
A 2.46M reads/s Genome Sequencing Accelerator
using a 625 Processing-Element Array

Zhehong Wang1, Tianjun Zhang1, Daichi Fujiki1, Arun Subramaniyan1, Xiao Wu1, Makoto Yasuda2, Satoru Miyoshi3,
Masaru Kawaminami2,3, Reetuparna Das1, Satish Narayanasamy1, David Blaauw1

1University of Michigan, Ann Arbor, MI, 2Mie Fujitsu Semiconductor Limited, Yokohama, Japan,
3Fujitsu Electronics America, Inc., Sunnyvale, CA

Abstract We present an accelerator for seed-extension, a
critical and computational intensive step in genome sequencing.
The accelerator consists of a triangular array of 25x25 custom
design processing elements implementing a string-independent
automata. It achieves 2.46M reads/s, a ~1800x performance
improvement, and 27x smaller silicon footprint compared to a
Xeon E5420.

Keywords ASIC, DNA Sequencing, seed-extension

I. INTRODUCTION

Production cost of whole human genome sequencing has
plummeted by 10,000x from $10 million dollars to $1000 in just
the last decade due to advances in next-generation-sequencing
technology (NGS). This has led to wide use of DNA testing in
both research and daily life. However, for each sequenced
human genome, 396 GB of data must be processed (secondary
analysis), which poses a significant computational challenge.

computation bottleneck is projected to dominate the total cost
and processing time of sequencing, becoming a key factor in the
growth of this important medical technology.

A DNA sequencer produces approximately 1.5B reads (Fig.
1) which are short DNA strands of 100 base pairs (BP). These
reads then proceed through three processing steps: 1) In seeding,
a set of possible locations where the read matches the reference
is found by matching small fragments between the read and the
reference exactly. 2) In seed-extension, these possible match
locations are evaluated by exploring alignments between the
read and the reference, including possible edits, to determine a
final match location. 3) In variant calling, all the reads that are
aligned to a particular BP in the reference are evaluated to
determine if a mutation occurred at that location. An ASIC for
the seeding phase of DNA sequence processing was presented
[1], yet, little or no dedicated acceleration hardware has been
proposed to address other steps in DNA sequencing.

In this paper, we target the seed-extension, which requires a
total of 14 billion alignments for each human genome which
takes 2754 CPU hours for one human genome on a single core
Xeon E5420 processor using the standard BWA-MEM
algorithm [2]. We use a 25x25 triangular array of processing
elements (PEs) that implements a string-independent automata
for approximate string matching, and also performs match score
calculation and generation of the edit string. The proposed
alignment accelerator, implemented in MIFS 55 nm DDC

CMOS, operates at 670 MHz and achieves 2.46M reads per
second with 8 mm2 silicon area. Marking, to our knowledge, the
first seed-extension ASIC, it presents ~1800x performance
improvement and 27x smaller silicon footprint when operating
on actual Genome read data compared to BWA-MEM on a Xeon
E5420 and produces exactly identical output.

 Seed-extension aligns two DNA strings of ~100 BP: the
read or query (Q) and the portion of the reference (R) where the
read is expected to align. However, there can be mis-matches
between R and Q because of sequencing machine errors or

alignment is needed, allowing for Levenshtein edits: insert (i),
delete (d), and substitute (s), as illustrated in Fig. 2. Fig. 3 shows
two of many possible alignments for an R and Q pair, each with
an edit distance or score. The task of seed-extension is to find
the alignment with the best score and reporting this score and its
associated string of edits.

Fig. 1 Reference Guided Sequence Analysis Pipeline with Seed Extension
Highlighted.

978-1-7281-6031-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 13:47:36 UTC from IEEE Xplore. Restrictions apply.

II. SEED-EXTENSION ACCELERATOR

A recently proposed string-independent automata algorithm
[3] is adopted. Unlike the standard Smith-Waterman algorithm
[2] where R/Q strings remain static and possible alignment paths
are explored with an array of PEs, we shift R/Q strings of
arbitrary length through a state-machine that simultaneously
evaluates all possible alignments between the two strings. The
algorithm has the advantage that varying length strings can be
processed using same matching hardware, so long as the
maximum edit distance remains fixed.

Implementing this algorithm in silicon for the first time, the
state-machine for this algorithm consists of a 3D grid of tiny
PEs, represented as circles in Fig. 4, each performing a
comparison of two BPs. Each PE represents a unique edit cost
noted by its indices, e.g., PE120 corresponds to 1i+2d+0s. Note
that in terms of edit cost, i = d = s = 1, so, e.g. 1i + 1d = 2s.
Initially, in clock-cycle zero (c = 0), only PE000 is activated and
compares the first two BPs of the R/Q strings. For clarity, only
the activated PEs are shown in Fig. 4. Since the two BPs match,
the PE reactivates itself indicating a match (m) edit string so far.
On the next clock cycle, the R/Q strings are shifted right/up, and
PE000 compares BP (G, T). Since there is a mismatch, PE000,
deactivates itself and instead activates its three neighbors,
PE100, PE010 and PE001 in c = 2. PE100 evaluates possible
alignment of R/Q after 1i and therefore uses a shifted value of
R. Since it compares BP (G, G) in c = 2, it finds a match and
reactivates itself for the next cycle. Similarly, PE010 represents
1d and compares BP (T, T) and reactivates. PE001 represents 1s
and therefore looks at the unshifted values of its inputs and
compares BP (T, G) which is a mismatch. It therefore
deactivates itself and in c = 3 activates PE101, PE011 and

PE002. In c = 3, PE100 and PE101 compare BP (T, C) and find
a mismatch. While they both compare the same R/Q BP, PE100
represents 1i and PE101 represents 1i and 1s; hence, their edit
distance is not the same, preventing them from being merged.
Similarly, PE010 and PE011 compare BP (C, G) and find a
mismatch.

PE002 represents 2s and would compare BP (C, C), which is
a match. However, if we follow this pattern, a full 3D grid of
PEs develops that would result in O(k3) complexity. To reduce
the complexity to O(k2) instead, we use the observation that
PE002 evaluates the same BP position in c = 3 as PE110 will
evaluate in the next cycle c = 4. In our example, PE110 also
compares BPs (C, C) in c = 4. Furthermore, the edit distance of
both PEs = 2. Hence, they can be merged and instead of an actual
PE002, there is only a wait state (indicated by the black dot in
Fig. 4) which only activates PE110 in c = 4. Hence, in c = 4,
PE110 finds a match (C, C) and after reactivating itself, again
finds the final match (C, C) in c = 5 (not shown in Fig. 4),
marking the optimal alignment of 2 edits. Note that several other
PEs are also active in c = 4. However, all have higher edit

Fig. 4 String Alignment Example

Fig. 2 Levenshtein Edits

Fig. 3 Example of Alignment

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 13:47:36 UTC from IEEE Xplore. Restrictions apply.

distances and are sub-optimal. The resulting array has dimension
(k, k, 2), where k is the maximum edit distance.

The overall architecture of the accelerator and PE array is
shown in Fig. 5(a). The PEs are extremely simple, consisting of
only 6 gates, which OR incoming activations and activate
self/neighbors depending on the comparison result. The BP
comparisons are performed at the shift registers and is then
passed diagonally to neighboring PEs. This makes all
communication local allowing for very high-speed operation.
Fig. 5(b) shows that the 25x25 triangular array can be
decomposed into three smaller triangular arrays of 12x12,
enabling a trade-off between throughput and maximum edit
distance.

The standard seed-extension algorithm typically uses a more
sophisticated score scheme in addition to edit distance, based on
empirical statistics [4]. This includes an affine gap penalty used
in BWA-MEM, which favors consecutive i/ds over new i/d,
preventing merging confluence paths, which can occur with
simple edit distance, as shown in Fig. 6. We accommodate this
in our PE by adding score calculation logic, which is passed
from PE to PE along with the state activations (Fig. 7). This also
complies with the clipping heuristic used in BWA-MEM.

 Fig. 8 shows the complete sequence of operation: after the
full read is processed (phase I), each PE passes the maximum
score backward in back-propagation mode, and the best score is
retrieved from PE000 (phase II). The array controller also counts
the number of cycles until the best-score exits the array and then
reverses the machine and propagates the best score into the array
again for the same number of cycles (phase III), at which point
the node that matches the best score self-identifies. During
forward processing, each PE also stores which of the incoming
arcs (i, d, s) pass the best score. In phase IV, starting from the
final winning state, the traceback pointers are connected in
backward fashion till they reach PE000. Finally in phase V, this
backward trace is collected by shifting it back to PE000,
revealing the edit string. During phase I it is possible for the
correct pointer to be corrupted by a later, non-optimal score (due
to affine gap scoring) thus breaking the backward trace. When
this is detected by the controller, the string is reprocessed up to
the point when the broken state occurs and then traced back.
Although this requires reprocessing the string, in practice, this is Fig. 5 (a) Overall Architecture of test chip and details (b) Composable Structure

Fig. 6 Score Scheme and Delayed Merging

Fig. 7 PE Augmented with Score Logic

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 13:47:36 UTC from IEEE Xplore. Restrictions apply.

rare (0.93% of reads, Fig. 9), resulting in negligible performance
degradation. Edit distance and time breakdown of the processing
are also shown in Fig. 9.

III. RESULTS

Implemented in Mie Fujitsu 55 nm DDC technology, the test
chip achieves 670 MHz core clock frequency at 0.9 V VDD and
consumes 508 mW of power. The frequency can scale up to 834
MHz with 1.2 V VDD and 704 MHz with 0.2 V forward body
bias at 0.9V VDD (Fig. 10). The measured throughput is 2.46
million reads per second (MRPS) on the Illumina Platinum
Genomes ERR194147 dataset with identical results as the
software implementation of BWA-MEM. This marks an
improvement of ~1000x improvement over a single core Xeon
E5420 CPU [1] and ~10x improvement over a GPU [5] and
FPGA [6], all of which have much larger silicon footprint
yielding a performance normalized by area and technology of >
1000x. Power efficiency is 4.24 MRPS/W also marking a >
1000x improvement over BWA-MEM on the CPU and 70x
improvement on the FPGA [6]. A comparison table is shown in
Fig. 11.

ACKNOWLEDGMENT

We would thank MIFS for chip fabrication.

REFERENCES
[1] 14.8 A 135mW fully integrated data

processor for next-generation sequencing -253,
2017.

[2]
Burrows -
1760, 2009.

[3] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw and

pp. 69-82, 2018.

[4]
Bulletin of Mathematical Biology, vol. 52, no. 3, pp. 359 373, 1990.

[5] R. Wilton, T. Budavari, B. Langmead, S. J. Wheelan, S. L. Salzberg and
-throughput read alignment with GPU-

accelerated exploration of the seed-and-
3:e808, doi 10.7717/peerj.808, 2015.

[6] J. Arram, K. H. Tsoi, W. Luk and P. Jiangy Reconfigurable Acceleration
of Short Read Mapping -217, 2013.

[7] E. J. Houtgast, V. Sima, K. Bertels and Z. Al-Ars -Based
Systolic Array to Accelerate the BWA-MEM Genomic Mapping
Algorith -227, 2015.

Fig. 9 Edit Distance Across Test Dataset (Left), and Average Time
Breakdown of Processing(Right)

Fig. 10 Performance /Power vs. VDD & vs. Body Bias (Left), and Die
Photo(Right)

Fig. 8 Process Sequence of the Proposed Accelerator

Fig. 11 Comparison Table

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 13:47:36 UTC from IEEE Xplore. Restrictions apply.

