
A 2.46M reads/s Genome Sequencing Accelerator 
using a 625 Processing-Element Array 

Zhehong Wang1, Tianjun Zhang1, Daichi Fujiki1, Arun Subramaniyan1, Xiao Wu1, Makoto Yasuda2, Satoru Miyoshi3, 
Masaru Kawaminami2,3, Reetuparna Das1, Satish Narayanasamy1, David Blaauw1 

1University of Michigan, Ann Arbor, MI, 2Mie Fujitsu Semiconductor Limited, Yokohama, Japan,  
3Fujitsu Electronics America, Inc., Sunnyvale, CA

 
 

Abstract We present an accelerator for seed-extension, a 
critical and computational intensive step in genome sequencing. 
The accelerator consists of a triangular array of 25x25 custom 
design processing elements implementing a string-independent 
automata. It achieves 2.46M reads/s, a ~1800x performance 
improvement, and 27x smaller silicon footprint compared to a 
Xeon E5420. 
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I. INTRODUCTION 

Production cost of whole human genome sequencing has 
plummeted by 10,000x from $10 million dollars to $1000 in just 
the last decade due to advances in next-generation-sequencing 
technology (NGS). This has led to wide use of DNA testing in 
both research and daily life. However, for each sequenced 
human genome, 396 GB of data must be processed (secondary 
analysis), which poses a significant computational challenge. 

computation bottleneck is projected to dominate the total cost 
and processing time of sequencing, becoming a key factor in the 
growth of this important medical technology.  

A DNA sequencer produces approximately 1.5B reads (Fig. 
1) which are short DNA strands of 100 base pairs (BP). These 
reads then proceed through three processing steps: 1) In seeding, 
a set of possible locations where the read matches the reference 
is found by matching small fragments between the read and the 
reference exactly. 2) In seed-extension, these possible match 
locations are evaluated by exploring alignments between the 
read and the reference, including possible edits, to determine a 
final match location. 3) In variant calling, all the reads that are 
aligned to a particular BP in the reference are evaluated to 
determine if a mutation occurred at that location. An ASIC for 
the seeding phase of DNA sequence processing was presented 
[1], yet, little or no dedicated acceleration hardware has been 
proposed to address other steps in DNA sequencing.  

In this paper, we target the seed-extension, which requires a 
total of 14 billion alignments for each human genome which 
takes 2754 CPU hours for one human genome on a single core 
Xeon E5420 processor using the standard BWA-MEM 
algorithm [2]. We use a 25x25 triangular array of processing 
elements (PEs) that implements a string-independent automata 
for approximate string matching, and also performs match score 
calculation and generation of the edit string. The proposed 
alignment accelerator, implemented in MIFS 55 nm DDC 

CMOS, operates at 670 MHz and achieves 2.46M reads per 
second with 8 mm2 silicon area. Marking, to our knowledge, the 
first seed-extension ASIC, it presents ~1800x performance 
improvement and 27x smaller silicon footprint when operating 
on actual Genome read data compared to BWA-MEM on a Xeon 
E5420 and produces exactly identical output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Seed-extension aligns two DNA strings of ~100 BP: the 
read or query (Q) and the portion of the reference (R) where the 
read is expected to align. However, there can be mis-matches 
between R and Q because of sequencing machine errors or 

alignment is needed, allowing for Levenshtein edits: insert (i), 
delete (d), and substitute (s), as illustrated in Fig. 2. Fig. 3 shows 
two of many possible alignments for an R and Q pair, each with 
an edit distance or score. The task of seed-extension is to find 
the alignment with the best score and reporting this score and its 
associated string of edits. 

Fig. 1 Reference Guided Sequence Analysis Pipeline with Seed Extension 
Highlighted. 
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II. SEED-EXTENSION ACCELERATOR 

A recently proposed string-independent automata algorithm 
[3] is adopted. Unlike the standard Smith-Waterman algorithm 
[2] where R/Q strings remain static and possible alignment paths 
are explored with an array of PEs, we shift R/Q strings of 
arbitrary length through a state-machine that simultaneously 
evaluates all possible alignments between the two strings. The 
algorithm has the advantage that varying length strings can be 
processed using same matching hardware, so long as the 
maximum edit distance remains fixed. 

Implementing this algorithm in silicon for the first time, the 
state-machine for this algorithm consists of a 3D grid of tiny 
PEs, represented as circles in Fig. 4, each performing a 
comparison of two BPs. Each PE represents a unique edit cost 
noted by its indices, e.g., PE120 corresponds to 1i+2d+0s. Note 
that in terms of edit cost, i = d = s = 1, so, e.g. 1i + 1d = 2s. 
Initially, in clock-cycle zero (c = 0), only PE000 is activated and 
compares the first two BPs of the R/Q strings. For clarity, only 
the activated PEs are shown in Fig. 4. Since the two BPs match, 
the PE reactivates itself indicating a match (m) edit string so far. 
On the next clock cycle, the R/Q strings are shifted right/up, and 
PE000 compares BP (G, T). Since there is a mismatch, PE000, 
deactivates itself and instead activates its three neighbors, 
PE100, PE010 and PE001 in c = 2. PE100 evaluates possible 
alignment of R/Q after 1i and therefore uses a shifted value of 
R. Since it compares BP (G, G) in c = 2, it finds a match and 
reactivates itself for the next cycle. Similarly, PE010 represents 
1d and compares BP (T, T) and reactivates. PE001 represents 1s 
and therefore looks at the unshifted values of its inputs and 
compares BP (T, G) which is a mismatch. It therefore 
deactivates itself and in c = 3 activates PE101, PE011 and 

PE002. In c = 3, PE100 and PE101 compare BP (T, C) and find 
a mismatch. While they both compare the same R/Q BP, PE100 
represents 1i and PE101 represents 1i and 1s; hence, their edit 
distance is not the same, preventing them from being merged. 
Similarly, PE010 and PE011 compare BP (C, G) and find a 
mismatch.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PE002 represents 2s and would compare BP (C, C), which is 
a match.  However, if we follow this pattern, a full 3D grid of 
PEs develops that would result in O(k3) complexity. To reduce 
the complexity to O(k2) instead, we use the observation that 
PE002 evaluates the same BP position in c = 3 as PE110 will 
evaluate in the next cycle c = 4. In our example, PE110 also 
compares BPs (C, C) in c = 4. Furthermore, the edit distance of 
both PEs = 2. Hence, they can be merged and instead of an actual 
PE002, there is only a wait state (indicated by the black dot in 
Fig. 4) which only activates PE110 in c = 4. Hence, in c = 4, 
PE110 finds a match (C, C) and after reactivating itself, again 
finds the final match (C, C) in c = 5 (not shown in Fig. 4), 
marking the optimal alignment of 2 edits. Note that several other 
PEs are also active in c = 4. However, all have higher edit 

Fig. 4 String Alignment Example 

 
Fig. 2 Levenshtein Edits 

 
Fig. 3 Example of Alignment 
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distances and are sub-optimal. The resulting array has dimension
(k, k, 2), where k is the maximum edit distance.  

The overall architecture of the accelerator and PE array is 
shown in Fig. 5(a). The PEs are extremely simple, consisting of 
only 6 gates, which OR incoming activations and activate 
self/neighbors depending on the comparison result. The BP 
comparisons are performed at the shift registers and is then 
passed diagonally to neighboring PEs. This makes all 
communication local allowing for very high-speed operation. 
Fig. 5(b) shows that the 25x25 triangular array can be 
decomposed into three smaller triangular arrays of 12x12, 
enabling a trade-off between throughput and maximum edit 
distance. 

The standard seed-extension algorithm typically uses a more 
sophisticated score scheme in addition to edit distance, based on 
empirical statistics [4]. This includes an affine gap penalty used 
in BWA-MEM, which favors consecutive i/ds over new i/d,  
preventing merging confluence paths, which can occur with 
simple edit distance, as shown in Fig. 6. We accommodate this 
in our PE by adding score calculation logic, which is passed 
from PE to PE along with the state activations (Fig. 7). This also 
complies with the clipping heuristic used in BWA-MEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Fig. 8 shows the complete sequence of operation: after the 
full read is processed (phase I), each PE passes the maximum 
score backward in back-propagation mode, and the best score is 
retrieved from PE000 (phase II). The array controller also counts 
the number of cycles until the best-score exits the array and then 
reverses the machine and propagates the best score into the array 
again for the same number of cycles (phase III), at which point 
the node that matches the best score self-identifies. During 
forward processing, each PE also stores which of the incoming 
arcs (i, d, s) pass the best score. In phase IV, starting from the 
final winning state, the traceback pointers are connected in 
backward fashion till they reach PE000. Finally in phase V, this 
backward trace is collected by shifting it back to PE000, 
revealing the edit string. During phase I it is possible for the 
correct pointer to be corrupted by a later, non-optimal score (due 
to affine gap scoring) thus breaking the backward trace. When 
this is detected by the controller, the string is reprocessed up to 
the  point when the broken state occurs and then traced back. 
Although this requires reprocessing the string, in practice, this is Fig. 5 (a) Overall Architecture of test chip and details (b) Composable Structure 

 
Fig. 6 Score Scheme and Delayed Merging 

Fig. 7 PE Augmented with Score Logic 
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rare (0.93% of reads, Fig. 9), resulting in negligible performance 
degradation. Edit distance and time breakdown of the processing 
are also shown in Fig. 9. 

III. RESULTS 

Implemented in Mie Fujitsu 55 nm DDC technology, the test 
chip achieves 670 MHz core clock frequency at 0.9 V VDD and 
consumes 508 mW of power. The frequency can scale up to 834 
MHz with 1.2 V VDD and 704 MHz with 0.2 V forward body 
bias at 0.9V VDD (Fig. 10). The measured throughput is 2.46 
million reads per second (MRPS) on the Illumina Platinum 
Genomes ERR194147 dataset with identical results as the 
software implementation of BWA-MEM. This marks an 
improvement of ~1000x improvement over a single core Xeon 
E5420 CPU [1] and ~10x improvement over a GPU [5] and 
FPGA [6], all of which have much larger silicon footprint 
yielding a performance normalized by area and technology of > 
1000x. Power efficiency is 4.24 MRPS/W also marking a > 
1000x improvement over BWA-MEM on the CPU and 70x 
improvement on the FPGA [6]. A comparison table is shown in 
Fig. 11.  
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Fig. 9 Edit Distance Across Test Dataset (Left), and Average Time 
Breakdown of Processing(Right) 

 
Fig. 10 Performance /Power vs. VDD & vs. Body Bias (Left), and Die 
Photo(Right) 

Fig. 8 Process Sequence of the Proposed Accelerator 

 
Fig. 11 Comparison Table 
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