)/8 

f1f2((N×(P+1)K+M)(9+KC2)) 

WH(n+2l)2S/n2 

f1f2C2WH 

(n2+(n+2l+2d)2)/n2 

f1f2(K+8(C-1/2)2N(P+1)+(M+

1)+8(C-1/2)2) WH(n+2l)2/n2 

f1f2WH(n+2l)2/n2(N(P 

+1)+M+1)2C2/8 

Pixel-wise 

Matching cost 4f1f24(KN(P+1)+M) f1f2((N(P+1)K+M)2C2)WH(n+2l)2S/n2   

Path-wise 

Aggregated Cost 
4f1f2P(KN(P+1)+M) 

f1f2(6P(N(P+1)K+M)(N+3))WH(n+2l)2S/n2 
f1f2N4PWH(n+2l)2/n2 

 Summated 

Aggregated Cost 
4f1f2(KN(P+1)+M) 

Path-wise Best 

flow 
4f1f2(n+2l)PN 

f1f2(KN(P+1)+M)P(4N+2)WH(n+2l)2S/n2  
Scan-wise 

Best flow 
4f1f2 (n+2l)2N 

Flow Map 2f1f2(n+2l)2 f1f2(4(KN(P+1)+M)N+3(KN(P+1)+M))WH(n+2l)2S/n2 
f1f2N4WH(n+2l)2/n2 

 

Inertial Map 8f1f2(n+2l)   
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 Fig. 4 (a) and (b) show that, when the search window size K 

is 2×2, the optimal accuracy is obtained with N = 2 or 3. Notice 

that more best-candidates (larger N) from the neighbor 

degrades the algorithm accuracy because the smoothness 

constraints weakens when more (some are incorrect) 

candidates are admitted. Regarding the Census size, the 

algorithm accuracy stabilizes when C is larger than 9 but 

degrades when the Census size is too large (e.g., C ≥ 17) 

possibly because of dissimilar optical flows within the Census 

window. Analysis confirms that the number of random vectors 

(M) is relatively insensitive when other parameters are chosen 

optimally and  M ≥ 1. 

 In Fig. 4 (c) and (d), K is changed from 2×2 to 1×1. It is 

worth noting that the impact of parameter N, M and C on 

algorithm accuracy shows similar non-monotonic trend as in 

Fig. 4 (a) and (b). With a smaller K, more random candidates 

with M ≥ 3 are desired to compensate for the reduced number of neighbor guided candidates, and thus to minimize the 

X
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Fig. 5.  Performance and complexity tradeoff analysis: (a) Memory BW 

vs. Memory size vs. Error rate, (b) # of OPs vs. Memory size vs. Error 

rate. 
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   (a) Error vs. Census vs. N, K = 2×2     (b) Error vs. M vs. N, K = 2×2  
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   (c) Error vs. Census vs. N, K=1×1       (d) Error vs. M vs. N, K = 1×1 

 Fig. 4.  Error performance analysis with parameter sweep (M, C, K, N). 

TABLE III.    SENSITIVITY ANALYSIS ON PERFORMANCE AND COMPLEXITY 

Trend as variable increases  

Insight  Sensitivity analysis on 

accuracy and complexity 

Census on-the-fly  Pre-compute Census 

OPs Mem 

Size 

Mem 

BW 

OPs Mem 

Size 

Mem 

BW 
Census 

window 

(C×C) 

Accuracy improves as C increases 

from 3 to 7. Complexity is in 

general proportional to C2. Further 

increasing C > 7 will saturate the 

accuracy and eventually degrade the 

accuracy. 

O(C2) O(C2) O(C2) O(C2) O(C2) O(C) Improvement from a large C diminishes when C>7 as 

the larger window tends to contain pixels with distinct 

optical flows. C quadratically increases memory size 

and operation. Memory access bandwidth increases 

linearly if census map is precomputed. 

N Accuracy is not monotonic to N. 

Modest N (N = 1 or 2) typically 

works better than larger N values. 

OPs proportional to O(N2) while 

memory requirement is O(N). 

O( ) O( ) O( ) O( ) O( ) O( ) Larger N helps in finding good candidates and thus, 

improving the time of convergence (in terms of 

pixels). However, large N may introduce unnecessary 

ambiguity that lead to errors in flow map. 

M For K=1×1: M > 0 is strongly 

desired. A larger M > 1 won’t 

provide significant gain. For K >= 

2×2, accuracy is insensitive to M.  

O( ) ~0 ~0 O( ) ~0 ~0 Larger M can compensate smaller K by introducing 

additional matching candidates in flow subset. If K is 

large, extra random positions is unnecessary (M = 0 is 

acceptable). Impact of M on overall complexity is 

insignificant compared to other parameters (C, N, K). 

Search 

window 

(K×K) 

K = 2×2 provides better accuracy 

than K = 1×1 or 3×3. Complexity is 

proportional to O( 2). 

O( 2) ~0 O( 2) O( 2) ~0 O( 2) Optimal K exists for the best accuracy. A small K may 

result in insufficient number of candidates while a 

large K may introduce unnecessary ambiguity from 

too many candidates. A small K can be compensated 

by a larger M and vice versa. A small K with a larger 

M is preferred to a larger K with a smaller M because 

the impact of M on complexity is lower. 
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algorithm accuracy degradation. Point‘Z’ (N = 2, M = 9, C = 

9 with K = 1×1) in Fig. 4. (a) has the best accuracy of 3.69% 

EPE comparable to the point ‘X’ in Fig. 4 (d) (3.67% EPE, with 

N = 2, M = 3 , C = 9 and K = 2×2).  

 The algorithm complexity in terms of memory size, memory 

bandwidth and operation counts is visualized in Fig. 5 (a) and 

(b) when K=2×2. Analysis for K=1×1 is omitted as it exhibits a 

similar trend. The comparison between Census transform 

on-the-fly and pre-computed Census is also analyzed in the 

same figures. The algorithm accuracy – complexity tradeoff 

can be identified by associating ‘X, Y, Z, W’ points in Fig. 4c, d 

to the same labeled points in Fig. 5. Points in Fig. 5 are shaded 

with different levels to represent algorithm accuracy; darker 

shades represent better algorithm accuracy following the same 

convention in Fig.  4. One can observe the impact of larger 

Census size (from point ‘X’ to ‘W’) that allows memory size vs. 

bandwidth vs. operations tradeoff depending on whether 

Census transform is pre-computed (red) or calculated 

on-the-fly (blue). Horizontal shift of ‘X’  ‘W’ indicates 

memory size increase while vertical shift implies more memory 

bandwidth and number of operations.  

Notice that all parameters have monotonic relationship with 

the algorithm complexity while their impact on algorithm 

accuracy is non-monotonic. Therefore, finding an optimal 

tradeoff point is a non-trivial task. The impact of parameter C 

and N on both algorithm accuracy and complexity is in general 

more significant than that of other parameters. For the 

pre-computed Census approach, a large C could result in an 

excessive memory size requirement, as it is a function of C2. 

The number of operations and memory requirements for the 

on-the-fly Census approach is proportional to NC2. A 

reasonable complexity-accuracy tradeoff can be made with C = 

9, N = 1 and M = 1 given K = 2×2 and P = 8. In this case, 

computing Census on-the-fly reduces memory size requirement 

to ~0.5MB at the cost of ~60% more memory bandwidth and 

computation compared to the pre-computed Census option. 

 The impact of various parameters on algorithm accuracy and 

complexity is summarized in Table III. A smaller N implies 

more aggressive candidate pruning and slower convergence of 

the flow propagation among neighbors, but also avoids 

over-constraining smoothness constraints that could lead to 

flow error. A larger M can compensate for small search 

window size K and can remain small if N or K is large. Based 

on the exhaustive analysis on Middlebury dataset, we picked 

the parameter set that provides balanced hardware complexity 

and algorithm accuracy. For the rest of the section, we use the 

following parameters:  K = 2×2, C = 9, N = 1, P = 8, M = 1. 

    Table IV compares the accuracy and complexity of 

NG-fSGM with the aforementioned parameter set to the 

original fSGM [21] and Lucas-Kanade (LK) [13], for the 

Middlebury, KITTI and MPI benchmarks. NG-fSGM with K = 

2×2, C=9, N=1, P=8, M=1 is used for all three benchmarks. As 

Table IV indicates, the proposed NG-fSGM provides 

significant complexity reduction compared to fSGM since 

NG-fSGM only evaluates <10% flow vectors and aggressively 

prunes the others to avoid strict regularization of fSGM. Recall 

that the complexity of fSGM quadratically increases with the 

search range d while the proposed NG-fSGM complexity is 

independent of d. Middlebury dataset used for Table IV has a 

limited d ≤ 32. The complexity gap between fSGM and 

NG-fSGM is more significant for MPI [32] and KITTI [33] 

benchmarks that require a larger d. The fSGM and LK 

complexity for KITTI and MPI reported in Table IV is based on 

a three-level hierarchical pyramid approach [21] that limits d to 

40 (fSGM) or uses a 13x13 search window with 10 iterations 

(LK) for each level. Non-hierarchical fSGM (d=40) and LK 

(13x13, 10 iterations) is used for the Middlebury . We observed 

that NG-fSGM significantly outperforms LK in accuracy at the 

cost of slightly increased memory area requirement. The 

number of operations for NG-fSGM is lower than that of LK 

for all benchmarks.  

 
       To visualize the algorithm quality difference, Fig. 6 shows 

TABLE IV.     COMPARISON  OF NG-FSGM, FSGM & LUCAS KANADE 

Metric EEP % EPE Memory Size (MB) Number of Giga Operations 

Dataset Middlebury KITTI MPI Middlebury KITTI MPI Middlebury KITTI MPI 

fSGM 4.54% 10.74%* - 20.68 342.08** 331.21** 37.53 65.1** 63.48** 

Lucas- 

Kanade 
15.78% 28.91% 10.45 1.47 3.83 3.745 3.15 8.24 8.01 

NG- 
fSGM 

3.70% 11.37% 7.91 2.47 3.68 3.59 2.10 3.14 3.12 

*: Reported in [21] for hierarchical fSGM using a 5×5 median filter. 

**: Estimated from hierarchical fSGM [21] with d = 40. 

 

Fig. 6 Colored flow maps using different algorithms. 1st column: 
RubberWhale; 2nd column: Urban2; 3rd column: Venus. 1st row: input 

previous frame; 2nd row: NG-fSGM; 3rd row: fSGM; 4th row: 

Lucas-Kanade. Color legend is at bottom-left corner. 
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the flow maps obtained from a Middlebury test image using 

each algorithm. The color of each pixel indicates the direction 

of the flow whereas the color intensity is proportional to the 

magnitude of the flow. NG-fSGM (2nd row) and fSGM (3rd row) 

both outperform LK (4th row). The raw (before 

post-processing) flow map output of NG-fSGM shows blurry 

results along object edges but has fewer error patches compared 

to fSGM. The neighbor guidance in NG-fSGM is less reliable 

at the object edges when aggressive search space pruning is 

applied. However, after a simple post processing of 33 median 

filtering, this difference becomes insignificant. Table IV 

confirms that the overall accuracy of NG-fSGM for 

Middlebury evaluation is comparable to that of fSGM. 

      For the KITTI and MPI dataset, the search range is 

substantially larger; d = 128 for a non-hierarchical approach. 

Unlike NG-fSGM, a multi-level hierarchical approach is 

preferred for LK and/or fSGM to limit d (e.g., 40) for each 

pyramid level. Fig. 7 and 8 show output flow images from 

KITTI and MPI for qualitative comparison. Proposed 

non-hierarchical NG-fSGM achieves 11.37% EEP on KITTI 

benchmark, which significantly outperforms pyramidal LK 

whose EEP is 28.91%. NG-fSGM exhibits 0.63% degradation 

compared with a hierarchical fSGM [21] while achieving >10× 

memory and computation complexity reduction. NG-fSGM 

achieves 7.91 average EPE (end point error) on MPI test cases 

significantly outperforming LK whose EPE is 10.45. 

Evaluation of hierarchical fSGM on MPI benchmark is not 

reported in [21] and so could not be included. 

 

B. Overlapping Block-based NG-fSGM 

So far, for more direct comparison to other algorithms, 

NG-fSGM complexity and accuracy has been analyzed without 

additional hardware optimization techniques. In the following 

subsections, we discuss the impact of overlapped block-based 

processing, inertial guidance for flow initialization, and 

sparse-to-dense flow interpolation to further reduce hardware 

implementation complexity specifically for NG-fSGM. 

 

    We evaluate the basic overlapped block-based processing 

(denoted by NG-fSGM+B) by sweeping parameter n from 30 to 

100 and l from 0 to 15. The accuracy is evaluated in EPE 

(radius = 2 pixels) for the Middlebury dataset. In Fig. 9, it is 

evident that a larger n or l monotonically improves algorithm 

accuracy but the gain diminishes (approaches the original 

algorithm accuracy without block-based processing) when n 

and l are around 75 and 16, respectively. Fig. 9 also quantifies 

the memory size increase for supporting larger n or l. We 

observe that n = 64 provides reasonable tradeoff between 

algorithm accuracy and complexity. In later subsections we 

assume n = 64 unless stated otherwise.  

C. Block-based NG-fSGM with inertial guidance 

We evaluate the effect of the proposed inertial guidance 

technique on Middlebury dataset. Fig. 10 shows an example of 

inertial guidance for the flow estimate of the current frame. The 

average accuracy of inertial estimates from [t – 1, t] is 10.13% 

in EEP for Middlebury dataset, which is ~6% lower than that of 

NG-fSGM. This implies that the inertial estimates can provide 

useful guidance for flow vector initialization in NG-fSGM. 

Table V shows the impact of inertial guidance where 

NG-fSGM+BI denotes the method combining overlapped 

block-based processing and inertial guidance. The inertial 

guidance consistently improves the accuracy especially for 

images with a relatively large flow range (Grove3, Urban2 and 

Urban3). With inertial guidance, the overlap size l can be 

reduced from 16 to 2 with negligible loss in accuracy (see 

second and fourth columns of Table V). This also helps to 

achieve lower architectural complexity; memory size is 

reduced by 85% from 0.65MB to 0.38MB and the number of 

operations is reduced by 93% from 0.058 to 0.028 GOPs per 

block. This significant complexity reduction is feasible because  

inertial guidance reduces number of overlapping pixels.  

Note that block-based NG-fSGM cannot always resolve the 

ambiguity from multiple flow candidates for images with 

repeated patterns that span the entire block (e.g., Urban3). 

NG-fSGM without block partitioning propagates flow vectors 

globally beyond the block boundary, thus it can resolve local 

(within a block) ambiguity by aggregating the cost from the 

region where repeated patterns no longer exist. Inertial 

guidance combined with block-based NG-fSGM show 

improved results for resolving local ambiguity (e.g., Urban3) 

by utilizing additional temporal guidance. However, if images 

 

 

Fig. 8. Colored flow maps using MPI dataset. 

 

 

 

Fig. 7. Colored flow maps using KITTI dataset. 

 

Fig. 9. Left: accuracy of NG-fSGM+B using the Middlebury training 
dataset. Right: complexity vs. overlap size (l) vs. block size (n). 
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do not have strong local ambiguity, block-based NG-fSGM 

performs relatively well within each block.  

 

While the original NG-fSGM (processing the whole image 

as a single block) has a mean error of 4.43%, NG-fSGM+BI has 

a mean error of 4.72% with n = 64 and l = 2, exhibiting 0.29% 

average accuracy degradation. For individual data images, the 

accuracy difference ranges from -0.09% to 3.14%. 

 

D. Sparse-to-Dense Optical Flow Estimation 

   The last optimization technique we evaluate is the 

sparse-to-dense NG-fSGM with different sampling rates f1 and 

f2. The sparse-to-density NG-fSGM is evaluated on 

Middlebury images with n = 64, and l = 16. Table VI confirms 

that significant reduction in the memory size and number of 

operations requirement is feasible with only a modest accuracy 

degradation. The subsampling rate of f1 = 1/2 and f2 = 1/2 

provides a reasonable tradeoff between accuracy and 

complexity. The memory size is reduced by 40% and number 

of operations is reduced by 75% with 1.23% increase in error 

percentage. 

 

E. Post-Processing 

   Different post processing techniques are evaluated for 

tradeoff study in low complexity optical flow computation. We 

analyze and compare the complexity and accuracy between 5×5 

median filter and 25×25 weighted median filter (WMF) [34]. 

Results are shown in Table VII. With pyramidal LK, the 

weighted median filter outperforms the median filter by 1.5% 

on KITTI benchmarks. When the raw flow rate is more 

accurate, the improvement from weighted median filter starts to 

become marginal compared to a simple median filter. 

Pyramidal LK is still not able to meet NG-fSGM accuracy even 

when a 25×25 weighted median filter is applied. Applying this 

weighted median filter introduces ~25% extra computation for 

pyramidal LK. 

VI. HARDWARE ARCHITECTURE AND PERFORMANCE 

We propose a hardware architecture that accelerates the 

block-based NG-fSGM to achieve high throughput and energy 

efficiency for power critical real-time mobile systems. We 

employ Census transform on-the-fly approach instead of 

pre-computing Census as the memory size overhead for the 

latter is significant while the computation overhead is 

manageable for the low power application that we are targeting. 

Fig. 11 shows the overview of proposed parallel processing 

TABLE V.    ENDPOINT ERROR PERCENTAGE (EEP) AND COMPLEXITY ON 

MIDDLEBURY MULTI-FRAME TRAINING DATASET 

Image for EEP 

evaluation 

NG-fS

GM 

NG-fSG

M+ B 

(l=2) 

NG-fSG

M+ B 

(l=16) 

NG-fSGM

+ BI (l=2) 

Grove2 2.03 1.82 1.77 1.74 

Grove3 8.35 7.85 7.77 7.66 

Hydrangea 0.99 0.80 0.79 0.73 

RubberWhale 0.71 0.88 0.67 0.56 

Urban2 4.81 5.09 4.45 4.82 

Urban3 9.70 18.52 16.14 12.84 

EEP Mean 4.43 5.83 4.93 4.72 

# of blocks 1 75 75 75 

Memory size per 

block (MB)  

2.47 0.38 0.65 0.39 

Operations per 

block (109) 

2.10 0.028 0.058 0.029 

Memory access 

per block(MB) 

88.8 1.28 2.543 1.31 

 

  

  

Fig. 10. An example of inertial guidance in Grove 3. Top left: Frame at time 
t. Top right: Inertial estimates from [t - 1, t]. Bottom left: Output flow using 

NG-fSGM+BI when l = 4. Bottom right: Groundtruth flow. 

 

TABLE VI.    ENDPOINT ERROR PERCENTAGE (EEP) AND COMPLEXITY ON 

MIDDLEBURY MULTI-FRAME TRAINING DATASET 

 Original 

NG-fSGM 

NG-fSGM  

f1=1/2,  

f2 = 1 

NG-fSGM  

f1=1,  

f2 = 1/2 

NG-fSGM  

f1=1/2,  

f2 = 1/2 

EEP Mean 3.69 4.08 4.20 4.91 

Memory size per 

block (MB)  

0.38 0.27 0.27 0.23 

Operations per 

block (109) 

0.28 0.14 0.14 0.07 

Memory access per 

block(MB) 

1.31 0.66 0.66 0.33 

 

TABLE VII.    OUTLIER PERCENTAGE (EEP) WITH DIFFERENT POST PROCESSING SCHEME 

 LK LK with WMF              NG-fSGM             NG-fSGM with WMF 

 EEP % 
Number of Giga 

Operations 
EEP % 

Number of Giga 

Operations 
EEP % 

Number of Giga 

Operations 
EEP % 

Number of Giga 

Operations 

Midderbury 8.31 3.15 7.41 4.11 3.70 2.10 3.72 3.06 

KITTI 28.9 8.24 27.4 9.67 11.3 3.14 11.2 4.57 
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hardware architecture that employs 8 parallel cores along with 

a global image buffer of size 0.5MB. The design is scalable to 

higher resolution images by instantiating a larger memory and 

more cores in the system.  

 
In this 8-core system, each core has its own local image 

buffer, local processing unit, local control unit and result 

memory. Raw image is stored in global memory and is 

transferred sequentially to each core. Each core processes the 

image block and transfers the results back to the global 

memory. Memory bandwidth from the global memory to each 

core is 11MB/s. Local memory inside each core has much high 

memory bandwidth and will be discussed later.  

Fig. 12 shows the overall processing procedure of a single 

core and Fig. 13 details block diagram of each core. The 

memory consists of a buffer to store the 88kb flow output and a 

local image buffer of size 382 kb used to store the image block 

of size 75×75 with search range (±64 pixels) and overlapping 

regions (l=2 pixels). Note that by utilizing inertial guidance 

technique at the block boundary, the overlap region reduced 

from 16 to 2 pixels resulting in a reduction in the local image 

buffer size. The fetch-and-schedule finite state machine (FSM) 

can either fetch potential matching candidates that are guided 

by inertial estimate of neighboring pixels from the flow 

memory or fetch random candidates, and store them into the 

five 4056b shift register arrays. When all potential candidates 

are fetched, Census transform and pixel-wise matching costs 

are computed. Fetch & schedule FSM is also programmed to 

control the traversal pattern in a block so that certain pixels can 

be omitted to perform the sparse-to-dense NG-fSGM. 

The processing unit (PE) array aggregates incoming 

pixel-wise matching cost with the aggregated costs of previous 

pixels stored in the row buffer (5850b). When aggregation on a 

single path finishes, optimal values are written back to the 

5850b row buffer, and also forwarded to the 

fetch-and-scheduler for prefetching. The PE array runs at 

20MHz to match the local memory bandwidth, and delivers 

2.5M flow vectors per second. With 8 cores in total, the 

proposed design is able to achieve optical flow processing of 

over 60fps for VGA streams.  

 

Detailed implementation of a PE array is provided in Figure 

14. It consists of 138 PEs (to support up to 138 matching 

candidates given by KN(P + 1) + M where K = 3×3,  M = 3, and 

P = 4) to enable parallel evaluation and aggregation over all 

matching candidates. In each PE (gray box), each candidate 

flow vector is compared with N-best (N=3) flow vectors of 

previous pixel, and P1, P2 (penalties) are added to the raw 

matching cost as in (2) depending on the distance between flow 

candidate and previous flow vectors. Aggregation on each path 

is performed separately. After costs on each matching 

candidate are aggregated, the aggregated costs are fed to a tree 

of comparators (path optimal selection unit in Figure 14) to 

generate 3 path-wise optimal flows vectors. These flow vectors 

are stored in the row buffer and sent to the fetch-and-schedule 

FSM for prefetching. Meanwhile, aggregation on another path 

is performed in parallel with prefetching on a different path. 

Using this path-interleaved processing with prefetching, 

performance is improved by 4× compared to a sequential 

processing without pipelined path interleaving. After 

aggregation on all paths is completed, path-wise costs are 

summed together for computing the output optimal flow vector. 
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Fig. 12. Processing procedure of a single core 
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Fig. 11 Architecture of the multicore optical flow processor. 
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Table VIII provides the estimated area breakdown of 

different components of the proposed hardware architecture 

synthesized in TSMC 28nm HPC technology. VDD of 

processing elements running at 20MHz can scale down to 0.7V 

to match the memory access bandwidth while memory banks 

are still operated at full VDD (0.9V).   

 

      A single core is also place and routed; Fig 15 shows the 

place and route (P & R) results. The core is split into two parts: 

the fetch & schedule FSM with the image memory and the PEs 

with the flow memory. P & R results for both blocks are shown 

respectively. Table IX provides simulated power results after P 

& R. We simulate the design with an image block and 

categorize the power associated with each processing step. 

Simulation vectors for each block are recorded, and are fed to 

the P & R tool for accurate power estimation that includes 

coupling and signal integrity analysis. Overall, the area and 

power for a single core is 0.56mm2 and 84.9mW respectively. 

For the 8-core system, a throughput of 20M pixel/s (2.5M 

pixels/s per core) or 65 fps in VGA is achieved with power 

consumption (estimated) of 679.2 mW. Table X provides the 

comparison with a prior optical flow hardware implementation 

of LK [35]. Proposed design achieves 4× more optical flow 

range, significantly better accuracy, 2× more throughput, and 

2× energy efficiency compared with [35]. The proposed 

NG-fSGM with hardware optimizations allows real-time 

optical flow processing with negligible power overhead 

compared to ~100W for an MAV [36]. 

 

 

 

VII. CONCLUSION 

This paper presents NG-fSGM, a low complexity method for 

optical flow. Dramatic complexity reduction is achieved by 

aggressively pruning the flow vector search space using 

information from neighbor pixels. The cost aggregation and 

flow computation steps have been optimized for further 

complexity reduction. NG-fSGM has been evaluated on the 

Middlebury and MPI optical flow datasets. The evaluation 

results show that NG-fSGM has comparable performance with 

an order of magnitude reduction in complexity compared to a 

prior work fSGM, and greatly outperforms other similar-costly 

methods like Lucas-Kanade.  

        Several hardware optimization techniques were 

introduced for the NG-fSGM optical flow algorithm. By 

dividing image into overlapping blocks, the full benefit of 

parallel processing is exploited with only a small degradation in 

accuracy compared to the original NG-fSGM. To further 

reduce the complexity of the overlapping block-based 

approach, temporal inertial guidance and sparse-to-dense 

interpolation, methods were proposed. Evaluation on 

Middlebury datasets shows that proposed block based 

algorithm has only 0.29% accuracy degradation compared to 

the original algorithm. The proposed algorithm is mapped onto 

a multicore architecture its throughput and power consumption 

evaluated in 28nm node to demonstrate the feasibility for 

real-time processing on power-critical MAV platforms.  
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Fig 14. Detailed implementation of a PE array 

TABLE VIII.    AEAR AND POWER ESTIMATE OF A SINGLE PE 

 Area(um2) Power 

Image buffer 172380 12.6mW 

Flow buffer 87196 56.29uW 

PE array + Path optimal 

selection 

234332 18.8mW 

5850b row buffer 67106 4.8mW 

Census & Hamming distance 205068 5.8mW 

Optimal selection 187465 14.2mW 

Fetch & scheduler 4280 0.66mW 

4056b Register array 45830 3.5mW 

Core Total 1204975 74.76mW 

 

 

       

Fig 15. Automated place & route result of a core. (left: image memory 
with fetch & scheduler, right: aggregation units and flow memory) 

TABLE IX.    POWER RESULT OF A SINGLE PE POST ROUTE 

 Power 
Memory read 31.2mW 
Local cost computation 10.2mW 
Cost aggregation 35.2mW 
Optimal flow search  8.3mW 
Core Total 84.9mW 

 

 

 

TABLE X.    COMPARISON WITH PRIOR OPTICAL FLOW ASIC 

 [35] Proposed 

Algorithm Pyramid LK NG-fSGM 

Technology 65nm 28nm 

Throughput VGA 30 fps VGA 60 fps 

Optical flow range -32 ~ 32 -64 ~ 64 

Power 600 mW 679 mW 

 

H  
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