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Abstract 
We present the first ASIC accelerator for pair-Hidden-Markov- 

Model (Pair-HMM) in DNA variant calling, which conventionally re-

quires ~250T FLOPs per sequenced human genome. Using a hard-

ware-algorithm co-design, we opportunistically replace floating point 

(FP) multiplication with 20b log-domain addition while employing 

bound checks to maintain (provable) correct results in downstream 

processing. FP computation is reduced by 43× on real human genome 

data. Implemented in 40nm CMOS, the 5.67 mm2 accelerator demon-

strates 17.3G cell updates per second (CUPS) throughput, marking a 

6.6× improvement over our baseline ASIC implementation and 355× 

GCUPS/mm2 improvement over a recent FPGA implementation [2]. 

Introduction 
Recent advances in next-generation sequencing have enabled fast 

DNA identification for cancer, genetic disorders and pathogen detec-

tion. Short DNA fragments are sequenced in a massively parallel fash-

ion, producing billions of DNA reads (strings of ~100 nucleotides: A, 

C, G, T) per human genome. Reassembling these DNA fragments to 

determine differences from a common reference genome (secondary 

analysis) requires extensive computation. Among several secondary 

analysis steps, variant calling is the final step, which identifies dis-

ease-related gene mutations and remains extremely time consuming. 

In particular, the Pair-HMM forward algorithm (or PFA) for variant 

calling requires ~250T FLOPs to infer mutation probabilities and con-

tributes 70% [1] of variant calling computation. The PFA requires 

alignment matrix calculation with a complicated combination of float-

ing point (FP) addition and multiplication to infer overall similarity of 

two strings, making it a difficult hardware optimization problem. The 

PFA has been mapped to a GPU [8] as well as FPGAs using systolic 

array [3-6] and ring-based topologies [2][7]. However, these methods 

are constrained by the availability of FP resources. Also, they are di-

rect hardware mappings that do not re-optimize the algorithm to make 

them hardware friendly. Furthermore, no dedicated ASIC has been 

demonstrated to date to accelerate the PFA for DNA sequencing.  

We propose the first ASIC implementation of the PFA and demon-

strate its operation in a complete DNA sequencing flow. Using a new 

algorithm-hardware co-design, we alleviate the throughput bottleneck 

caused by limited FP resources by devoting FP resources only to esti-

mated high-quality alignment regions (Fig. 1). For non-high-quality 

regions, FP multiplication is replaced with low-accuracy 20b integer 

addition by using log domain number representation greatly improv-

ing performance. By maintaining error bounds on this low-precision 

log-domain calculation, we detect and, as needed, rerun with high pre-

cision those few cases with possible failure, thereby obtaining (prov-

able) correctness in the downstream analysis. As a result, FP compu-

tation is reduced by 43× when tested on real human data, and is re-

placed with 20 bit log-domain integer PEs (I-PEs) that are 4.6× 

smaller in area and 1.9× higher in performance than floating point PEs 

(FP-PEs).  

Pruning-Based Algorithm-Hardware Co-Design 

A conventional PFA calculates the probabilities of all alignments 

between a candidate mutation string and a DNA read using an align-

ment matrix (Fig. 1). The likelihood of a particular cell (i,j) represent-

ing a particular alignment is computed from the likelihood of its three 

neighboring cells: vertical neighbor cell (i-1,j) representing an insert 

transition, diagonal neighbor (i-1,j-1) for a match transition, and hor-

izontal  neighbor (i,j-1) for a delete transition (Fig. 1, bot, right). We 

make the key observation that the final score of the matrix is typically 

dominated by the probabilities of only a few alignment paths, thanks 

to high quality reads and a small likelihood of genetic mutations. To 

identify these dominant paths, the proposed pruning-based Pair-HMM 

algorithm executes in two phases (Fig. 2).  

In the scan phase, an upper bound likelihood for each cell in the 

alignment matrix is computed using I-PEs operating in logarithmic 

number representation, which replaces multiplication with addition 

and significantly reduces hardware complexity. We observed that 

most dominant paths contain long consecutive diagonal transitions. 

Therefore, starting from the cell with the maximum matched score in 

the final row, the algorithm traces back along diagonal cells, pruning 

horizontally and vertically adjacent cells (i.e., treating their likelihood 

as zero). It continues this trace as long as the pruned cells, representing 

delete/insert transitions, do not contribute significantly to the cell 

score. The result of the first phase is a pruned region as well as an 

upper bound of the final score of the entire matrix.  

In the following refinement phase, the (small) un-pruned region is 

computed using FP-PEs (the likelihood of the pruned region is set to 

zero), resulting in a (tight) lower bound. Then, through bound com-

parison in a downstream analysis, the mutation with the highest like-

lihood among all candidate mutations is correctly determined as the 

final variant calling result in 98.5% of all cases. The failing cases 

(1.5%) are guaranteed to be identified and are recomputed using only 

FP-PEs. 

Fig. 3 shows the pruning method in the scan phase in more detail. 

The cell (I, J) with the highest match score in the final row indicates 

the end position of a good alignment and is picked as the seed position 

for pruning. In the PFA, the match score at the seed M(I, J) is the 

weighted sum of  M, I, D from the diagonally adjacent cell (I-1, J-1). 

If this match score is significantly larger than the insertion and dele-

tion scores in cell (I-1,J-1), we would arrive at a slightly lower M(I, J) 

score with insertion and deletion scores set to zero in cell (I-1,J-1). 

This allows us to prune insertion and deletion scores in (I-1, J-1) and 

all their adjacent cells to the top and left, respectively. The pruning 

stops at the cell (Istop, Jstop) where the match no longer shows dom-

inance over the insertion and deletion scores. For FP-PE computation, 

this results in a (small) rectangular region in the top, left of the matrix, 

followed by a string of consecutive match transitions (Fig. 3, shown 

in red). 

Hardware Implementation 
Fig. 4 shows the overall architecture of the proposed pruning-based 

Pair-HMM accelerator. It consists of 10 scan machines composed of 

16 I-PEs each to upper bound and prune matrices, and 4 refinement 

machines composed of FP-PEs to accurately compute un-pruned re-

gions. Refinement machines come in two sizes with 1× and 4× FP-

PEs to accommodate the variable size of un-pruned regions. An on-

demand arbiter streams in jobs from input memory, dispatches them 

to scan and refinement PEs and streams results to output memory. 

 Fig. 5 shows the hardware implementation of a scan machine, con-

sisting of 16 PEs (Fig. 6), an input feeder to control PE traversal across 

the matrix, a binning-based log-sum module to avoid accuracy degra-

dation in the last row, and an early stop detection module. Each PE 

uses 20 bits fixed point addition and a 15-entry table lookup in the log 

domain as substitutes for multiplication and addition, respectively, in 

the real domain. Instead of tracing back to determine the pruned re-

gion, the logic in the PEs prune cells as PEs traverse forward across 

the matrix, avoiding the need to store scores for the entire matrix. PEs 

work in parallel when traversing the matrix from left to right. As PEs 

traverse, an early detection module opportunistically stops the scan 

phase once the maximum score in one row is smaller than a threshold. 

This optimization takes advantage of downstream processing where 

extremely low Pair-HMM results are filtered completely, reducing 

workload even in the scan phase (by 18%). Because only adjacent PEs 

communicate with each other, routing complexity is greatly reduced. 

Measurements 
Fabricated in 40nm CMOS with 5.67 mm2 die area, the accelerator 

reaches 120 MHz with 756 mW. Fig. 6 shows that the number of cells 

requiring FP calculation is reduced 43× (including re-computation 

due to bound check failure). The proposed accelerator was verified 

with real sequencing data and shows 17.3 GCUPS average throughput 

which is a 6.6× improvement over a FP-only baseline ASIC imple-

mentation (normalized to the same area). We obtain speedups of 355× 
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and 1344× in CUPS/mm2 compared to FPGA [2] and NVidia K40 

GPU [8] implementations, respectively. Fig. 7 shows the die photo. 
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Figure 1. Concept of proposed pruning-based Pair-HMM forward algorithm (PFA) to accelerate floating point 

intensive (~250T FP operations/genome) DNA variant calling
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Figure 4. Top-level architecture of pruning-based 

PFA accelerator
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Figure 5. Architecture of  scan  machines
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