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   Abstract: We propose an ultra-low power (ULP) Image Signal 
Processor (ISP) that performs on-the-fly in-processing frame 
(de)compression and hierarchical event recognition to exploit the 
temporal and spatial sparsity in an image sequence to achieve a 
16× imaging system energy gain. The ISP is fabricated in 40nm 
CMOS and consumes only 170 µW at 5 fps for neural network-
based intruder detection and 192× compressed image recording. 

Introduction: Imaging is a highly desirable sensing modality 
in battery-operated IoT systems as it offers key contextual 
information about a sensor’s environment. Prior IoT imaging 
systems have two key difficulties: 1) They process uncompressed 
frame images, resulting in a large frame buffer that increases chip 
size and leakage power. 2) Since they lack scene understanding, 
they cannot recognize useful information, and all frames must be 
transmitted fully, incurring considerable storage and radio power.  

We address these challenges in the proposed ULP ISP, designed 
for size-constrained intelligent edge devices. First, we use 
macroblock(MCB)-based scene change detection using a new 
sparse census-transform encoding and JPEG compressed memory 
for input images, ensuring that full uncompressed images are 
never stored in their entirety on-chip. This reduces the required 
SRAM size for storing frames on-chip by 11.2× and leakage 
power by 26.9×. Second, we enable hierarchical event recognition 
through a programmable neural network (NN) engine that 
progressively prunes uninteresting areas or the entire image. Since 
relevant information typically occurs sparsely in time and space, 
image storage and transmission requirements can be reduced by 
>1000× (Fig. 1). In addition, the NN engine uses deep 
compression of all on-chip weights stored in a custom ultra-low 
leakage SRAM, further reducing system size and power. An 
H.264 engine compresses the final detected regions of interest, and 
the chip achieves a 192× total image size reduction ratio.  

Architecture: Fig. 2 overviews the ISP design. All logic 
operates in a power-gated 0.6V domain. The imager interface 
block performs change detection (CD) on streamed-in images and 
stores the changed MCBs into the on-the-fly (during access) JPEG 
(de)compressed memory. The neural-engine (NE) processing 
element (PE) accelerates NN operations, controlled by a custom 
RISC processor, NCX. An H.264 Engine (H264E) performs intra-
frame compression on an arbitrary (non-rectangular shaped) 
subset of MCBs and sends them off chip through the serial 
interface. An ARM Cortex-M0 orchestrates all blocks through the 
AHB bus. 

Use Scenario: We demonstrate the proposed ISP in intruder 
detection and recording (Fig. 3) as follows: A companion imager 
chip with integrated motion detection [1] periodically inputs a sub-
sampled image (32×20 pxls×1ch) into the ISP chip. The NE then 
performs NN-based person detection (consuming 14.4 µJ) on the 
sub-sampled image to determine if it contains a person. If it does, 
the ISP requests a full VGA frame from the imager (Bayer RGB 
format) and then performs on-the-fly MCB-based change 
detection against a reference frame, followed by JPEG 
compression (4.65µJ/frame with typical 12% change). The NE 
runs NN-based face detection, sweeping the region of changed 
MCBs on two scales (1 and 2× subsampling) with 16 pxl stride 
(255 µJ). If the changed region contains a face, NN-based facial 
recognition is performed (222 µJ). If this NN classifies the face as 
unregistered, the change-detected MCBs are H.264 compressed 
and stored in off-chip flash or radio transmitted. With an average 
of 12% change-detected MCBs and 23× H.264 compression ratio, 
the ISP achieves 192× overall size reduction for a VGA frame with 
28.3dB PSNR and only transmits out those MCBs with 
unregistered face information. The three key techniques applied in 
the design are now described in more detail.  

 (A) Compression of Memory-Intensive Data: To reduce 
SRAM size and hence leakage, we extensively employed data 
compression (Fig. 4). Specifically, the input image data, NN 
weights, and output image data are all stored or transmitted in 

compressed format. For the input image, on-the-fly JPEG 
compression is performed on the streamed-in image, achieving 
11.2× reduction in required memory size (7.4 Mb to 0.66 Mb) to 
store two VGA frames (reference and current). The JPEG codec 
is customized to remove interdependencies between MCBs and 
allow MCB-wise (de)compression. For NN weights, we use 
pruning, non-uniform quantization, Huffman encoding for 
convolution layers, and index-based encoding for sparse fully 
connected layers [2]. These combined techniques enable 
convolution layer compression of 2.3b per weight on average with 
<1% accuracy degradation. Compressed weights for all three NNs 
used in the intruder detection scenario (680 kb, 850 kb, and 1.9 
Mb) are stored on chip. The H.264 algorithm was customized to 
reduce the number of MCBs required from the JPEG compressed 
memory for the H.264 intra-mode prediction by interpolating the 
upper-left corner pixel and skipping Diagonal Down Left and 
Vertical Left prediction modes. This reduces the number of 
required MCBs by 2.6× with negligible loss (<0.1 dB PSNR) (Fig. 
5). Combined, these techniques reduce on-chip SRAM size by 5× 
(45 Mb to 9 Mb) and total leakage power by 12×, which includes 
2.4× leakage power reduction via a custom-designed 0.3 V 
bitcell/0.6 V peripheral SRAM array with 8σ hold margin. 

(B) Spatial Pruning using Change Detection Engine (CDE): 
The CDE performs spatial pruning at the MCB level (Fig. 6). First, 
the CDE encodes each 16×16 pixel MCB (3072b) of a reference 
image to a 64b pattern vector. Each element of a pattern vector is 
the ternary comparison result of two pixel intensities at predefined 
positions of the MCB. This new sparse census transform encoding 
is tolerant to uniform illumination change. For every newly 
streamed-in image, a 64b pattern vector is prepared and compared 
to that of the reference image. MCB change is flagged when the 
hamming distance between two vectors exceeds a tunable 
threshold. To improve coverage, flagged MCBs are also dilated 
(neighboring MCBs are flagged in a tunable manner). At the same 
time, only flagged MCBs are JPEG compressed using a pointer-
based data structure to accommodate the variable length of 
compressed MCBs. Processors can access arbitrary MCBs in raw 
uncompressed format with natural (fixed-length) block addressing 
as the decompression happens on-the-fly. These combined 
techniques reduce on-chip VGA image size by 110× from 460 kB 
to 4.2 kB (with typical 12% change) while achieving 95% 
coverage and 5% false positive rate for CD. 

(C) Event Recognition using NE: The highly programmable 
NE accelerates multiple NNs through its PE designed for efficient 
memory accesses (Fig. 7). With NN-specialized instructions, 
NCX controls the PE to support heterogeneous NNs. The PE is a 
computational core with a 512 8b MAC array and buffers to enable 
high MAC utilization. For a convolutional layer, a set of weights 
is decompressed once and swept across the entire input. To save 
memory for intermediate outputs, the convolved values after ReLu 
are shifted back to memory as 8b values. For large sparse fully-
connected layers, the combination of the outer product-based 
matrix-vector multiplication and index-based encoded weight 
maximize the activity rate of MACs by only computing non-zero 
weights. The NE achieves 1.5 TOPS/W (op = 8b mult/add) at 0.58 
V while operating at 153 kHz (allowing 5 fps person detection). 

Measurements: The ISP is fabricated in 40nm LP CMOS (Fig. 
8) and operates at 153 kHz. Latency (system energy) of person 
detection, face detection, and face recognition processing is 0.19s 
(31.9 µJ), 3.22s (541 µJ), and 2.85s (478 µJ), respectively. The 
LFW dataset is used for NN training, yielding accuracy results 
given in Fig. 9. Continually executing each step in the intruder 
detection and recording scenario (Fig. 3) consumes 170 µW on 
average. The energy consumption of the full data flow to produce 
a 192× compressed output image (12% MCB change) is 1.5 mJ 
per frame, broken down into Cortex M0 (16.6 µJ), CD & JPEG 
(10.7 µJ), H.264 compression (317 µJ), and clock tree (151 µJ). 
Fig. 10 compares the ISP with prior works.  
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Fig. 1. Motivation of hierarchical 
image recognition.

Fig. 3. Demonstration of the Image Signal Processor (ISP): (left) Demonstrated 
image processing flow; (top right) Functional block energy consumption for each 
computational stage; (bottom right) Quality of output image of ISP.

Fig. 4.  Proposed compression of memory intensive data entities: 
(top) Compression of parameters of neural networks; (bottom) 
Leakage power reduction from compression of memory size. Fig. 6. Proposed spatial image filtering: (top) Change detection algorithm flow; (bottom left) 

change detection energy comparison; (bottom right) Architecture of MCB-based JPEG 
compression memory.

Fig. 7. Proposed Neural Engine accelerating neural network-based event filters: (top left) 
Architecture of the Processing Element; (top right) Process of convolution layer; (bottom left) 
Process of sparse fullyconnected layer; (bottom right) Process of dense fully-connected layer. 

Fig. 9. Confusion matrices for each filter used in demonstration scenario.

Fig. 10. Comparison table.
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