
17.3 GCUPS Pruning-based Pair-Hidden-Markov-Model Accelerator for Next-Generation DNA Sequencing
Xiao Wu1,2, Arun Subramaniyan1,2, Zhehong Wang1, Satish Narayanasamy1,2, Reetu Das1,2, David Blaauw1,2

1University of Michigan, Ann Arbor, 2Sequal Inc., Ann Arbor

Abstract
We present the first ASIC accelerator for pair-Hidden-Markov-

Model (Pair-HMM) in DNA variant calling, which conventionally re-

quires ~250T FLOPs per sequenced human genome. Using a hard-

ware-algorithm co-design, we opportunistically replace floating point

(FP) multiplication with 20b log-domain addition while employing

bound checks to maintain (provable) correct results in downstream

processing. FP computation is reduced by 43× on real human genome

data. Implemented in 40nm CMOS, the 5.67 mm2 accelerator demon-

strates 17.3G cell updates per second (CUPS) throughput, marking a

6.6× improvement over our baseline ASIC implementation and 355×

GCUPS/mm2 improvement over a recent FPGA implementation [2].

Introduction
Recent advances in next-generation sequencing have enabled fast

DNA identification for cancer, genetic disorders and pathogen detec-

tion. Short DNA fragments are sequenced in a massively parallel fash-

ion, producing billions of DNA reads (strings of ~100 nucleotides: A,

C, G, T) per human genome. Reassembling these DNA fragments to

determine differences from a common reference genome (secondary

analysis) requires extensive computation. Among several secondary

analysis steps, variant calling is the final step, which identifies dis-

ease-related gene mutations and remains extremely time consuming.

In particular, the Pair-HMM forward algorithm (or PFA) for variant

calling requires ~250T FLOPs to infer mutation probabilities and con-

tributes 70% [1] of variant calling computation. The PFA requires

alignment matrix calculation with a complicated combination of float-

ing point (FP) addition and multiplication to infer overall similarity of

two strings, making it a difficult hardware optimization problem. The

PFA has been mapped to a GPU [8] as well as FPGAs using systolic

array [3-6] and ring-based topologies [2][7]. However, these methods

are constrained by the availability of FP resources. Also, they are di-

rect hardware mappings that do not re-optimize the algorithm to make

them hardware friendly. Furthermore, no dedicated ASIC has been

demonstrated to date to accelerate the PFA for DNA sequencing.

We propose the first ASIC implementation of the PFA and demon-

strate its operation in a complete DNA sequencing flow. Using a new

algorithm-hardware co-design, we alleviate the throughput bottleneck

caused by limited FP resources by devoting FP resources only to esti-

mated high-quality alignment regions (Fig. 1). For non-high-quality

regions, FP multiplication is replaced with low-accuracy 20b integer

addition by using log domain number representation greatly improv-

ing performance. By maintaining error bounds on this low-precision

log-domain calculation, we detect and, as needed, rerun with high pre-

cision those few cases with possible failure, thereby obtaining (prov-

able) correctness in the downstream analysis. As a result, FP compu-

tation is reduced by 43× when tested on real human data, and is re-

placed with 20 bit log-domain integer PEs (I-PEs) that are 4.6×

smaller in area and 1.9× higher in performance than floating point PEs

(FP-PEs).

Pruning-Based Algorithm-Hardware Co-Design

A conventional PFA calculates the probabilities of all alignments

between a candidate mutation string and a DNA read using an align-

ment matrix (Fig. 1). The likelihood of a particular cell (i,j) represent-

ing a particular alignment is computed from the likelihood of its three

neighboring cells: vertical neighbor cell (i-1,j) representing an insert

transition, diagonal neighbor (i-1,j-1) for a match transition, and hor-

izontal neighbor (i,j-1) for a delete transition (Fig. 1, bot, right). We

make the key observation that the final score of the matrix is typically

dominated by the probabilities of only a few alignment paths, thanks

to high quality reads and a small likelihood of genetic mutations. To

identify these dominant paths, the proposed pruning-based Pair-HMM

algorithm executes in two phases (Fig. 2).

In the scan phase, an upper bound likelihood for each cell in the

alignment matrix is computed using I-PEs operating in logarithmic

number representation, which replaces multiplication with addition

and significantly reduces hardware complexity. We observed that

most dominant paths contain long consecutive diagonal transitions.

Therefore, starting from the cell with the maximum matched score in

the final row, the algorithm traces back along diagonal cells, pruning

horizontally and vertically adjacent cells (i.e., treating their likelihood

as zero). It continues this trace as long as the pruned cells, representing

delete/insert transitions, do not contribute significantly to the cell

score. The result of the first phase is a pruned region as well as an

upper bound of the final score of the entire matrix.

In the following refinement phase, the (small) un-pruned region is

computed using FP-PEs (the likelihood of the pruned region is set to

zero), resulting in a (tight) lower bound. Then, through bound com-

parison in a downstream analysis, the mutation with the highest like-

lihood among all candidate mutations is correctly determined as the

final variant calling result in 98.5% of all cases. The failing cases

(1.5%) are guaranteed to be identified and are recomputed using only

FP-PEs.

Fig. 3 shows the pruning method in the scan phase in more detail.

The cell (I, J) with the highest match score in the final row indicates

the end position of a good alignment and is picked as the seed position

for pruning. In the PFA, the match score at the seed M(I, J) is the

weighted sum of M, I, D from the diagonally adjacent cell (I-1, J-1).

If this match score is significantly larger than the insertion and dele-

tion scores in cell (I-1,J-1), we would arrive at a slightly lower M(I, J)

score with insertion and deletion scores set to zero in cell (I-1,J-1).

This allows us to prune insertion and deletion scores in (I-1, J-1) and

all their adjacent cells to the top and left, respectively. The pruning

stops at the cell (Istop, Jstop) where the match no longer shows dom-

inance over the insertion and deletion scores. For FP-PE computation,

this results in a (small) rectangular region in the top, left of the matrix,

followed by a string of consecutive match transitions (Fig. 3, shown

in red).

Hardware Implementation
Fig. 4 shows the overall architecture of the proposed pruning-based

Pair-HMM accelerator. It consists of 10 scan machines composed of

16 I-PEs each to upper bound and prune matrices, and 4 refinement

machines composed of FP-PEs to accurately compute un-pruned re-

gions. Refinement machines come in two sizes with 1× and 4× FP-

PEs to accommodate the variable size of un-pruned regions. An on-

demand arbiter streams in jobs from input memory, dispatches them

to scan and refinement PEs and streams results to output memory.

 Fig. 5 shows the hardware implementation of a scan machine, con-

sisting of 16 PEs (Fig. 6), an input feeder to control PE traversal across

the matrix, a binning-based log-sum module to avoid accuracy degra-

dation in the last row, and an early stop detection module. Each PE

uses 20 bits fixed point addition and a 15-entry table lookup in the log

domain as substitutes for multiplication and addition, respectively, in

the real domain. Instead of tracing back to determine the pruned re-

gion, the logic in the PEs prune cells as PEs traverse forward across

the matrix, avoiding the need to store scores for the entire matrix. PEs

work in parallel when traversing the matrix from left to right. As PEs

traverse, an early detection module opportunistically stops the scan

phase once the maximum score in one row is smaller than a threshold.

This optimization takes advantage of downstream processing where

extremely low Pair-HMM results are filtered completely, reducing

workload even in the scan phase (by 18%). Because only adjacent PEs

communicate with each other, routing complexity is greatly reduced.

Measurements
Fabricated in 40nm CMOS with 5.67 mm2 die area, the accelerator

reaches 120 MHz with 756 mW. Fig. 6 shows that the number of cells

requiring FP calculation is reduced 43× (including re-computation

due to bound check failure). The proposed accelerator was verified

with real sequencing data and shows 17.3 GCUPS average throughput

which is a 6.6× improvement over a FP-only baseline ASIC imple-

mentation (normalized to the same area). We obtain speedups of 355×

978-1-7281-9942-9/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 19,2020 at 17:54:27 UTC from IEEE Xplore. Restrictions apply.

and 1344× in CUPS/mm2 compared to FPGA [2] and NVidia K40

GPU [8] implementations, respectively. Fig. 7 shows the die photo.

References

[1] M. Carneiro, Intel, 2013. [3] C. Rauer, et.al, Intel.

[2] S. Huang, et.al, FPGA, 2017. [5] S. Ren, et.al, BIBM, 2015.

[4] J. Peltenburg, et.al, BIBM, 2016.

[6] M. Ito, M. Ohara, COOL chips, 2016.

[7] G.J. Manikandan, et.al, FCCM, 2016.

[8] S. Ren, et.al, Evol. Bioinform, 2018.

A
C
G
T

Billions reads

1 base

pair (bp)

Sequencing

Figure 1. Concept of proposed pruning-based Pair-HMM forward algorithm (PFA) to accelerate floating point

intensive (~250T FP operations/genome) DNA variant calling

[2] [4] [8] [8] This work

Platform

Technology

Chip area (mm)

Topology

Frequency (MHz)

Power (W)

Peak floating point performance

(GFLOPS)
Throughput normalized to floating

point perfoamance (CUPS/FLOPS)
Throughput normalized to area

(GCUPS/mm)

FPGA

Arria 10

FPGA

Virtex 7

CPU

POWER8 (20 cores)

GPU

Nvidia Tesla K40
ASIC

20nm 28nm 22nm 28nm 40nm

858 858 1298 561 5.67

PE ring Systolic array N.A. N.A. Pruning-based

230.73 166.7 3420 745 120

20 20 851 235 0.756

1366 2000 1094.4 4290 6.9

0.0216 0.0113 0.0024 0.0006 2.5072

0.0086 0.0129 0.0006 0.0023 3.0511

Power efficiency (GCUPS/W) 1.4750 1.1300 0.0031 0.0111 22.8836

2

2

* *

** ** ** **

*** ***

* Only reticle size was available ** Normalized to technology node *** Extracted from different benchmarks

Table 1. Performance comparison

Figure 8. Die photo

Figure 4. Top-level architecture of pruning-based

PFA accelerator

(Istop, Jstop)

Result:

Upper bound

Scan Machine: Approximate & Prune

Inter Job Parallelism

Approximate log domain

FP-PEs

Refinement Machine: Selectively Compute

Result:

lower bound

Increase PE utilization

1Mb Input Memory
Load balancing

10x Machines

Variable PE array sizes for

variable remaining area

16x I-PEs

R
ea

d
 &

 C
an

d
id

at
e

M
u

ta
ti

o
n

 S
tr

in
g

500Kb Output Memory

Input

Feeder

4x Machines

(Istop, Jstop)

Input

Regfiles

MUX

C
el

l i
n

d
ex

 d
ef

in
in

g
 r

em
ai

n
in

g
 a

re
a

Input Regfiles

OSC

DIV2

Remaining

area

On-demand Arbiter

Real domain

Pruning threshold

prune MUX1 0

MUX0 1

iIstop (i-2,j-2)

Equal 0? MUX0 1

jJstop (i-2,j-2)

Equal 0?

MUX0 1

0 0

Istop (i,j) Jstop (i,j)

Pruning Logic
Equal 0: this PE is not

on dominant path

 prune this PE is still on dominant path, or just found

a new dominant path

+

log-sum

+

tid(i,j)

w3 w4

+

w2

tm(i,j)

log-sum

tid(i,j-1) tm(i,j-1)

+

log-sum

+

w1 w0

+

log-sum

+

w6 w5I(i-1,j) D(i-1,j) M(i-1,j)

M(i,j)

M(i-1,j) I(i-1,j) M(i,j-1) D(i,j-1)

I(i,j) D(i,j)

Match Insertion Deletion

Re-organized match logics to remove direct

dependency from (i-1,j-1) All inputs comes from one cycle before

Integer

inputs

Integer

outputs

replace

addition in

real domain

Figure 6. Circuit implementation of log-domain I-PE

Figure 5. Architecture of scan machines

I-PE

I-PE1

I-PE2

I-PE15

...

Input

Feeder

Regfile: Candidate mutation string

R
eg

fi
le

:
R

ea
d

 &
 q

u
al

it
y

sc
o

re
s

Probability weights

PE traversing

direction

Binning

M,I
Final row PE ID

 log-accumulator

Result: upper bound

< fL?

stop

Early stop

before

final row

0

Reduce scan

machine work load

Avoid large value

difference in log-sum.

Improve accuracy

Probability

scores

(i,j)

(i+1,j-1)

(i+2,j-2)

(i+15,j-15)

Current cell index

MUX

M,I M,I M,I

Reference DNA A T G C T C
T G C T

T A C T
T A C T

R1:

Position 1 2 3 4 5 6
Read Alignment

T G C TAligned reads

Conventional PFA Proposed Pruning-based PFA

A T G C T C
T

G

C

T

Candidate mutation: >100bp

R
ea

d
:

~
10

0b
p

+

...

Paths

represent

alignments
1p 2p ...

ip

11 FP

ops/cell

Bottleneck: Limited FP resources

A T G C T C
T

G

C

T

Candidate mutation

R
ea

d

+
dominantp

Likelihood scoresOutput: P=

Dominant

alignments

dominantp

Reduced FP workload: throughput/mm
2

Non-dominant

alignments

Upper bound of

entire matrix

upper boundpaccuratep

Tight lower bound

Data dependencies

(i
, j

)
(i

-1
, j

)

I
M

D

w0*
w1*

+
w2*
w3*+
w4*+

w5*
w6*

+

(i
-1

, j
-1

)
(i

, j
-1

)

M: match likelihoods
D: deletion likelihoods
 I: insertion likelihoods

M
D
I

I
M

D
M

w 0-5:weights

Use

FP

G 0.1
A 0.2

Mutation Probability

Called
G [0.09,0.15]
A [0.19,0.3]

Mutation Probability
Nonoverlapping

bounds:

A is the correct call
Called

Downstream: Call the most likely mutation Downstream: Bound checks & call mutation

R3:
R4:

R1:

A T GC T C A T A C T C

R1 R2 R3 R4

P1,1

Candidate Mutation

P4,2P2,1

Variant Calling

(Major step: PFA)

Conventional

PFA

Proposed

PFA

1

2

F
lo

at
in

g
 p

o
in

t
w

o
rk

lo
ad

 (
ce

lls
)

wi 1000 Genome sequencing data:

HG00419:chr1

reduction

from

pruning

43×

10
12

×

Baseline

ASIC

0
2
4
6
8

10
12
14
16
18

A
ve

ra
g

e
T

h
ro

u
g

h
p

u
t

(G
C

U
P

S
)

Proposed

ASIC

Measurement of proposed

ASIC accelerator

6.6 ×
increase

Figure 7. Analysis of proposed algorithm

and measurement result of proposed ASIC

Analysis of proposed

algorithm
Re-computation

included

Memory

 Refinement

 Scan machines

 Scan machines

Arbiter

Figure 3. Detailed pruning

methodology of proposed

pruning-based PFA

Candidate mutation string

R
ea

d

1 ~0~0

Seed cell (I,J)

~0 ~0

+

Upper bound estimation

Candidate mutation string

R
ea

d

1. Find the seed cell

2. Uncover dominant path & prune

Candidate mutation string

R
ea

d

I
M

D

Condition fail:

pruning stop1
1

1
(Istop, Jstop)

3. Stop Pruning

Remaining cells for

accurate computation

~0~0

1 ~0~0 ~0 ~0~0~0

Pruned:

No dependency

with Mmax & M

M» D I+ ?w3 * w4 *w2 *

Pruning Condition

Pruned:

No dependency

with Mmax

Mmax

Mmax

1~0
~0
IMD

Pruning Condition:

M (i,j) M(i-1,j-1)w2*

M » D I+w3 * w4*w2*if

Figure 2. Algorithm of proposed pruning-based PFA

I-PE

I-PE

I-PE

Candidate mutation string

R
ea

d

+

Fast approximation of

PFA in log domain

Upper bound estimation

1. Scan entire matrix

Estimated cells

Un-estimated

cells

Candidate mutation string

R
ea

d

Mmax

Dominant path

I
MD

2. Identify dominant path & Prune

Match

dominates

Remaining cell

Weighted sum 1

1
~0

~0

~0

~0
1

1
1

1

~0

Pruned cell

R
ea

d

Candidate mutation string

Compute

accurately

Set to zero

2

Tight Lower bound

I-PE

~0~0

FP-

PE

FP-

PE

Phase I. Scan phase:

approximation & workload pruning

Phase II. Refinement phase:

accurate computation on selective area

Pruning

stopped

Use FP resources smartly:throughput/mm

Devote floating point

units only on

remaining area

Downstream:

Overlap: recompute; Non-overlap: correct call

IMD
IMD

Upper bound

Log-sum Lookup Table

log(A+B)

=log[A(1+B/A)]

=logA+log(1+B/A)

log(1+B/A)log(B)-log(A)
......

Index Content

Use logB-logA as key

for lookup

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 19,2020 at 17:54:27 UTC from IEEE Xplore. Restrictions apply.

