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Abstract— A sparse matrix–matrix multiplication (SpMM)
accelerator with 48 heterogeneous cores and a reconfigurable
memory hierarchy is fabricated in 40-nm CMOS. The compute
fabric consists of dedicated floating-point multiplication units,
and general-purpose Arm Cortex-M0 and Cortex-M4 cores. The
on-chip memory reconfigures scratchpad or cache, depending
on the phase of the algorithm. The memory and compute units
are interconnected with synthesizable coalescing crossbars for
efficient memory access. The 2.0-mm × 2.6-mm chip exhibits
12.6× (8.4×) energy efficiency gain, 11.7× (77.6×) off-chip
bandwidth efficiency gain, and 17.1× (36.9×) compute density
gains against a high-end CPU (GPU) across a diverse set of
synthetic and real-world power-law graph-based sparse matrices.

Index Terms— Decoupled access execution, reconfigurablility
and accelerator, sparse matrix multiplier, synthesizable crossbar.

I. INTRODUCTION

THE emergence of big data and massive social networks
has led to increased importance of graph analytics and

machine learning workloads. One of the fundamental kernels
that drive these workloads is matrix multiplication. Tradition-
ally, matrix multiplication workloads focused on performing
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linear algebra operations on dense matrices that depended
primarily on high compute throughput. However, modern
datacenter workloads are large and extremely sparse, where
a majority of their contents are zeros. Thus, there has been
an increase in attention toward the matrix multiplication
algorithms that target large sparse matrices, such as the
adjacency matrix of Facebook friendships, which is of size
1.08 B × 1.08 B but with only 0.0003% non-zero elements
(NZEs) [1]. Sparse matrix–matrix multiplication (SpMM) is
a significant building block of multiple algorithms preva-
lent in graph analytics, such as breadth-first search [2], [3],
graph contraction [4], peer-pressure clustering [5], Markov
clustering [6], and triangle counting [7]. Other comput-
ing applications, such as color intersection searching [8],
context-free grammar parsing [9], and finite-element simula-
tions based on domain decomposition [10], also rely heavily
on SpMM.

Since the number of zero elements in a sparse matrix largely
outnumbers the number of non-zeros (NNZs), it is prudent
to store them in compressed formats. The compressed sparse
row (CSR) format is a standard for storing sparse matrices
in graph analytics, scientific computation, and so on [11].
It represents an N × N sparse matrix using three arrays—
values, column-indices, and row-pointers, with a total storage
overhead of 2 · NNZ + N + 1 elements. Compressed sparse
column (CSC) is the transposed form of CSR, where the latter
two arrays are replaced by row-indices and column-pointers,
respectively.

Standard inner-product-based multiplication algorithms are
not suitable for processing extremely large, sparse matrices,
because a majority of computations are wasted on processing
zero-value elements. Efficient SpMM that focuses only on the
NZEs greatly improves the performance of such workloads.
The SpMM kernel is quintessentially memory-bound rather
than compute-bound, due to poor data locality and compute-
to-communication ratio. Thus, accelerating SpMM requires
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Fig. 1. High-level overview of SpMM using the inner-product and outer-
product methods.

eliminating redundant memory accesses and maximizing data
reuse.

The most common implementation of matrix–matrix mul-
tiplication is the inner-product method, as shown in Fig. 1.
In the inner-product method, a row of the first operand is
multiplied by the column of the second operand to produce a
single element in the result matrix. While this approach works
efficiently for dense matrices, once the matrices become too
sparse, a significant portion of the runtime is spent on index
matching the two operands to find the NZEs with the same
row or column indices. This results in low NNZs per byte
fetched from off chip, leading to unproductive loads. Limited
on-chip storage further forces repetitive fetching of the same
data, worsening the memory bottleneck.

To eliminate the wasted index matching and ensure that
all memory loads are productive, we employ an outer-product
algorithm that we first proposed in [1]. Unlike the inner-
product approach, the outer-product approach multiplies the
columns of the first operand with the rows of the second
operand to generate partial product matrices that are summed
together to produce the final result.

A. Architectural Overview

The rising importance of memory-bound problems and
SpMM in particular has induced multiple works in recent
years. However, many prior works only focused on improv-
ing algorithms on multi-threaded processors [12]–[14] and
GPUs [15]–[17]. Some works also explored efficient SpMM
implementations on the field-programmable gate arrays
(FPGAs) [18], [19]. A comparative study of the energy-

efficient SpMM implementations on contemporary platforms
is done by Giefers et al. [20]. Prior fabricated designs, on the
other hand, have only demonstrated sparse matrix–vector
multiplication [21] and relatively high-density (≥3%) matrix–
matrix multiplication with small dimensions (≤256) [22].

This article presents the first custom SpMM accelerator
that addresses the off-chip memory access bottleneck for
real-world-sized matrices, evaluating densities ≥0.002% and
dimensions ≤120k. We evaluate our solution using the output
NNZ per Joule (NNZ/J) for energy efficiency, which is equiva-
lent to throughput per Watt. For bandwidth efficiency, we cal-
culate the output NNZ per GB of fetched data (NNZ/GB),
which measures throughput (NNZ/s) per bandwidth (GB/s).
Our solution achieves an energy efficiency of 7.3 M output
NNZ/J and a bandwidth efficiency of 11.7 M NNZ/GB,
achieving 11.7× and 77.6× improvements over the state-of-
the-art CPU and GPU libraries, respectively.

These improvements are achieved through the following.
1) A custom architecture designed to take advantage of the

unique data access pattern of the outer-product approach,
where every memory fetch generates useful results.

2) A novel synthesizable coalescing crossbar that magnifies
on-chip bandwidth.

3) Reconfigurable memory that can switch between the
cache and the scratchpad to suit the different character-
istics of the phases within the outer-product algorithm.

The rest of this article is organized as follows. Section II
presents the outer-product algorithm and how the architecture
is designed to meet the needs of different kernels. Section III
details the design of the coalescing crossbar and the recon-
figurable memory. Section IV presents the empirical data
from the chip measurements, and comparison against existing
solutions. Finally, Section V summarizes our analysis and
conclusions.

II. ALGORITHM AND ARCHITECTURE

Our main kernel of interest is the outer-product-based
SpMM [1], which performs A × B = C , as shown in Fig. 2.
The first operand, Matrix A is organized in the CSC format,
while the second operand, Matrix B is in the CSR format. The
outer-product approach helps minimize redundant memory
loads, and our architecture is designed to match the unique
compute and memory access patterns in the different phases
of the algorithm.

We present a high-level description of our architecture
in Fig. 3. The implementation of the architecture is detailed
in Section III. In the multiply phase, each processing ele-
ment (PE) multiplies an element of a column of the first
operand (A) with a row of the second operand (B). The row
elements of B are reused across all the PEs and thus are stored
in an on-chip shared cache [see Fig. 3(a)]. For the merge
phase, we switch to a pair of Arm cores, Cortex-M4 and
Cortex-M0, connected by private on-chip memory. The two
cores act as a single unit to stream in the results of multiply,
perform mergesort, and store the final results to DRAM. Our
studies reveal that a scratchpad leads to better performance
than a cache for this phase, due to the irregular nature of data
accesses (see Section IV-B).
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Fig. 2. Breakdown of the off-chip memory accesses that are performed during the inner-product and outer-product methods. For the outer product, each
NZE of the result matrix requires as little as three loads and two stores from off-chip memory, when there are no overlapping elements with the same indices
during merge, which is the case for highly sparse matrices.

Fig. 3. High-level overview of the architectures suited for (a) multiply and
(b) merge phases. Shared cache is suited for the predictable patterns in the
multiply phase, whereas a private scratchpad is better for merge.

A. Outer-Product Algorithm

In this section, we describe in detail the outer-product-based
SpMM algorithm, and how it is mapped on to the hardware.

In the multiply phase, each PE multiplies an NZE of column
i of A with all NZEs of row i of B to produce one partial
product matrix (PPM) row. Each NZE is fetched only once.
The PPMs are stored as a set of linked lists of pointers to
“chunks” in the DRAM, as shown in Fig. 1. The multiply
phase computes the multiplications of all combinations of
fetched elements, resulting in maximum reuse of inputs with-
out any index matching, thus circumventing the problem of
unproductive loads. Since each PE traverses through the NZEs
of a row in Matrix B , the memory access during this phase is
sequential and predictable. In addition, multiple PEs operate
on the same row for each column element that corresponds to
the row, resulting in high data reuse across the PEs.

In the merge phase, each M4 core is assigned a pointer
array of chunks that correspond to a single row of the result
matrix C , as shown in Fig. 2. When merging the different
chunks, the M4 core needs to ensure that all the elements in
the final row are ordered by their column index. To ensure this
ordering, each M4 core maintains a sorting list. The sorting list
only needs to be big enough to hold one element from every
chunk that is being merged by this core. This is because all
the chunks are ordered by their column indices when they are
produced in the multiply phase. Once the first element of every
chunk is inserted into the sorting list, the steady state involves

writing out the smallest element to DRAM and fetching one
element to be sorted.

The merge phase, as shown in Fig. 4, is broken down into
three steps: initialization, sorting list construction, and on-
demand sorting.

Step 1 (Initialization): Each chunk is augmented with the
metadata that is used to keep track of the number of elements
that have been fetched by the core. During initialization,
the metadata of each chunk assigned to the core is written
into the scratchpad memory.

Step 2 (Sorting List Construction): The M4 core begins
constructing the sorting list by inserting the head of every
chunk into the list (Step 2a). The list is sorted again each
time an element is pushed into the list, based on the column
index. The core iterates over all of its assigned chunks, and
so, the list starts with the first element of every chunk. As the
M4 core inserts elements from the scratchpad memory into
the sorting list, the M0 core fetches the next elements of the
chunk into the new empty blocks (Step 2b).

Step 3 (On-Demand Sorting): The M4 core pops the small-
est element of the list to be placed in the output buffer
(Step 3a). The M4 core checks the chunk that this popped
element originated from, fetches the next element in the chunk,
and pushes it into the sorting list (Step 3b). The popped
element is compared against the element that is currently in
the output buffer. If the indices of the two elements match,
the values of the two elements are summed. If the indices
do not match, the element in the output buffer is written to
memory as the first element of one row in the result Matrix
C . The popped element then becomes the new element in the
output buffer, and the next element is fetched from the chunk
of the last popped element. This process is repeated until all
the assigned chunks have been processed. As the M4 core
consumes data from the scratchpad memory, the M0 core
independently fetches the next data of each chunk onto the
emptied blocks (Step 3c).

Unlike the multiply phase where most of the memory
accesses are sequential and there is plenty of data sharing
between different PEs, the data accesses of the merge phase are
mostly irregular, with no shared data across the Arm core pairs.
Each core is assigned a disjoint pool of chunks, so that each
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Fig. 4. Breakdown of the three steps of merge phase: initialization, sorting list construction, and on-demand sorting. M4 core performs the sorting operation
on the data that have been loaded into the scratchpad by the M0 core.

Arm core pair operates on independent memory space. The
location of each memory load is determined by the element
that was popped from the sorting list. Therefore, the memory
access is highly irregular and difficult to predict. Because
the two phases have such drastically different access patterns,
we implemented a reconfigurable architecture that can tune its
memory hierarchy based on the needs of each phase.

B. Scratchpad Prefetching

While all the core computation of the merge phase is
handled by the M4 cores, each M4 is paired with an M0 core
(see Fig. 3), which acts as a programmable prefetcher. The
primary purpose of the M0 core is to fill the private scratchpad
with the elements of the PPM rows, so that the M4 core can
grab its data from the scratchpad instead of the memory.

The M0 starts fetching the head elements of the chunks at
the initialization step. As shown in Fig. 2, M0 begins fetching
data once the metadata of a chunk has been registered into
the scratchpad memory. This allows the M4 core to proceed
immediately to the construction of its sorting list, without
waiting on the memory. As the M4 core pushes a new element
from the scratchpad into the sorting list, the M0 core loads the
next element of the chunk into the evicted space, until all the
elements have been consumed.

Due to the size of the local scratchpad, there is a limit to
the number of chunks that can be held in the scratchpad. This
also limits the length of the sorting list maintained by the M4,
since the length of the sorting list is equal to the number of
individual chunks being merged. When the total number of
chunks assigned to an Arm core pair exceeds the maximum
length of the sorting list (L), the PPM rows are divided into
subgroups of L PPM rows. The merge phase is then performed
in multiple passes, each one generating an intermediate result
of L merged chunks. During each pass, the intermediate results
are written out to a temporary space in memory. Once there is
enough capacity to merge the remaining chunks as well as the
intermediate results, the final merge pass produces a single,
fully merged row of the result matrix C . These intermediate
passes are expensive, because the data need to be stored in

external memory, and read again during the final merge pass.
To minimize the number of passes, L needs to be as high as
possible. However, for the M0’s prefetching to be effective,
each chunk needs to have sufficient number of elements that
have been loaded ahead in the scratchpad. Therefore, there
exists a tradeoff between the number of PPM rows that are
tracked during the merge phase and the number of elements
that can be prefetched into the scratchpad for each PPM row.

C. Sorting Algorithm

We explore two possible implementations for the sorting
algorithm in the merge phase: linear sorting and priority
queue sorting. Linear sorting is where the element to be
inserted into the list is compared one by one down the list,
until a smaller element is found. When the new element is
inserted into position, the rest of the list must also be shifted
by one. Because pushing and popping can both happen at the
same time, linear sorting has O(L) complexity.

In priority queue sorting, the list is organized as a binary
tree, where the root is always the smallest element of the list.
When an element is inserted, the element is appended to the
end of the tree. The tree is then re-balanced by recursively
swapping the parent node and the child node, if the child
is smaller than the parent. When the smallest element (root)
is popped, the root is replaced by a leaf node and then the
whole tree is re-balanced. The re-balancing process only has
a complexity of O(log(L)), because the push and pop must
happen independently as two separate steps. While the priority
queue has better scalability as L increases, the high overhead
of managing the binary tree favors linear sorting when L is
small.

III. CIRCUIT IMPLEMENTATION

Our chip consists of two compute substrates, as shown
in Fig. 5. The first, composed of 32 PEs (4 PEs/tile), computes
the multiply phase. Each PE has a 32-bit floating-point (FP)
multiplier and supports the out-of-order loads/stores. The sec-
ond substrate consists of eight ARM Cortex M0 + M4 pairs
(1 pair/tile) for the merge phase.
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Fig. 5. Top-level diagram of the microarchitecture, a tile, and a PE. The
chip contains a total of eight tiles, with each tile consisting of four PEs and
a pair of M0 and M4 cores.

Fig. 6. OR trees of the SSN crossbar. Each crosspoint is one requester and
the bitwise ORd results are sent back to each crosspoint.

All the compute elements are connected through a
reconfigurable network. The network consists of a fully
synthesizable swizzle-switch network (SSN) crossbar based
on [23], with the original pull-down networks replaced by OR

trees (see Fig. 6). The synthesizable SSN still uses the same
priority algorithm, but can also be easily ported to different
process technologies, since it does not require a custom layout.
The crossbar support request coalescing, least recently granted
(LRG) arbitration (see Fig. 7), and multicasting (See Fig. 8).

A. Compute Units

The PEs are custom finite-state machine-based elements that
perform the multiply phase of the outer-product algorithm.
At the core of the PE is a control unit (CU) that walks
through the algorithm state machine. The CU initiates loads

Fig. 7. LRG Scheme. The requesting nodes assert their priority bits and
the winner is determined based on which requester receives a 0 in the
corresponding response bit. The winner’s priority bits are then cleared.

of elements of columns of Matrix A and rows of Matrix B ,
tracking requests in a request queue. The request queue is a
structure that allows out-of-order loads to the elements of the
input matrices. Load responses satisfy an entry in the queue by
associatively searching the address field of each request queue
entry. Each PE also houses a single-cycle, single-precision FP
multiplier that multiplies the elements of A and B as soon as
they are available in the request queue. The calculated partial
product elements are stored into a “data” store buffer. This is a
simple FIFO queue of (address, data, and valid) tuples. There
exists a separate buffer to store pointers, which is associatively
searchable, unlike the data buffer. Through this split store
buffer design, we are able to reduce the energy consumed
by limiting expensive associative searches to fewer registers.
Finally, a debug block is used to relay important messages at
programmable intervals to the off-chip interface, such as the
state of each PE, number of multiplications committed, and
so on.

The general-purpose cores, Arm Cortex-M0 and Cortex-
M4 cores, handle the computation in the merge phase. Both are
low-power in-order cores designed for high energy efficiency.
The M4 performs bulk of computation including the FP
operations. The M0 acts as a programmable prefetcher for
loading data into the scratchpad independent of the M4’s
operation.

The M0 and M4 cores communicate through the use of
local scratchpad memory for shared data, and hardware mutex
locks to streamline synchronization. The mutex locks come
in two types: first-come-first-serve (FCFS) mutex and sleep
mutex. The FCFS mutex is a simple synchronization lock
where the core that acquires the lock first prevents the other
core from acquiring the lock, until the first one releases it.
When querying the lock for acquisition, the cores have the
option to stall until the lock is freed. The sleep mutex is a
unidirectional lock with a predetermined owner. Sleep mutex
begins with its lock pre-acquired by its designated core, and
the non-designated core stalls whenever it accesses a locked
mutex. During the merge phase, the sleep mutex is used by the
M4 core to prevent M0 core from starting the prefetch before
M4 has finished initiating the metadata.
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Fig. 8. Crossbar and cache coalescence. The crossbar coalesces identical
requests by marking the requesters in a bit vector, which is then stored in
the cache controller. While it is in the cache controller, more requests can be
coalesced along the way should there be any requesters asking for the same
address.

B. Coalescing Crossbar

The crossbar takes one cycle to arbitrate, based on an
LRG scheme, and another cycle to transmit data. As shown
in Fig. 7, each requester sends its priority bits to be bitwise
ORd. The corresponding bit of the result vector, based on the
index of the requesters, is sent back to the requesters and the
one with a 0 on its granted bitline wins. In the next cycle,
the winner clears its priority bits and other requesters set the
priority bit corresponding to the winner to 1, granting them
higher priority than the winner. In any particular cycle, one
column will always be zero among all requesters, since there
will always be one with the highest priority. If any channel
is not actively requesting, it will assert all 0s instead of its
actual priority bits to put it on the lowest priority possible.
For example, in Fig. 8, in Cycle 0, only requesters 1 and
2 request the channel, and therefore, only these two assert their
priority bits, while 0 and 3 assert all zeroes. The result of the
bitwise OR would be 1100, and then, each requester checks
its corresponding bit, in which case requester 2 wins. Since
requesters 0 and 3 did not request, it ignores the result of the
bitwise OR. The winner, in this case requester 2, then clears
its priority bits. Once granted, the requester can hold on to the
channel until it chooses to free the channel. Requests can be
coalesced in the crossbar, as shown in Fig. 8. Since the channel
can observe all the requesters and their requesting addresses,
it can simply compare them with the winner’s address and
grant to any matching requesters. Coalescence does not affect
the priority status, since it happens after arbitration.

C. Reconfigurable Cache

The downstream L0 crossbar connects to the reconfig-
urable L0 cache consisting of four logical SRAM banks,
each of which consists of four physical SRAM banks.

Fig. 9. Annotated 3.0-mm × 3.0-mm die photograph with GDS overlay.
There are eight tiles per chip, each tile containing an ARM Cortex-M0,
a Cortex-M4, and four PEs.

The L0 cache provides second-level coalescing by comparing
the new requests with the existing pending requests stored in
the miss status holding registers (MSHR). Along with tracking
missed requests, the MSHRs also act as a request queue that
takes in the inbound requests, a fill buffer that temporarily
holds the returned data before storing to SRAM and a response
queue that sends the read data back to the PEs. Each MSHR
entry stores a bit vector of all requesters and adds additional
requesters if there are any coalescence. The upstream crossbar
then multi-casts the read data back to the PEs based on the
requester bit vector.

For the multiply phase, the L0 is a multi-banked set-
associative cache, allowing NZEs of B to be shared. For
merge, it is reconfigured into a multi-banked scratchpad by
disabling the tag array and the least recently used (LRU)
counter, and is private to each M0–M4 pair. Through another
set of coalescing crossbars, the L0 cache in each tile connects
to the L1 layer, which interfaces to the front-side bus (FSB).

Only minor modifications were made to the cache controller
to enable reconfiguration into the scratchpad mode. In the
scratchpad mode, the tag arrays and the set index bits are
disabled, and the controller addresses directly into each SRAM
bank.

IV. MEASURED RESULTS

The performance of our 2.0-mm × 2.6-mm accelerator for
SpMM, with the chip layout shown in Fig. 9, was evaluated
through matrix squaring on synthetic matrices, as well as
power-law graphs that are the representatives of the real-world
sparse matrices [24], [25]. The measured characteristics of the
chip are summarized in Table I.

At the optimal frequency and voltage points, the accelerator
achieves an energy efficiency of 6.1–8.4 M NNZ/J and a band-
width efficiency of 6.4–15.5 M NNZ/GB. The SSN crossbar
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Fig. 10. Clock and bandwidth sweeps for matrix dim. 100k, density 0.0008%. For measurements with increased bandwidth, an on-chip LFSR is used for
multiply and the M0 is used for merge. (a) Multiply throughput. (b) Multiply energy efficiency. (c) Multiply throughput bandwidth. (d) Merge throughput.
(e) Merge energy efficiency. (f) Merge throughput bandwidth sweep.

Fig. 11. Merge phase performance with and without scratchpad memory.
Overall performance benefit of the scratchpad is 25.7%.

gives the chip a 24.9% performance gain at 86.3% the energy
and 1.3% more area over an MUX crossbar-based design.

A. Frequency and Bandwidth Sweep

Fig. 10 shows the clock and bandwidth sweeps for a matrix
of size 100k × 100k and a density of 0.0008%. The multi-
ply and merge phases were evaluated separately in order to

TABLE I

CHIP CHARACTERIZATION SUMMARY

determine the optimal parameters for each phase. Clock
sweeps show that while multiply performance hits a roofline,
merge performance saturates slowly, as merge is more
compute-heavy due to the overhead of maintaining the sorting
list. We observe the frequency and voltage level in which the
chip achieves the optimal energy efficiency to be at 41.7 MHz
and 0.860 V for the multiply phase, and 352.0 MHz and
0.864 V for the merge phase.

For the bandwidth sweeps, simulation results are appended
to the measured results to illustrate the impact of higher
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Fig. 12. Measured results over different matrices, showing energy and bandwidth efficiency of the proposed chip on uniform random matrices, normalized
to a Core i7 CPU and V100 GPU running SpMM packages.

bandwidth and more compute units. The performance of the
multiply phase continues to increase with higher bandwidth,
while the merge phase reaches saturation early, at less than
1 GB/s. The “knee” lines show that the multiply phase is
∼30× more sensitive to bandwidth than the merge phase.

Based on the frequency and bandwidth scaling of the chip,
scaling out our current chip to 16× the current configuration
would meet the CPU’s performance at 9.5× less bandwidth,
16.7× lower power, and 0.08× the area. At this configuration,
the chip will be able to make optimal use of available
bandwidth by minimizing off-chip traffic.

B. Benefits of Reconfigurable Memory

One of the key design choices of the chip is the use of
reconfigurable memory that transitions between the cache and
the scratchpad based on the demands of the algorithm. For
workloads with well-defined data access and reuse patterns,
the scratchpad improves performance over the cache by pre-
venting any data that will be reused by the program from get-
ting evicted out to memory during intermediate computation,
ensuring each critical data to only be fetched once. Fig. 11
shows the benefit of using the scratchpad memory during the
merge phase at varying matrix densities, but with the matrix
dimension fixed. We observe an average performance benefit
of 25.7% across the different matrices, with higher benefits
for denser matrices.

C. Comparison With the State-of-the-Art Approaches

Fig. 12 compares the energy and bandwidth efficiency of the
chip executing SpMM against the highly optimized, commer-
cial software libraries on a high-end CPU (Intel Core i7) and
GPU (Tesla V100). The matrix dimension, density, and pattern
of non-zeros were varied to observe how different platforms
react to each matrix parameter. For matrices with a uniformly
random distribution of non-zeros, the chip exhibits greater
bandwidth efficiency for larger and denser matrices for both

the CPU and GPU. In contrast, the improvement in energy
efficiency over the CPU is more prominent when the matrix
is small and sparse, but relatively constant against the GPU at
any matrix size or density. This is because the performance of
the CPU degrades more prominently as density is lowered as
the amount of extraneous computation increases. On the other
hand, GPU performance is relatively consistent, because work
is scheduled in large batches, and thus less sensitive to the
changes in data.

In the case of power-law graphs, as shown in Fig. 13, the
improvement in bandwidth efficiency exhibits a slight decrease
with the increasing NNZ for the GPU. The power-law graphs
were synthetically generated using the Graph500 R-MAT data
generator [27] to emulate the characteristics of the real-world
graph data sets.

Table II summarizes the key metrics of this article compared
with that of the CPU, the GPU, a DSP [21], and an application-
specific integrated circuit (ASIC) [22]. The DSP is designed
specifically for sparse matrix–vector multiplication, and the
ASIC focuses on multiplication between the matrices with a
relatively higher density (≥3%) using only on-chip storage.
Therefore, these two works cannot be directly compared with
our work. Our work built the first chip that aims at accelerating
SpMM for real-world sized sparse matrices and addresses the
off-chip memory bottleneck. The chip consumes 0.25 W on
average when operating at its optimal energy efficiency point
of 41.7 MHz for multiply and 352 MHz for merge. In general,
our chip achieves an average energy efficiency gain of 12.6×
against the CPU and 8.4× against the GPU. The compute
density of the chip, which is throughput (NNZ/s) per area,
is 17.1× that of the CPU and 37.1× that of the GPU. The
bandwidth efficiency is a key metric measuring the number of
NZEs in the result matrix computed per bandwidth used; it
shows how well the accelerator can make use of the available
bandwidth. This article is able to achieve 11.7× and 77.6×
improvements in terms of bandwidth efficiency compared with
the CPU and the GPU, respectively.
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TABLE II

KEY METRICS AND COMPARISON VERSUS CPU/GPU AND PRIOR WORK

Fig. 13. Energy and bandwidth efficiency of the proposed chip on power-law
graphs with a matrix dimension of 5000, normalized to a Core i7 CPU and
V100 GPU running SpMM packages.

D. Sorting Algorithm Comparison

To determine the most suitable sorting algorithm for
the merge phase, Fig. 14 shows the performance compar-
ison of linear sorting and priority queue sorting for the
scratchpad and no-scratchpad configurations, with linear sort-
ing, no-scratchpad as the baseline. The linear sorting scheme
outperforms the priority queue for both scratchpad and no-
scratchpad. When the scratchpad is present, linear sorting
exhibits as much as 21.8% improvement over the priority
queue sorting, and the advantage increases for larger and
denser matrices. This is because the maximum sorting list
size of 16 is not large enough for the O(log(L)) complexity
of priority queue resulting in better scalability for larger lists.
Based on the empirical results, the linear sorting algorithm is

Fig. 14. Performance comparison between linear sorting and priority queue
sorting at various matrix sizes and densities. The maximum size of the sorting
list is 16.

Fig. 15. Performance impact of various scratchpad block sizes and sorting
list lengths for different matrix sizes and densities. Block size is the number
of elements stored in the scratchpad per PPM row.

selected as the default sorting algorithm for the merge phase
for this chip.

As discussed in Section II-B, the number of elements that
can be prefetched into the scratchpad per chunk (i.e., block
size) has an inverse relationship with the maximum length of
the sorting list. A larger block size allows more elements of
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the PPM row to be loaded in advance, but results in a smaller
sorting list, which increases the likelihood of performing
multiple merge passes. Fig. 15 shows the performance impact
of different block sizes. For large matrices of dimension
greater than 1000, block size of 4 with a sorting list length
of 16 outperforms the block size of 2 and 8 by 4.7% and 7.0%,
respectively. Therefore, the block size of 4 was chosen as the
default configuration for the chip.

V. CONCLUSION

This article presented an SpMM accelerator that lever-
ages the outer-product method of matrix multiplication to
minimize redundant memory accesses. The 48 heterogeneous
cores comprised of 32 custom PEs and 8 Arm Cortex
M0 + M4 pairs are tightly coupled via a coalescing crossbar
and reconfigurable memory. The ability to switch from cache
to scratchpad memory in different phases of the workload
resulted in speedups of up to 27.3%. Our solution achieves
an energy efficiency of 7.3 M output NNZ/J, and a bandwidth
efficiency of 11.7 M output NNZ/GB. This energy efficiency
is 12.6× and 8.4× higher than that achieved by the state-of-
the-art software libraries on the CPU and GPU, respectively.
Moreover, our solution achieves improvements of 11.7× and
77.6× compared with the CPU and GPU, in terms of band-
width efficiency, which is the key figure of merit for memory-
bound workloads such as SpMM.
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