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Brain–machine interfaces have the potential to treat many neu-
rological diseases and disorders. By translating brain activity 
into user intent, they can enable self-feeding, independent 

movement and computer control for people with paralysis1–4. Some 
of these advances were demonstrated more than a decade ago, but 
they have not yet been translated to widespread clinical use. A funda-
mental barrier to clinical systems is the high power and computation 
requirements for high-bandwidth neural recording. Consequently, 
modern high-performance solutions have required transcutaneous 
connections to a large cart of computers recording, processing and 
decoding the neural activity. This renders existing clinical implant-
able recording systems, such as closed-loop deep-brain stimulation 
implants, unfeasible as replacements, as they record from too few 
channels with too small of a bandwidth.

To predict complicated behaviour, brain–machine interfaces 
typically use estimates of the firing rates of relevant neurons. To 
extract these, they record from approximately 100 transcutaneous 
electrodes at 20 kSps to isolate units via thresholding. In an attempt 
to eliminate the infection risks associated with persistent transcu-
taneous connections and free the user from being tethered to the 
necessary computational hardware, several groups have investigated 
wireless, fully implantable neural interfaces. In particular, some 
devices wirelessly transmitted broadband neural recordings from 

~100 electrodes5,6. Unfortunately, power delivery generated unsafe 
tissue temperatures and the devices did not have decoding capabili-
ties to translate the neural activity, which would require the user to 
remain within the wireless range of the processing computers. In 
the case of controlling functional electrical stimulation, additional 
wireless links would be required to interact with the implanted 
stimulating hardware, requiring more power-hungry, wireless, 
implantable devices.

To resolve the power consumption issue, many groups have devel-
oped application-specific integrated circuits to optimally perform 
the necessary computations7–18. In particular, a promising 8 mW 
wireless implantable chip accommodating acquisition, spike sorting 
and transmission of 15.7 kSps neural data from 100 electrodes was 
demonstrated19. However, the amplifiers used were nearly optimal 
between the noise efficiency factor (4.0) and current usage (16 μA 
per channel), implying devices must optimize power consumption 
through alternative means20. In addition, while radio-frequency 
transmission of neural data and power has become a common 
solution for these groups, one found that it cannot accommodate 
micrometre-scale recording modules due to power loss through 
tissue and the inefficiencies of integrated components21. It seems 
even the optimizations of customized integrated circuitry may still 
require new techniques to further cut power consumption. These 
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The large power requirement of current brain–machine interfaces is a major hindrance to their clinical translation. In basic 
behavioural tasks, the downsampled magnitude of the 300–1,000 Hz band of spiking activity can predict movement similarly 
to the threshold crossing rate (TCR) at 30 kilo-samples per second. However, the relationship between such a spiking-band 
power (SBP) and neural activity remains unclear, as does the capability of using the SBP to decode complicated behaviour. 
By using simulations of recordings of neural activity, here we show that the SBP is dominated by local single-unit spikes with 
spatial specificity comparable to or better than that of the TCR, and that the SBP correlates better with the firing rates of lower 
signal-to-noise-ratio units than the TCR. With non-human primates, in an online task involving the one-dimensional decoding 
of the movement of finger groups and in an offline two-dimensional cursor-control task, the SBP performed equally well or bet-
ter than the TCR. The SBP may enhance the decoding performance of neural interfaces while enabling substantial cuts in power 
consumption.
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challenges have resulted in very few low-power integrated solutions 
being functional enough for animal use before being considered for 
safety verification in humans.

One potential way to lower power is to identify neural features 
that maintain the decoding capabilities of intracortical spike record-
ings but using less bandwidth. Using threshold crossing events is a 
common solution4,22–28, but this only saves power after digitization, 
leaving the high-bandwidth, low-noise amplifier included. Local 
field potentials have also been demonstrated to contain much move-
ment information from recordings as invasive as threshold cross-
ings29–31. The frequency content of such signals is appropriately low 
bandwidth for power reductions, and several groups have shown 
their usefulness towards open-loop decoding32–39 and closed-loop 
decoding4,27,40–43. However, owing to their intracortical nature, it is 
inconclusive how much of the performance is impacted by low-pass 
filtered spikes instead of potentials alone. Therefore, although most 
studies show that local field potential decoders can achieve peak 
performance levels comparable to but lower than spike-based fea-
tures, we do not know whether that is an artefact of spikes present 
in the signals.

Electrocorticography (2 kSps sampling rate) has also been pro-
posed as a less invasive neural feature for brain–machine interfaces. 
Several groups have shown open-loop44–47 and closed-loop48 decod-
ing, and the average correlation coefficient of these studies is 0.67. 
While comparable to spike-based neural features, these tasks were 
simple, where the multiple degrees of freedom (if present) moved 
mostly along one dimension to minimally varying displacements. 
This suggests that the decoders were dominated by the presence of 
movement. It is unclear how well electrocorticography decoders 
will perform at predicting more complex tasks that have systemati-
cally varied target locations and displacements, such as the continu-
ous centre-out-and-back or the point-to-point tasks.

Another interesting neural feature is the integration of multiple 
unit activity, sometimes called ‘spiking-band power’ (SBP), which 
was originally suggested in the 1960s before the age of cheap elec-
tronics, leaving it uninvestigated during the rise of brain–machine 
interfaces49. More recently, it has been demonstrated that the power 
in the 300–6,000 Hz band of spiking activity is not just equivalent 
to local field potentials, threshold crossing rate (TCR) and sorted 
unit firing rate at predicting movement direction, but superior32. 
Further, our group has demonstrated that the bandwidth over which 
the signal is integrated can be drastically lowered to 300–1,000 Hz 
while maintaining 95% of the decoding performance50. However, 
these studies only investigated offline decoding of relatively sim-
ple tasks, where population activity may decode as well as single 
units. The spatial specificity of SBP is not well understood, which 
makes the ultimate decoding limitations difficult to predict from 
fundamentals.

Here we use a combination of simulated and in vivo neural 
recordings from non-human primates and rats to compare the 
specificity of the 300–1,000 Hz spiking band with signals contain-
ing spikes. These simulations indicate that SBP results primarily 
from spike waveforms themselves, weighted by their amplitude, 
which creates a highly spatially specific signal. In addition, the 
simulations suggest that the spiking band can extract accurate 
spike information at low signal-to-noise ratios (SNRs) below typi-
cal thresholds, implying that SBP may represent neural activity that 
cannot be extracted by the TCR or sorted units. We believe that 
these analyses explain the findings of our previous work and its 
foundational work32,50. Further, the outcomes of these simulations 
suggest that this very-low-power approach will fare as well or better 
than unit-based methods at decoding more complex tasks. Thus, we 
evaluate this claim using a variety of decoded tasks in non-human 
primates: recalibrated feedback intention-trained (ReFIT) Kalman 
filters to control one-dimensional index and middle–ring–small 
(MRS) fingers in closed loop, support vector machines to classify 

two-dimensional individuated movements of unrestricted fingers in 
open loop, and standard Kalman filters to predict two-dimensional 
centre-out-and-back arm reaches in open loop.

Results
Visualizing single spikes in the spiking band. We began by inves-
tigating the frequency content of typical motor cortical biphasic 
spike waveforms to find a spectral basis for the 300–1,000 Hz pass 
band optimized in our previous work50. We identified two units 
representing narrow and broad spikes, plotted in Fig. 1a, from 
30 kSps recordings from a 96-channel Utah microelectrode array 
implanted into primary motor cortex in a rhesus macaque (monkey 
W, see Supplementary Fig. 1 for placement). Analysing both narrow 
(putative inter-neurons with higher frequencies) and wide (puta-
tive pyramidal neurons with lower frequencies) spikes, which are 
expected waveforms and have been reported previously in premo-
tor and motor areas in rhesus monkeys51,52, should approximate the 
range of power belonging to the 300–1,000 Hz spiking band for any 
motor cortical spike. We extracted the averaged spikes, processed 
their interpolated fast Fourier transforms, and approximated the 
total amount of signal power belonging to each of the 1–300 Hz, 
0.3–1 kHz and 1–15 kHz bands. Although most of the power in both 
spikes existed above 1 kHz, we found that the 300–1,000 Hz band 
contained a substantial amount, between 25% and 45% of the total, 
as shown in the green band of Fig. 1a.

With substantial power in the spiking band, we expect at least 
high SNR single-unit recordings to maintain strong spike represen-
tations after filtering to 300–1,000 Hz. Figure 1b shows a simulated 
recording of the solid-line unit from Fig. 1a (which had the least 
amount of power in the spiking band) firing spontaneously at an 
SNR of 10. The purple triangles represent the true simulated spike 
occurrences of this unit, while the blue trace represents the abso-
lute value of the raw simulated signal filtered with a 300–1,000 Hz 
second-order Butterworth filter, re-sampled at the Nyquist sampling 
rate of 2 kSps. After smoothing both signals with a 50 ms Gaussian 
window filter, SBP exhibited a 0.95 correlation with the true firing 
rate of the unit. In the unsmoothed signal energy on the bottom 
of Fig. 1b, there is a clear burst at each instance of a spike with a 
small lag resulting from the filter’s non-zero-phase characteristics. 
This resembles an envelope of the broadband signal, showing how 
the neural activity is captured on a spike-by-spike basis. While this 
first example represents a best-case scenario, the SBP trace does not 
look unusual for a single-unit electrode and starts to suggest that 
the spikes are dominating the SBP signal. Interestingly, though only 
obvious to us in hindsight, the SNR of the spiking-band trace in  
Fig. 1b is approximately twice as high (SNR = 19.52) as the SNR of 
the broadband trace. The small pass band of SBP cuts the noise level 
by a factor of about two while taking advantage of the spike’s energy 
above and below zero, suggesting SBP may be more robust to noise 
than single-ended broadband TCR.

We further explored this idea by simulating single neuron 
recordings under a variety of conditions to estimate the operational 
space of SBP for predicting true unit firing rates and compared it 
with that of TCR. In these simulations, the SBP and TCR feature 
extraction pipelines received the same simulated recording, includ-
ing identical noise and spike timings. In addition, our simulations 
did not estimate the true firing rate by thresholding; rather, the true 
firing rate was known absolutely because the timings of the simu-
lated spikes were known. Figure 2a shows these results in a grid for 
optimized TCR and SBP, where the colour represents the correlation 
with smoothed true firing rate. We found that the correlation is low 
for both features when the SNR or firing rate are very low (lower 
left corner). In contrast, the correlation is high when the SNR or 
firing rate are high (upper right corner). However, surprisingly, SBP 
maintains high correlation for lower SNRs and lower firing rates 
compared with optimized TCR.
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However, we consider it unfair to directly compare SBP and 
TCR, as the reduced SBP pass band eliminates much of the 
higher-frequency noise components. Thus, we also compare SBP 
to a low-bandwidth form of TCR, which is extracted by threshold-
ing the SBP. We found that SBP achieved similar low firing rate and 
low-SNR prediction performance to low-bandwidth TCR. This sug-
gests that the small bandwidth is indeed a major contributing factor 
towards the single-unit firing rate estimation performance.

An example from this region of high SBP and low-bandwidth 
TCR correlation but low TCR correlation is shown in Fig. 2b, 
where we recreated the same recording from Fig. 1b but with an 
SNR of 2.25. SBP in blue and low-bandwidth TCR in red main-
tained relatively high correlations with the unit’s true firing rate 
in purple (0.62 and 0.69, respectively) and are rarely falsely ‘acti-
vated’ by noise. In comparison, the firing rate predicted by cross-
ings of an optimized −3.75 × root-mean-square (r.m.s.) threshold 
in purple had a 0.34 correlation and more frequently missed true 
spikes. Although this may seem unfair to TCR detecting just one 
of the five spikes in the bottom of Fig. 2b, we found that lowering 
the threshold level to acquire more spikes resulted in more false 
detections. This reduced the overall predictive performance for 
TCR, even when the unit had a high SNR and a high firing rate. In 
addition, SBP required no trained parameters, while we found it 
necessary to optimize both TCR and low-bandwidth TCR to fairly 
compare the three features (Methods). To capture the low-SNR 
spikes via thresholding, substantial time must be spent optimizing 
that threshold, whereas a fixed −4.5 r.m.s. threshold that is used 
frequently for closed-loop brain–machine interface experiments 
would miss virtually all of the low-SNR spikes, a claim suggested 
by the worse low-SNR prediction performance in the TCR plot 
of Fig. 2a. Overall, this illustrates that the spiking band may be 
better able to extract firing rates of low-SNR or low-firing-rate 
units despite its much lower bandwidth, ones that high-bandwidth 
detectors may ignore.

SBP predicts firing rates of local units. The simulations presented 
thus far have only represented simulated recordings from one unit. 
In practice, electrodes record from many units simultaneously. 
Consequently, we investigated how well SBP tracks the true firing 
rates when there are multiple units surrounding an electrode. We 
first simulated recording of five neurons spiking spontaneously and 
independently at 20 Hz in different arrangements surrounding the 
simulated recording electrode, similar to past simulation work53. 
Each neuron’s amplitude was attenuated based on its simulated 
displacement from the recording point according to the monopole 
equation (equation (2) in Methods) and the result of Holt and Koch’s 
simulations54. Figure 3 illustrates the results of these simulations, 
where a red colour represents high correlation between that specific 
neuron’s firing rate and the recording’s SBP (blue is low correlation). 
First, we simulated a simple arrangement of the neurons cumula-
tively displaced by 50 μm in Fig. 3a. These waveform amplitudes 
fall off with the inverse of the distance according to the monopole 
equation. As a result, SBP strongly predicts the firing rate of just the 
highest-amplitude unit, 50 μm away. We then simulated a more real-
istic scenario with five units spaced out in a constant density around 
the electrode, which means that there are fewer close neurons and 
more distant neurons, and found an even stronger preference of SBP 
to the highest-amplitude unit (Fig. 3b). Third, in Fig. 3c, we simulated 
a highly active electrode, where multiple neurons correlated with 
SBP. However, the correlation was weighted by amplitude towards 
the highest-amplitude units, leaving less representation of the  
lower amplitude units still visible above noise. Lastly, in Fig. 3d,  
to illustrate that firing rate is also factored into the representation,  
we simulated the scenario in Fig. 3c again, but with the 
highest-amplitude unit spiking at just 1 Hz. We found that SBP can-
not detect the firing rate of the highest-amplitude unit accurately (as 
predicted by lower firing rates in Fig. 2a and Supplementary Fig. 4) 
but shifts to a more specific prediction of the firing rate of the next 
largest amplitude unit that is active (or the highest r.m.s.-based SNR 
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Fig. 1 | Representation of spikes in the 300–1,000 Hz band. a, Frequency spectrum of two averaged neural spikes (solid line, narrow/putative inter-neuron; 
dashed line, wide/putative pyramidal neuron) extracted from intracortical non-human primate recordings. Top: averaged neural spike waveforms. Bottom: 
interpolated fast Fourier transform of the above waveforms split by relevant frequency bands, normalized to the maximum value for each transform. The 
numbers in the legend indicate the amount of power belonging to each frequency band, with the solid line represented by the left-most set of percentages. 
b, Single-unit simulated recording of the solid-line unit in a at an SNR of 10. Top: raw simulated noisy signal (grey) with spike occurrences (purple 
triangles) and SBP (blue) overlaid. Bottom: a snippet of the top plot with the SBP manually offset vertically to avoid occlusion.
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unit according to the r.m.s.-based SNR analysis; Supplementary 
Information). In all simulations, we found that SBP is a spatially 
local signal (see the monopole equation variant in Methods), domi-
nated by the firing rates of the highest-amplitude single units that 
are reasonably active, regardless of where they are with respect to 
any voltage threshold.

To compare with realistic voltage traces that include multiple 
sortable units, we used three recordings captured in vivo and per-
formed the same analysis. These include one channel from mon-
key W’s motor array (Fig. 3e) and two from carbon fibre electrodes 
implanted acutely into rat motor cortex (Fig. 3f,g). Overall, we 
found similar results to the simulations, validating that SBP is tuned 
strongly to the firing rates of higher-amplitude units, while mostly 
ignoring low-amplitude units. This suggests that while SBP may not 
be a single-unit signal, it maintains the spatial specificity of broad-
band spike-related features like TCR or sorted units.

Improved decoding with SBP. In previous work, we and others 
demonstrated that SBP can be used to predict gross movements 
offline32,50. Specifically for fingers, we showed that SBP from 300 to 
1,000 Hz had very similar performance to TCR50. If the unit speci-
ficity suggested by the simulations above is correct, this would pre-
dict that the performance equivalence will be maintained in more 
complex tasks, specifically the control of multiple fingers, which 
we evaluate here. We trained three non-human primates, monkeys 
L, W and N, to perform a one-dimensional task requiring them to 
move virtual fingers into virtual targets by moving their physical 

fingers (Supplementary Fig. 2). In these datasets, monkeys L and W 
performed the task with all four fingers moving together and mon-
key N moving just his index finger. We first trained four Kalman 
filters for each monkey, one each for SBP, low-bandwidth TCR, 
TCR and single-unit firing rate, to decode the neural activity into 
finger positions offline. Each dataset was tenfold cross-validated, 
and so each decoder was always trained and tested on neural 
and behavioural data in which the monkey was moving the same 
finger(s). We found that SBP achieved correlations between its 
prediction and the actual finger movements statistically as high or 
higher than all other features (P < 1 × 10−4; see ‘Open-loop decod-
ing analysis’ in the Supplementary Information). These results 
were comparable to those found by others and our group, but with 
a more challenging task to decode than our previous study due to 
more target locations and randomized target order30,50,55. Offline, 
we also compared the importance of SBP, low-bandwidth TCR and 
TCR channels for decoding in Supplementary Fig. 5b and found 
that SBP generally had more channels that resulted in a drop in 
decode performance when individually excluded. This suggests 
SBP is extracting more valuable information from the available 
channels than TCR methods, which follows from the result of the 
low-SNR simulations in Fig. 2a.

With a functional offline SBP decoder, we tested SBP as a 
closed-loop neural feature in real time to gauge its usability in neu-
roprosthetic applications. We trained monkeys W and N to perform 
the same one-dimensional finger task as the offline task, except using 
the index finger alone or the MRS fingers as a group (as described 
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previously56). During each experiment, we trained ReFIT Kalman 
filters to decode TCR or SBP into finger positions and velocities56. 
The closed-loop decoders the monkeys used for a specific finger 
group were always trained on neural data and behavioural data 
associated with movements of that finger group. Figure 4a shows 
predicted finger traces with visual feedback provided to monkey 
W using only his MRS fingers and monkey N using only his index 
finger (Supplementary Videos 1 and 2 are of monkeys W and N 
using their other finger groups, recording conditions displayed in 
Supplementary Fig. 3). Across all ReFIT decoders for any combina-
tion of finger groups, both monkeys achieved significantly higher 
bit rates (1.1 bps to 1.5 bps, P < 1 × 10−25 for monkey W; 1.0 bps to 
1.1 bps, P < 1 × 10−4 for monkey N; single-tailed two-sample t-test) 
when using the SBP decoders compared with TCR decoders, though 
only monkey W acquired targets in significantly less time (1.9 s to 
1.3 s, P < 1 × 10−30; single-tailed two-sample t-test; Fig. 4b). This sug-
gests that ReFIT Kalman filters can decode SBP into individual finger 
motions at least as well as TCR. For completeness, monkey W also 
used a ReFIT Kalman filter trained to decode 300–6,000 Hz SBP (that 
is, from previous studies32) to characterize any losses from the band-
width reduction. With SBP allowing an improved acquisition time 

(1.4 s to 1.3 s, P < 1 × 10−3; single-tailed two-sample t-test) and no sig-
nificant difference in bit rate (1.5 bps, P = 0.51; two-tailed two-sample 
t-test) over 300–6,000 Hz SBP, we suggest that the 300–1,000 Hz spik-
ing band is sufficient for optimal closed-loop SBP decoding.

With the ability to use SBP to decode movements of individual 
finger groups, we sought to validate that SBP could maintain high 
performance in two-dimensional tasks. First, we attempted to clas-
sify which finger group was moving when both were given unre-
stricted mobility. We trained the monkeys to acquire two targets 
simultaneously in a two-dimensional finger task, one exclusively 
for each finger group, and presented targets such that only one 
group was moved from rest to a flexion position at a time while 
the other group remained at rest. We trained two support vec-
tor machines to classify which finger moved in a given trial, one 
using TCR and the other using SBP. The SBP machine achieved 
the higher prediction performance (average >5% improvement for 
both monkeys), as shown in Fig. 4c and similar to that found previ-
ously for TCR56. Second, we predicted offline continuous hand posi-
tion in a two-dimensional centre-out-and-back cursor-control task 
using a standard Kalman filter in non-human primates, similar to 
what has been done in other work57. We found that SBP achieved  
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statistically higher correlation coefficients between the predicted 
and actual hand positions and statistically similar hand velocity cor-
relation coefficients compared with TCR and low-bandwidth TCR 
(for SBP, TCR and low-bandwidth TCR, respectively: 0.86, 0.84, 0.84 
X position; 0.94, 0.93, 0.93 Y position; 0.74, 0.73, 0.74 X velocity; 
0.84, 0.82, 0.82 Y velocity for monkey J; 0.84, 0.81, 0.81 X position; 
0.77, 0.72, 0.75 Y position; 0.76, 0.71, 0.73 X velocity; 0.77, 0.73, 
0.74 Y velocity for monkey L; P < 1 × 10−3, two-tailed two-sample 
z-test; see ‘Two-dimensional cursor control’ in the Supplementary 
Information).

These results, consistent with our one-dimensional finger 
task, suggest that SBP exceeds the performance of threshold 
crossing-based features at multidimensional control tasks despite 
the drastically reduced bandwidth, similar to what was found pre-
viously by others32. We also investigated the impacts of increasing 
the recording noise on decoding performance in the Supplementary 
Information (‘Two-dimensional cursor control’), and found that 
SBP could tolerate almost two times the noise level as TCR to main-
tain at least 80% of their no-noise decode performances.

Discussion
Here we have compared single-unit firing patterns and the 300–
1,000 Hz SBP. Specifically, we have shown that the single-unit speci-
ficity of the SBP is comparable to sorted units despite the reduction 
in bandwidth, likely explaining the mechanism that yielded the 
outcomes of our previous work and that of others. We also believe 
that the specificity of SBP improves its decoding performance to 
be comparable or better than standard high-bandwidth methods, 
such as TCR, and comparable to sorted unit firing rates. Finally, 
we believe our results extend our previous findings as well as those 
of others to suggest that the decode performance improvements of 
SBP are maintained in complicated behaviours, higher dimensions 
and closed loop.

The results of our simulations suggest that SBP, sampled at only 
2 kSps, is a highly spatially specific neural feature. It is dominated 
by spikes, and to extract neural information, it requires spikes to 
be present. Compared with TCR, SBP requires no specific tuning 
for it to function optimally. It is ‘parameter free,’ without requir-
ing adjustable thresholds or any programming to implement spike  

a
100

TCR ReFIT SBP ReFIT

50

0

100

50

0

10 20 20

20 30

30

10 20
Time (s) Time (s)

30

M
on

ke
y 

W
M

R
S 

on
ly

M
on

ke
y 

N
in

de
x 

on
ly Fi

ng
er

 fl
ex

io
n 

(%
)

100

50

10

10

0

100

50

0

Fi
ng

er
 fl

ex
io

n 
(%

)

b
100

50

4

2

0

Hand TCR SBP WSBP

Acquisition time (s) Bit rate (bps)

0.5

a b c d a b c c

1.9

1.3
1.4

2.9

1.1
1.5 1.5

0

M
on

ke
y 

W

100

Success rate (%)

100 98 97

100 9999 99

50

0

M
on

ke
y 

N

4

2

0 a b b
0.5

2.3 2.2

4

2

0

4

2

0 a b c

2.8

1.0 1.1

c
100

50

Percentage of trials

0

TCR SBP
Correct: 89.8%

Correct: 83.2% Correct: 89.5%

Correct: 94.3%

M
on

ke
y 

W
ac

tu
al

M
on

ke
y 

N
ac

tu
al

M
R

S
In

de
x

M
R

S

MRS
Predicted

In
de

x

Index MRS
Predicted

Index
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sorting that must be done daily for optimal TCR performance. 
From a device perspective, TCR would require programmable and 
receiver circuitry to, at the least, optimize the thresholds that we 
found varied substantially between animals and across days within 
one animal (see ‘Open-loop decoding analysis’ in the Supplementary 
Information). However, SBP would need no additional circuitry 
while maintaining performance levels. In a medical application, 
this implies a reduction in training time without a required daily 
parameter search of the best threshold and overall greater ease of 
use as a medical device. In addition, lower device complexity and 
power consumption without any required receiver hardware would 
imply an increased battery life of SBP devices. As a result, SBP may 
become broadly applicable to other closed-loop, low-power neural 
applications, such as bladder-state monitoring, deep-brain stimula-
tion and seizure prevention.

Importantly, these results suggest that SBP can accurately extract 
single-unit firing rates at lower SNRs than TCR, suggesting that 
more activity can be extracted on channels that may not have visible 
spikes. This has major implications for the longevity of implanted 
microelectrode arrays in human patients, as it has been reported 
that the quantity of electrodes displaying spikes visible above noise 
wanes over time58. We performed an analysis (‘Two-dimensional 
cursor control’ in the Supplementary Information) in which we 
injected noise into the recorded neural activity to investigate the 
impacts of fewer visible neural spikes on decoding. Through this 
analysis, we validated that SBP maintains better decoding perfor-
mance than TCR as visible spike presence on an array drops off. 
In fact, some groups conducting human clinical trials have already 
made use of this approach to extend the lifetime of their arrays25,59,60. 
In particular, high-frequency band power (essentially 250–3,000 Hz 
SBP) was added to the spike counts for their brain-controlled func-
tional electrical stimulation prosthesis25. Others also used 250–
5,000 Hz SBP in addition to spike counts for their virtual typing task 
in human patients60. In neighbouring fields, groups that implant 
deep-brain electrodes utilize SBP to detect when electrodes have 
entered the grey matter of the subthalamic nucleus61. We believe that 
our findings suggest a potential mechanism explaining why their 
methods work, and we hypothesize that SBP’s capabilities of extract-
ing low-SNR unit activity may extend the usable, high-performance 
lifetime of such a neuroprosthesis even once the spikes are indis-
cernible above broadband noise.

While most high-performance brain–machine interfaces rely 
on visible spikes to decode, many groups have experienced per-
formance issues as the spike amplitudes wane over time or are 
invisible above noise39,62,63. Consequently, local field potentials and 
electrocorticography have been investigated as replacement and 
supplemental feature sources, as they represent local neural activity 
even with lacking spikes. As many local field potential studies have 
shown performances comparable to but lower than spike-based fea-
tures4,27,32,34–38,40–43, it is inconclusive how much of the performance 
is a result of low-pass filtered spikes. However, the results we have 
presented clearly demonstrate that SBP, while dependent on spikes, 
exceeds the performance of high-bandwidth spike-based features. 
Further, the average electrocorticography open-loop decode corre-
lations of 0.67 (refs. 44–48) are similar to the offline analyses we have 
presented here for SBP and TCR. However, the simplicity of the 
tasks in the electrocorticography studies suggests that the decod-
ers may be predicting the presence of movement effort rather than 
the movement itself. In contrast, our one- and two-dimensional 
centre-out-and-back decoding results using SBP demonstrate SBP’s 
capability of predicting the movement directly with performance as 
good or better than TCR.

One of the major benefits of SBP as a reduced-bandwidth, highly 
specific neural feature is the power savings it enables compared with 
higher-bandwidth devices previously presented5,6,64. In our analysis 
presented in ‘Integrated circuit simulations’ in the Supplementary 

Information, we simulated the power consumptions of optimized, 
custom integrated circuits that extract 2 kSps low-bandwidth fea-
tures or 20 kSps high-bandwidth features to estimate the power 
savings that can be attributed to the reduction in recording band-
width. On the basis of those results, which showed a 90% reduc-
tion in power consumption from 11 mW to 1.1 mW, we believe the 
greatest improvement to the power consumption of neural inter-
faces can be made only through changes to the analogue front-end. 
However, such a wide bandwidth is not optimized for power con-
sumption and is much larger than what is necessary to accurately 
estimate firing rates with threshold crossings. While reducing the 
TCR bandwidth to the spiking band would save equivalent amounts 
of amplifier power, such a circuit would be suboptimal, as the 
SBP decodes always out-performed low-bandwidth TCR. In addi-
tion, the low-bandwidth TCR circuit would require a receiver and  
programmable circuits for the thresholds that SBP does not 
require. Such circuitry would increase the power consumption of a 
low-bandwidth TCR circuit (though not investigated here) and be 
a major hindrance in applicability to neural dust-like chiplets that 
have intermittent power supplies and would benefit greatly from 
having no programmable, power-consuming memory for thresh-
old levels that would otherwise be forgotten each power cycle. The 
factor of ten reduction in power consumption predicted by the cir-
cuit simulations implies a substantial increase in battery life of SBP 
devices while enhancing decoding performance over the equivalent 
TCR circuit.

The lower power requirements of SBP would not only reduce 
the consumptions of current acquisition technologies but also 
have implications for the future of cellular-scale neural record-
ing. State-of-the-art front-end designs are being presented that 
require a small number of transistors65–67. With simpler front-end 
amplifiers, it becomes much more plausible to have electronics 
mounted on the array itself or have modular, wireless ‘chiplets’ 
with single-unit-level specificity66,68. This also suggests that exist-
ing application-specific integrated circuits developed for local 
field potentials and electrocorticography may be sufficient for 
brain–machine interface applications, so long as there are spikes 
present on the electrodes69–71. Overall, the minimal hardware and 
small supply requirements of SBP may help enable a path towards 
recording thousands to tens of thousands of channels with similar 
performance to single-unit-based systems.

Methods
All procedures were approved by the University of Michigan Institutional Animal 
Care and Use Committee.

Array implants. We implanted three male rhesus macaques with Utah 
microelectrode arrays (Blackrock Microsystems) in the hand area of primary 
motor cortex, as described previously26,56. Pictures of the implants are illustrated in 
Supplementary Fig. 1. Only motor cortex arrays were used in this study, and only 
monkey N’s most rostral array was used.

In addition, we obtained previously recorded offline datasets (L120502 and 
J121009, a centre-out-and-back arm reaches behavioural task performed by 
monkey J using the same implants as described in the original work) for our 
two-dimensional cursor-control analysis57. All surgical and animal care procedures 
for these animals were performed in accordance with National Institutes of Health 
guidelines and were approved by the Stanford University Institutional Animal Care 
and Use Committee. Monkeys J and L were adult male rhesus macaques implanted 
with 96 electrode Utah arrays using standard neurosurgical techniques. Electrode 
arrays were implanted in primary motor cortex (M1) as visually estimated from 
local anatomical landmarks. Monkey J had two arrays, one in M1 and one in dorsal 
premotor cortex (PMd; unused in this study), while Monkey L had one array 
implanted on the M1/PMd border.

We also obtained recordings using carbon fibre electrodes in the rat motor 
cortex72. Each carbon fibre (~6.8 μm) was insulated with parylene C, cut to expose 
the carbon recording surface, and then coated to reduce impedance to near 30 kΩ 
(refs. 72,73). We obtained acute electrophysiology recordings from layer V of one 
male wild-type Long Evans rat’s motor cortex following previously established 
methods73. Three minutes of electrophysiological data were acquired from two 
separate carbon fibres using a TDT RX5 Pentusa recording system (Tucker-Davis 
Technologies).
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Feature extraction. All processing was done in Matlab v.2012b, 2016a or 2018a 
(Mathworks), except where noted.

The band power neural features presented here are similar to those used 
previously, but in less computationally expensive forms32,49. The raw data were 
collected from the monkeys using a Cerebus v1.0 using firmware version 6.03.01.00 
(Blackrock Microsystems) digitizing at 30 kSps and from the rat using the RX5 
Pentusa digitizing at 24.414 kSps. We first applied a second-order Butterworth 
filter to the raw data with a 300–1,000 Hz pass band for SBP. Then, we extracted 
the magnitude of the signal and downsampled it to 2 kSps or 2.4414 kSps for the 
Cerebus or RX5 Pentusa, respectively. Lastly, we smoothed this signal using a 50 ms 
Gaussian window for simulations or averaged the signal in non-overlapping 50 ms 
bins for open-loop decoding.

For closed-loop decoding, we extracted SBP differently for simpler  
processing in real time. We configured the Cerebus to band-pass filter the raw 
signals to 300–1,000 Hz using the Digital Filter Editor feature included in the 
Central programme (Blackrock Microsystems), then sampled at 2 kSps for SBP.  
The continuous data was streamed to a computer running xPC Target 
(Mathworks), which took the absolute value of the incoming data and averaged it 
in 50 ms bins for decoding.

To extract TCR in simulation, we first high-pass filtered the raw, simulated 
30 kSps recordings using a zero-phase second-order Butterworth filter with a 
250 Hz cut-off frequency. We set a threshold at −3.75 r.m.s. and smoothed the 
binary result using a 50 ms Gaussian window. We optimized the −3.75 r.m.s. 
threshold for Fig. 2 from the threshold that achieved similar low firing rate 
prediction performance to SBP (we found more negative thresholds further 
reduced TCR’s low-SNR prediction performance, which, at all thresholds, was 
worse than SBP).

To decode TCR, we configured the Cerebus to extract voltage snippets that 
crossed a −4.5 r.m.s. threshold. Then, these waveforms were streamed to the 
computer running xPC Target, which logged the time of each spike’s arrival (for 
later open-loop decode processing) and counted the number of spikes in 50 ms 
bins (for closed-loop decoding).

We also sought to compare SBP to a lower-bandwidth form of TCR to validate 
that the improvements in decode performance were not artefacts of the restricted 
noise bands. To extract low-bandwidth TCR, we thresholded the absolute value 
of the 300–1,000 Hz band. We chose to threshold only the spiking band since our 
primary goal with using SBP is to reduce front-end bandwidth to save the most 
power, with a secondary goal of maintaining decode performance.

When comparing SBP to sorted units to mimic the multiple unit simulation, we 
imported the relevant recordings into Offline Sorter (Plexon). Then, we high-pass 
filtered the recordings with a four-pole Butterworth filter with a cut-off frequency 
set to 250 Hz. To sort units of all amplitudes for validation of the multiple unit 
simulation results, we manually chose a reasonable threshold and sorted the spikes 
crossing the threshold individually and in combination with principal component 
analysis and visual inspection. For the power spectrum analyses we performed, we 
decided it was necessary to extract the averaged units without any influence from 
the lower frequency, higher signal power 1–300 Hz band. The random phases of 
the spikes in that band could confound the averaged spike waveforms, despite the 
possibility that action potentials could contain power in that band.

To sort units for offline decoding, we imported into Offline Sorter spike 
waveforms and timings extracted by the Cerebus with a −4.5 r.m.s. threshold during 
a behavioural task. Then, we eliminated all waveforms that were clearly artefactual, 
determined by extraneously large amplitudes, extraneously fast timescales or 
waveform shape. We manually sorted the remaining waveforms into single units by 
analysing the three strongest principal components, the density of waveforms in the 
principal component space and the visual patterns of the waveforms. For all channels 
with distinguishable units, we added one additional unit, termed the neural hash in 
this manuscript, containing the remaining unsorted waveforms that were not deemed 
artefact. After unit isolation, we synchronized the timings of the waveforms of each 
unit with the behavioural data and binned each unit’s spiking rates in 50 ms bins.

In all simulations, we compared each estimate of firing rate with the true firing 
rate of each simulated unit (‘True spike occurrence’ in Fig. 1 and ‘True FR’ in  
Fig. 2). We defined true firing rate as the indicator function of the initiation of a 
spike smoothed by a 50 ms Gaussian window, with the timings of all simulated 
spikes known based on the methods detailed in the subsequent paragraph. 
In addition, several simulations were also performed with 100 ms Gaussian 
smoothing windows or exponential smoothing windows of various time lengths for 
all features, which yielded similar results and are subsequently not presented.

Simulation design and parameters. In Matlab, we simulated 30 kSps recordings of 
neural activity to investigate the origins and characteristics of SBP. We simulated 
spontaneously firing neurons as point current sources with an action potential 
waveform averaged from a 3 ms sorted unit from one of monkey W’s intracortical 
recordings digitized at 30 kSps. To emulate spontaneous neural firing patterns, we 
first selected a reasonable firing rate, FR, representative of typical neural activity 
and a simulation duration, T. Then, we subtracted the total number of samples 
occupied by spikes (that is, 3 ms of samples times the firing rate times the duration, 
or 3 × 30 × FR × T) from the 30,000 × T samples in each simulation and randomly 
partitioned the remaining samples into FR × T + 1 parts. Then, these randomly 

sized partitions were placed between spikes to generate a random spiking pattern 
with known timings. As such, simulated single-unit recordings never had 
overlapping spikes. When simulated spikes from multiple units overlapped in time 
on one simulated recording, we superimposed the recorded voltages as was done 
by others53.

We simulated our recording electrode as a point current sink. For a noise 
model, we generated additive 6.23 μV thermal white noise as was determined 
typical of intracortical recording simulations previously by others53. We found 
this value similar to the noise level of our Cerebus recording hardware. We 
did not include any biological noise since such a noise source with frequency 
characteristics similar to the spikes being simulated could confound the results. 
Thus, the same simulated 30 kSps signals, 6.23 μV noise included, were used as 
inputs to both the TCR and SBP feature extraction pipelines. For simulations, 
we defined the SNR as the maximum of the absolute value of the noiseless signal 
divided by the r.m.s. value of the isolated noise:

SNR ¼ max jsignaljð Þ
r:m:s:ðnoiseÞ ð1Þ

This allowed us to evaluate simulated signal SNRs for unrectified broadband 
recordings and their corresponding rectified SBP using the same metric. In 
addition, we have also performed all simulations using another SNR definition 
based on signal r.m.s. to better represent the total spiking signal power of a 
recording (results in the ‘r.m.s.-based SNR analysis’ section in the Supplementary 
Information):

SNRr:m:s: ¼
r:m:s:ðsignalÞ
r:m:s:ðnoiseÞ

To transition between a simulated unit’s SNR and the estimated displacement from 
a recording electrode, we applied a variation of the monopole equation:

r ¼ I0
4πσ ´ SNR ´ r:m:s:ðnoiseÞ ð2Þ

where r is the estimated displacement between the point current source neuron 
and the point current sink recording electrode, I0 is the maximum of the absolute 
value of the current source, which we set to a realistic 5 nA, and σ is the simulated 
conductivity of grey matter of 0.27 S m−1 (ref. 74). By this derivation of the monopole 
equation, we assume that displacement is inversely proportional to the SNR, as was 
suggested by the simulation results of Holt and Koch54. Thus, to convert to voltage 
when necessary, we multiplied the SNR value of each sample by the 6.23 μV noise 
r.m.s. level according to equation (1).

All simulations in this study were performed 100 times to avoid any effects of 
random noise and random spike timings, and the averages of those simulations are 
presented in these results. Correlations were computed from two window lengths 
into the simulated recording to two window lengths from the end of the simulated 
recording to avoid any impacts of onset and offset transients on the filters. Each 
simulated neural recording was 5 s long, resulting in n = 150,000 samples at 30 kSps 
and n = 10, 000 samples at 2 kSps per simulated recording.

Behavioural task. We trained monkeys L, W and N, to acquire virtual targets with 
virtual fingers by moving their physical fingers, as illustrated in Supplementary 
Fig. 2. During all sessions, the monkeys sat in a shielded chamber with their right 
arms fixed at their sides flexed at 90° at the elbow, resting on a table. Monkeys W 
and N had their hands placed in the manipulandum described previously, while 
monkey L had his hand lightly restrained facing left in a simple stanchion56. Finger 
movements were measured by flex sensors (FS-L-0073-103-ST, Spectra Symbol) 
attached to both doors of the manipulandum or directly to the index finger of 
monkey L’s right hand. Position measurements were recorded by a computer 
running real-time xPC Target. The computer monitor directly in front of the 
monkey displayed a virtual monkey hand model (MusculoSkeletal Modeling 
Software) which was controlled by the xPC Target computer to mirror the 
monkey’s hand movements75.

For closed-loop decoding experiments presented in this work, monkeys W and 
N performed trials in which either the MRS door or the index door was locked at 
full extension and the other was free to move, or both doors were locked together 
to keep the monkeys’ fingers moving together. Later, monkeys W and N were 
trained to acquire two targets simultaneously, one specifically with their index 
finger and the other specifically with their MRS fingers, to classify which fingers 
are being moved for each target acquisition. Both groups of fingers moved freely 
and independently in this movement style. Monkey L had no finger restrictions 
and voluntarily moved all four fingers together.

Each trial began with a spherical target(s) appearing along the path of the 
virtual finger(s) of interest, where each target occupied 15% of the full arc of 
motion of the virtual finger(s). For a successful trial, the monkey was required to 
move its fingers such that the corresponding virtual finger(s) of interest moved into 
the target(s) and remained there for 500–750 ms. On successful trial completion, 
the monkeys received a juice reward. For closed-loop decoding, the targets were 
presented in a centre-out pattern for one finger group, as detailed previously56. 
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For finger movement classification, four target arrangements were presented in a 
pattern similar to centre-out, where both targets defaulted to the rest position (50% 
between full extension and full flexion) and, randomly, only the index, only the 
MRS or both groups had targets presented at 80% flexion on the non-rest trials.

Open-loop decoding. For all open-loop decoding, we applied a standard 
position/velocity Kalman filter with a position/velocity neural tuning model and 
optimizations as we described previously to predict the movements the monkeys 
made in the behavioural task26. We trained Kalman filters individually for each 
neural feature and conducted tenfold cross-validation. In the analyses presented 
in the Supplementary Information (‘Open-loop decoding analysis’), we performed 
open-loop decodes of all six neural features in Matlab: SBP, wideband SBP (that 
is, 300–6,000 Hz pass band32), low-bandwidth TCR, TCR, single-unit firing rate 
and single-unit firing rate with neural hash. All decodes used bin sizes of 50 ms, 
no common-average referencing, the optimal quantity of additional historical 
bins per channel or unit determined for that set of data, the optimal bin lag 
between the neural activity and behaviour determined for that set of data, and all 
available channels as previously described. In addition, to most fairly compare 
low-bandwidth TCR as the alternative power-efficient feature, we found the 
optimal r.m.s. threshold for each set of data to compare to the other features. For 
each decode, we calculated Pearson’s correlation coefficient and the r.m.s. error 
between the predicted and actual finger positions using Matlab. We transformed 
all correlation coefficients between the predicted and actual movements to their 
Fisher’s z-scores and performed two-tailed, two-sample z-tests to compare the 
statistical differences between all features. To determine statistical significance 
between r.m.s. errors of the different features, we calculated the r.m.s. errors of 
bins of ten distinct samples from the predictions/true movements, yielding vectors 
of errors representing subsets of the predictions. Then, between these vectors, 
we performed one-tailed, two-sample Wilcoxon rank-sum tests to determine 
significance.

To estimate the value of each channel or unit for each decoder, we omitted each 
channel or unit from the decoder and calculated the corresponding correlation 
between the predicted and actual finger positions. Then, we subtracted the 
correlation of the decoder that had access to all neural data from the correlation of 
the decoder missing one channel or unit to gauge the impact on performance76.

Closed-loop decoding. To quantify how well a system decoding SBP would 
perform in a neuroprosthetic application, we gave monkeys W and N visual 
feedback of the decoders’ outputs during the behavioural task. For each 
closed-loop experimental session, the monkeys began by completing at least 350 
target presentations with the virtual hand controlled directly by the physical hand’s 
movements. The monkeys were required to acquire and hold the target for 750 ms 
continuously for a successful trial. The behavioural data (that is, finger kinematics) 
were measured synchronously with the neural features by the xPC Target 
computer. Then, we trained a standard Kalman filter on this data. Subsequently, we 
used it to predict the finger movements exclusively from the neural features and 
actuate the virtual hand accordingly in real time. These types of trials are what we 
call closed-loop experiments. For a successful closed-loop trial, the virtual finger 
had to remain within the target continuously for 500 ms.

The monkeys completed at least 250 target presentations using the standard 
Kalman filter. Then, we trained a ReFIT Kalman filter using the data from the 
standard Kalman filter set of trials. ReFIT Kalman filter recalibration followed 
the same procedure and optimization as we previously described56. Finally, we 
enabled the monkeys to complete at least 150 target presentations using the ReFIT 
Kalman filter in closed-loop form. An entire experimental session, from the initial 
hand-controlled training data through standard Kalman filter and ReFIT Kalman 
filter training and testing, occurred within a few consecutive hours, always on the 
same day.

We compared success rate, target acquisition time and Fitts’ law bit rate of 
closed-loop decoders using exclusively SBP, TCR or wideband SBP. All decoders 
used a bin size of 50 ms, a bin lag of 0, 1 or 2 bins for monkey W and 2 or 3 bins for 
monkey N, and channel masking as needed, which were determined optimal for 
each decoder on each day during training26. We calculated Fitts’ law bit rate using 
the following formula:

Bit rate ¼
log 2 1þ Di�RT

2´RT

� �

tacq

where Di is the n-dimensional displacement between the finger’s starting position 
to the centre of the target, RT is the radius of the target and tacq is the time the 
monkey took to successfully complete the trial minus the required holding time77. 
All failed trials were given a bit rate of 0. To best compare closed-loop decoding 
performance among the three neural features, we aligned the training sets of data 
as best as possible. The SBP and TCR standard Kalman filters were trained on the 
same set of synchronized behavioural data and neural activity. As the Cerebus 
used could apply only one filter at a time to continuous data and the xPC Target 
computer could not additionally filter all incoming data quickly enough in real 
time, the SBP and wideband SBP standard Kalman filters were compared using 
different synchronized behavioural and neural data acquired consecutively within 

the same experiment. We randomly switched the neural feature for which we 
would synchronize behavioural data first in a day’s experiment to avoid any biases 
associated with the cumulative amount of training time for each set.

The closed-loop decode statistics were calculated with single-tailed, 
two-sample t-tests between all combinations of virtual hand control methods. The 
statistics resulted from monkey W performing 4,659 trials using his hand, 1,084 
trials using the TCR decoder, 2,042 trials using the SBP decoder and 2,428 trials 
using the wideband SBP decoder and monkey N performing 1,556 trials using his 
hand, 1,256 trials using the TCR decoder and 1,915 trials using the SBP decoder. 
Closed-loop experiments were performed in eight sessions across one month for 
monkey W and four sessions across nine days for monkey N.

Finger classification. To characterize SBP in a more complex neural decoding 
scenario, we classified which of index or MRS groups were moving in a given trial. 
A support vector machine with a Gaussian kernel function and L1 regularization 
was chosen as the classifier and tested using tenfold cross-validation in Matlab. 
Only trials in which the monkeys flexed one finger after both fingers were at the 
rest position were used for training and testing. The classifier translated 160 ms 
bins of neural activity from active channels from 50 ms before to 250 ms after 
movement onset with 20 ms steps between the start of each bin78. Movement onset 
was determined by smoothing the moving finger’s position using a second-order 
Savitzky–Golay filter with a frame duration of 200 ms, deriving the velocity, and 
finding the first point of incline towards the maximum velocity, which is assumed 
to be involved in the initial movement towards a target. The results in Fig. 4c were 
based on 88 trials from monkey W and 95 trials from monkey N.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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