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ABSTRACT

Much of the recent work on domain-specific architectures has fo-
cused on bridging the gap between performance/efficiency and pro-
grammability. We consider one such example architecture, Trans-
former, consisting of light-weight cores interconnected by caches
and crossbars that supports run-time reconfiguration between shared
and private cache mode operations. We present customized imple-
mentation of a select set of linear algebra kernels, namely, triangular
matrix solver, LU decomposition, QR decomposition and matrix in-
version, on Transformer. The performance of the kernel algorithms
is evaluated with respect to execution time and energy efficiency.
Our study shows that each kernel achieves high performance for a
certain cache mode and that this cache mode can change when the
matrix size changes, making a case for run-time reconfiguration.

1. INTRODUCTION

Linear algebra algorithms are important data processing kernels in
scientific computing, statistics, and machine learning. Due to their
inherent high complexity and different data access patterns, these
kernels form the bottlenecks in real-time applications.

Linear algebra kernels have been accelerated by Application-
Specific Integrated Circuits (ASIC) [1, 2], general-purpose graphic
processing units (GPGPU) [3, 4, 5, 6] and Field Programmable Gate
Arrays (FPGA) [7, 8]. A popular alternative to FPGAs is Coarse-
Grained Reconfigurable Architectures (CGRA) which have the ad-
vantages of shorter reconfiguration time and lower power consump-
tion [9]. Some examples include REDEFINE [10], ADRES [11],
DySER [12], and LAC [13, 14, 15], where the data-path functional
units can be reconfigured based on the computation requirements.
These architectures achieve ASIC-level efficiencies while support-
ing multiple memory access patterns. For instance, LAC shows that
orders of magnitude improvements in efficiency is possible with rel-
atively simple customizations and fine-tuning of memory hierarchy
configurations. PLASTICINE is a recently proposed architecture
which achieves high performance per watt compared to FPGAs [16].
Here both the data-path computing units and the on-chip scratchpad
access patterns are configurable.

In this work, we demonstrate the superior performance of linear
algebra kernel algorithms mapped onto a reconfigurable architec-
ture, Transformer. Transformer consists of multiple in-order cores
connected to a memory interface through a two-level on-chip mem-
ory hierarchy consisting of reconfigurable caches and crossbars. It is
programmable using standard high-level languages such as C/C++.
We focus on the implementation of certain key linear algebra ker-
nels, namely, Triangular Matrix Solver (TRSM), LU Decomposi-
tion (LUD), QR Decomposition (QRD) and Matrix Inversion on
Transformer. Other linear algebra kernels such as Matrix-Vector

and Matrix-Matrix multiplications have been well studied and are
not included here. For each of the linear algebra kernels, we focus
on different scheduling schemes and different Transformer L1 and
L2 cache configurations. We evaluate the performance of the ker-
nel algorithms with respect to execution times, giga-operations per
second per Watt (GOPS/W) and giga-floating-point-operations per
second per Watt (GFLOPS/W) for 14nm technology node. This pa-
per makes the following contributions:

• Describes efficient implementations of linear algebra kernels
such as TRSM, LUD, QRD and Matrix Inversion on a multi-
core reconfigurable architecture.

• Provides performance analysis when operating on different
cache modes for a wide range of input data sizes.

• Demonstrates peak performance of 97.5, 59.4, 133.0 and 82.5
GFLOPS/W for TRSM, LUD, QRD and Matrix Inverse, re-
spectively, on a 16x4 multicore architecture.

The rest of the paper is divided into the following sections. Sec-
tion 2 gives a brief introduction to the Transformer architecture. Sec-
tion 3 discusses the algorithm mappings, followed by results and
evaluation in Section 4, and conclusion in Section 5.

2. TRANSFORMER ARCHITECTURE

Transformer is a scalable, energy-efficient, reconfigurable design
similar to a recent sparse matrix multiplication accelerator [17, 18,
19]. It consists of many in-order General-purpose Processing Ele-
ments (GPEs), distributed on-chip cache memories, crossbars and a
high-bandwidth DDR interface. A block diagram with 4 tiles and 16
GPEs per tile is shown in Fig. 1.

Fig. 1. Transformer architectural overview.

The GPE is a simple, in-order core that has a small silicon foot-
print. Multiple GPEs are coordinated and synchronized by a Local
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Control Processor (LCP). Both types of cores have hardware sup-
port for single-precision floating point operations. Transformer has
two layers of cache-crossbar hierarchy, namely the L1 and L2. The
cache layers are write-back and multi-banked for high throughput
and scalability. The number of L1 banks is equal to the number
of GPEs in a tile, and the number of L2 banks is the same as the
number of tiles. This allows for the cache hierarchy to be easily
reconfigured at run-time between private mode and shared mode.
The crossbars are based on swizzle-switch networks that have been
shown to be more scalable and energy-efficient compared to other
on-chip networks [20]. The LCP has a separate datapath to main
memory. Lastly, Transformer has a global synchronization SPM that
can be accessed by all GPEs and LCP. This on-chip memory can be
used for implementation of software coherence and standard primi-
tives such as locks, condition variables, barriers, and semaphores.

3. MAPPING ON TRANSFORMER

In this section, we give a brief introduction of the four linear algebra
kernels along with their implementation on Transformer.

3.1. Triangular Matrix Solver (TRSM)

This Level-3 BLAS (Basic Linear Algebra Subprograms) routine
solves a system of linear equations of the form AX = B, where
A is an upper or lower triangular matrix, and X & B are dense ma-
trices. Depending on whether A is an upper or a lower triangular
matrix, this algorithm employs backward or forward substitution. In
both cases, a column of X can be computed using matrix A and a
column of B.

The A and B matrices are initially stored in the DRAM and
copied into L1 banks through L2. As the columns of X can be com-
puted in parallel and since there is a serial dependency of computa-
tions within a column, each GPE is assigned the task of computing
one or more columns of X . Columns of B and matrix A are copied
into each L1 bank if a private cache is used or a single copy is shared
among all the L1 banks if a shared cache is used. Each GPE com-
putes the X values in a column one-by-one and stores them in the
L1 cache. After an entire column of X is solved, the updated values
are flushed to the DRAM through L2.

When the size of the matrix is very large, the computations
within a column can be partitioned into n blocks. In such a case,
the L1 cache holds a part of A, B and X . The X values from block
(i) are used to compute the values of block (i+ 1), and so on. This
method also requires flushing data into DRAM / L2 after computa-
tion of every block.

3.2. LU Decomposition (LUD)

LUD involves factorizing a square matrixA into a product of a lower
triangular matrix, L and an upper triangular matrix, U , given by
A = LU . Here, LUD is computed by Gaussian elimination where
U overwrites A; L is stored separately.

Unlike TRSM, where the computations on columns are done
in parallel, in LUD there is a computational dependency across
columns. Assume that each row is assigned to a GPE, so row k is
assigned to GPE k. The first approach (v1) is to parallelize each
column-update, that involves computing one column of L and one
row of U . For N = 64, in the first column-update, the first row
is used as a pivot to compute the multiplication coefficients for all
the rows, as shown by Loop 1 in Fig.2. These coefficients are then
used to update the matrix A shown in Loop 2 by GPEs 2 through
64. The updated pivot row is the first row of U , and the updated A

values along the first column form the first column of L. Now, for
the second column-update, the second row is used as pivot and the
same procedure is followed to get the second row of U and second
column of L. This process repeats until we reach A64,64. The
updated values of each column-update stay in L1 and are flushed to
DRAM by performing a cache flush after every column-update.

Fig. 2. Pseudo code for LUD when A is of size N ×N

The main drawback in this mapping is that the rows above the
pivot row are not used in further computations and so the GPEs as-
signed to those rows become idle. Thus, the number of idle GPEs
increase with every column-update. In a 4-tile Transformer design,
if each tile is assigned N/4 consecutive rows, then GPEs in tile 0
become inactive after N/4 rows have been processed. Even inside a
tile, the workload distribution is uneven. Assigning non-consecutive
rows to tiles may help all the tiles remain active until the end, but
the overall GPE utilization still stays low. In Section 4.4, we demon-
strate how uneven workload distribution across tiles can be utilized
to power down idle tiles, thereby saving power.

For higher utilization, an alternative method (v2) [21] is to di-
vide the matrix into blocks and solve using a combination of LUD,
GEMM (General Matrix - Matrix multiplication) and TRSM calls.
Dividing the matrix into four blocks makes use of the following set
of computations:[

A11 A12

A21 A22

]
=
[
L11 0
L21 L22

] [
U11 U12

0 U22

]
LUD: A11 = L11U11;

TRSM: A21 = L21U11;
TRSM: A12 = L11U12;

GEMM followed by LUD: A22 − L21U12 = L22U22

The LUD step (A11 = L11U11), is implemented using the above
method. Since the LUD works on a smaller matrix, the imbalance in
the workload distribution is not as much. This four block method can
be extended to support dividing the matrix into many more blocks.

3.3. QR Decomposition (QRD)

QRD involves factorizing a square / non-square matrixA into a prod-
uct of an orthogonal matrix Q and an upper triangular matrix R,
given by A = QR. Here, R overwrites A. Each element below the
diagonal is annihilated from the last row using Given’s rotation [22].

QRD has computational dependency along rows as well as along
columns. Since the computations across the columns are indepen-
dent of each other, each column is assigned to a GPE. The computa-
tions start by first annihilating the last value of the first column and
proceeding to annihilate elements above (along column) and to the
right (along row). For the case whenN = 64, every GPE is assigned
one column. All GPEs in tile 1 have to wait till tile 0 has annihilated
the first 16 entries of a row. In the same way tile 2 has to wait till
tile 1 has annihilated the next 16 entries. As each GPE is responsible
for annihilating one column of A, all the rows are updated multiple
times across all the tiles. To ensure that tiles 1 and 2 work on the up-
dated rows, a L1 cache flush is required after every row update. So
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in this mapping a total of 48 + 32 + 16 cache flushes are required.
Each cache flush costs 0.2 - 0.4 µs and so in order to avoid overhead
of cache flushes, we chose to implement QRD using only one tile.

In the single tile implementation, after the computation of the
first 16 columns is done, computations on the next set of 16 columns
start. We ensure that the serial dependency across columns is re-
spected by storing the status of the columns (annihilated or not) us-
ing the synchronization scratchpad. For all computations, data is
read from the L1 banks and the updated row values are stored back
into the L1 banks. The final Q and R values reside in the L1 banks.

3.4. Matrix Inversion

The inverse of a matrix is one which when multiplied by the original
matrix results in an identity matrix, AA−1 = I (or) A−1A = I ,
where A, A−1 and I are square matrices.There are many methods
to invert a matrix. Here, we use a combination of LUD and TRSM
to compute A−1. The steps are (i) LUD: A = LU , (ii) TRSM:
LY = I and (iii) TRSM: UX = Y . The TRSM and LUD kernels
are mapped as described in Sections 3.1 and 3.2, respectively.

4. RESULTS

Transformer is modeled using the gem5 [23] architectural simulator.
The architectural configuration used here has 4 tiles with 16 GPEs
per tile and two levels of cache hierarchy. The L1 cache bank size is
fixed at 4kB and the L2 cache bank size is fixed at 64kB. The simu-
lation statistics such as execution time, power, GOPS and GFLOPS
are obtained from gem5 statistics. The cache configurations used
here are:

1. L1 shared cache, L2 shared cache (L1S, L2S)
2. L1 shared cache, L2 private cache (L1S, L2P)
3. L1 private cache, L2 shared cache (L1P, L2S)
4. L1 private cache, L2 private cache (L1P, L2P)
The power calculation is based on the raw power parameters, i.e.

static power and dynamic power (or transaction energy per access)
for the 14 nm node and the gem5 statistics that include active cycles
and access numbers. The static power and transaction energy per
access of the reconfigurable cache banks are obtained from CACTI
7.0 cache models [24] and those for the crossbars are obtained from
Sewell et al. [20] (scaled from 32 nm to 14 nm). The power data
has been validated against a prototype chip in 40 nm [19, 18] of
the sparse matrix multiplication accelerator [17] and scaled down to
14 nm technology node.

4.1. Triangular Matrix Solver

Table 1 shows the execution times (in ms) for different cache config-
urations when operating on matrix sizes of 128×128 to 1024×1024.
We see that for small matrix sizes, L1P, L2P has the best perfor-
mance while for larger matrix sizes L1S, L2P does better. L1P, L2P
mode does not perform as well for larger sizes since the memory re-
quirement is larger than what the L1 cache bank can support. The
maximum requirement for the computations is 2*N*4 which trans-
lates to 4kB (the size of L1 cache) when N=512.

N L1S, L2S L1S, L2P L1P, L2S L1P, L2P
128 0.15 0.15 0.137 0.132
256 1.28 1.33 0.989 0.981
512 10.33 10.12 9.32 7.22
1024 104.55 85.4 178.61 143.7

Table 1. TRSM: Execution times (in ms) for different matrix sizes

Fig.3 shows the GFLOPS/W for different matrix sizes for all the
cache modes. Here too we see that L1P, L2P does better until N =
512; whenN > 512, L1S, L2P has significantly better performance.
Our GFLOPS/W numbers are fairly high with 84-96 GFLOPS/W for
N < 512. The GOPS/W values for N = 128, 256, 512 and 1024
are also high at 240, 250, 261 and 205, respectively.

Fig. 3. TRSM: GFLOPS/W for different matrix sizes.

4.2. LU Decomposition

As mentioned in Section 3.2, LUD v1 can be scheduled by assigning
consecutive or non-consecutive rows to each GPE. Fig. 4 shows the
time a GPE is active when N=128. In the first approach (Fig. 4(a)),
32 consecutive rows are assigned to each tile, and so GPE0 in tile 0
is assigned 1st and 17th rows. In the second approach (Fig. 4(b)),
consecutive rows are assigned to consecutive GPEs across tiles and
so GPE0 is assigned 1st and 65th rows. In both approaches, each
GPE computes on two rows. The main advantage of approach 1 is
that we can shut down the tiles after they are done computing their
rows, thus saving power. This technique, on average, saves power
up to 27%.

(a) Consecutive rows assigned to GPEs

(b) Non-consecutive rows assigned to each GPE

Fig. 4. LUD: The time for which each GPE is active in the two
scheduling schemes for v1.

Table 2 shows the execution times (in ms) of both v1 and v2
for different cache configurations when operating on matrix sizes of
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128× 128 to 1024× 1024. We can clearly see that v2 outperforms
v1 for all data sizes and for all cache modes except for L1P, L2S.
Recall that v2 uses v1 mapping for computing LUD at the block
level. We also see that until N = 256, L1S, L2S performs well

N L1S, L2S L1S, L2P L1P, L2S L1P, L2P
v1 v2 v1 v2 v1 v2 v1 v2

128 0.67 0.46 0.69 0.5 0.69 0.57 0.67 0.55
256 3.58 2.06 3.44 2.1 3.52 3.78 3.64 2.9
512 25.61 12.96 25.52 12.62 27.63 40.05 24.5 19.52

1024 168.66 99.6 169.62 97.25 371.25 382.6 157.17 143.77

Table 2. LUD: Execution times (in ms) for different matrix sizes

and then for N > 256, L1S, L2P has slightly better performance.
Here, L1 private cache does not have good performance because the
scheduling pattern in v1 divides each column-update across the tiles.
So, a shared configuration for L1 does better.

Fig. 5 shows the GFLOPS/W for v2. There is a linear increase in
GFLOPS/W as the matrix size increases until N=512. The numbers
for N = 256, 512 are close to 59 GFLOPS/W. The GOPS/W for the
best cache configuration forN=128, 256, 512 and 1024 are 99, 131,
155.83 and 154.04, respectively.

Fig. 5. LUD: GFLOPS/W for different matrix sizes

4.3. QR Decomposition

We evaluate the performance of QRD on matrix sizes of 64 × 64,
128 × 128, and 256 × 256. As we use only a single tile, there is
no difference in using L2 in shared or private mode. The execution
times for L1P, L2S are 0.35 ms, 1.54 ms and 13.3 ms for N = 64,
128 and 256, respectively. L1P, L2S works better for all the matrix
sizes as each GPE works independently on a column.

Fig.6 shows the GFLOPS/W for different matrix sizes. We see
that the GFLOPS/W is as high as 130 for N=256. The GOPS/W for
N=64, 128 and 256 are 124.93, 183.7 and 182.75, respectively.

Fig. 6. QRD: GFLOPS/W for different matrix sizes

4.4. Matrix Inversion

The Matrix Inversion kernel is composed of three different kernels:
LUD, forward substitution and backward substitution. An analysis
of execution time shows that LUD is dominant with 42.79%, fol-
lowed by forward substitution at 29.96% and backward substitution
at 27.75%. Table 3 shows the execution times (in ms) for different
cache configurations when operating on matrix sizes of 128 × 128
to 1024 × 1024. The ’reconfiguration’ scheme, which uses the best
cache mode for each kernel, has the best performance.

N L1S, L2S L1S, L2P L1P, L2S L1P, L2P Reconfig.
128 0.78 0.82 0.84 0.86 0.72
256 4.83 4.95 5.76 5.14 3.9
512 33.71 32.93 58.7 33.96 27.32

1024 279.66 268.06 739.82 385.22 268.06

Table 3. Matrix Inverse: Execution times (in ms) for different matrix
sizes

Next, we present GFLOPS/W results for the different con-
figurations in Fig.7. We see that reconfiguration helps increase
GFLOPS/W. For instance, forN = 512 use of reconfiguration helps
increase GFLOPS/W from 72.67 (L1S, L2P) to 83.05. Since recon-
figuring cache mode only costs 1 cycle, support for reconfiguration
is a winning proposition.

Fig. 7. Matrix Inverse: GFLOPS/W for different matrix sizes

5. CONCLUSION

In this paper, we presented the implementations of four linear al-
gebra kernels onto a massively parallel reconfigurable architecture,
Transformer. We investigated the performance of these kernels when
the L1 and L2 caches operated in shared and private modes. We
found that the optimal cache mode was different for each kernel.
For instance, for smaller matrix sizes, L1P, L2P was best for TRSM
while L1S, L2S was best for LUD and L1P, L2S was best for QRD.
For each kernel, the optimal cache mode changed when the ma-
trix size increased. For instance, for LUD, the optimal cache mode
changed from L1S, L2S to L1S, L2P for N > 512. The reconfig-
urable cache mode features are utilized in the implementation of ma-
trix inverse. For N = 512, implementing the LUD step using L1S,
L2P and the TRSM step using L1P, L2P resulted in an improvement
of 10.38 GFLOPS/W compared to operating in the L1S, L2P mode.
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